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We consider the stability of flux-driven flow through a long planar rigid channel, where
a segment of one wall is replaced by a pre-tensioned hyperelastic (neo-Hookean) solid
of finite thickness and subject to a uniform external pressure. We construct the steady
configuration of the nonlinear system using Newton’s method with spectral collocation
and high-order finite differences. In agreement with previous studies, which use an
asymptotically thin wall, we show that the thick-walled system always has at least
one stable steady configuration, while for large Reynolds numbers the system exhibits
three co-existing steady states for a range of external pressures. Two of these steady
configurations are stable to non-oscillatory perturbations, one where the flexible wall is
inflated (the upper branch) and one where the flexible wall is collapsed (the lower branch),
connected by an unstable intermediate branch. We test the stability of these steady
configurations to oscillatory perturbations using both a global eigensolver (constructed
based on an analytical domain mapping technique) and also fully nonlinear simulations.
We find that both the lower and upper branches of steady solutions can become unstable
to self-excited oscillations, where the oscillating wall profile has two extrema. In the
absence of wall inertia, increasing wall thickness makes negligible difference to the steady
wall profiles and the onset of oscillations. However, with finite wall inertia and a relatively
thick wall, higher frequency modes of oscillation dominate the primary global instability
for large Reynolds numbers.

Key words: flow-vessel interactions

1. Introduction

Human physiology includes a wide number of examples of fluid flow through flexible-
walled conduits including blood flow through the circulation (from rapid flow in the heart
and large arteries to slow viscous flows through the capillaries), air flow though the lungs
and upper airways, urine flows in the excretory system and peristaltic flows through
the colon. In some circumstances these flows can exhibit instability, where the flow can
interact with the flexible wall in a non-trivial way. Of particular interest in this study
is the onset of self-excited oscillations, where the flow and the wall can spontaneously
transition to an oscillatory limit cycle; in some cases this oscillation can even become
chaotic. These oscillations manifest in physiological problems such as blood pressure
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measurement in the form of audible Korotkoff noises (Bertram et al. 1989), and wheezing
in the lung airways (Gavriely et al. 1989).

Self-excited oscillations in flexible-walled vessels can be studied experimentally using
a Starling Resistor, a deceptively simple device featuring liquid flow driven through
a section of externally pressurised flexible tubing mounted between two rigid pipes.
Originally used as a flow resistor in cardiac experiments (Knowlton & Starling 1912),
it has since become a canonical experiment for investigating fluid-structure interaction
in its own right. In these experiments flow is driven using either a prescribed pressure
or a prescribed flow rate, and the choice of setup heavily influences the structure of the
resulting oscillations. Results from the experiments are well summarised elsewhere (eg
Bertram 2003; Grotberg & Jensen 2004; Heil & Hazel 2011), but we note that these
self-excited oscillations occur in distinct frequency bands (Bertram et al. 1990), and
exhibit complicated nonlinear limit cycles which can be characterised using the methods
of dynamical systems (Bertram et al. 1991). Note that these experiments are typically
conducted with relatively thick-walled tubes. For example, Bertram et al. (1990, 1991)
used tubes of wall thickness to baseline radius ratio of 0.3, while Bertram & Castles
(1999) used tubes with a thickness to radius ratio of 0.37.

There have been a number of theoretical studies of the Starling Resistor setup in
an attempt to explain the underlying mechanisms leading to these different families of
oscillation. Formulation of the full three-dimensional fluid structure interaction problem
in a collapsible tube involves coupling unsteady Newtonian flow to a fully deformable
elastic tube. While most theoretical models treat the tube wall as a thin shell, slightly
reducing complexity of the system, these models still require vast computational resources
to resolve the unsteady oscillatory flow (Heil & Boyle 2010). Some analytical progress can
be made in the limit of large membrane tension (where oscillations are high-frequency,
Whittaker et al. 2010), but this formulation is restricted to a state where the tube wall
is almost uniform that has not yet been realised experimentally.

The flexible tubing used in Starling Resistor experiments is typically much thicker
than is appropriate to model using thin shell theory. To date, the only theoretical studies
which incorporate a thick-walled tube have been restricted to steady flow configurations
(Marzo et al. 2005; Zhang et al. 2018). In this paper we seek to address the stability of
flow in a Starling resistor analog with a thick hyperelastic wall, and investigate the role
of wall thickness in promoting or inhibiting instability.

Given the computational difficulty and expense of full three-dimensional unsteady
models, theoretical study has often focused on empirical lumped parameter or cross-
sectionally averaged models for flow in collapsible tubes (eg Shapiro 1977; Bertram
& Pedley 1982; Jensen 1990; Armitstead et al. 1996), which have replicated many of
the features noted in Starling Resistor experiments, such as non-uniform steady profiles
and spontaneous transition to self-excited oscillations in distinct oscillation frequencies.
However, the flow field in these models is still approximate and misses many of the
subtleties of flow separation and energy dissipation.

To make progress in understanding the mechanisms of instability driving self-excited
oscillations, a compromise system is needed which is less complicated than fully three-
dimensional flow, but reduces the number of empirical assumptions needed for the lumped
models. Pedley (1992) proposed a two-dimensional analog of the Starling Resistor,
consisting of a planar rigid channel where a section of one wall has been replaced by a
flexible sheet. This setup has since become the subject of a wide variety of computational
(eg Luo & Pedley 1995, 1996, 1998, 2000; Heil 2004) and theoretical studies (eg Jensen &
Heil 2003; Guneratne & Pedley 2006; Stewart et al. 2010; Pihler-Puzović & Pedley 2013).
Despite reduced computational cost compared to the three-dimensional tube system, a
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full exploration of the parameter space for this collapsible channel analog has not yet been
attempted, though progress toward quantifying the mechanisms of instability has been
made in various regions of the parameter space. For example, in the case of prescribed
upstream flux (the subject of this study), Xu et al. (2014) quantified the mechanism
driving ‘sawtooth’ oscillations in the asymptotic limit of a long downstream rigid sec-
tion, where the nonlinear oscillation is driven by the resonance of two distinct modes
of perturbation (mode-1 and mode-2) of similar frequency and the same wavelength,
coupled by sloshing flow in the downstream rigid section. Furthermore, Huang (2001)
simplified the flux-driven collapsible channel system by imposing an external pressure
gradient on the flexible wall, which facilitated decomposition of the oscillatory flow into
sum of sinusoidal modes. This analysis reveals an alternative mechanism of oscillatory
instability, driven by an imbalance between (unstable) downstream propagating waves
(which transfer energy from the flow to the wall) and (stable) upstream propagating
waves (which transfer energy back from the wall to the fluid).

Further insights into the mechanisms of instability in these collapsible channel flows
have been obtained using approximate one-dimensional models of the asymmetric channel
system (derived using a flow-profile assumption, Stewart et al. 2009, 2010; Xu et al.
2013, 2014; Xu & Jensen 2015; Stewart 2017). In particular, a detailed exploration
of the parameter space for flux-driven oscillations with constant external pressure was
presented by Stewart (2017), where he found that when the fluid is inviscid, steady
states only exist above a critical value of the membrane tension (for all other parameters
held fixed), with a stable branch and an unstable branch (where the unstable branch is
more collapsed than the stable branch). This critical point appears to be an organising
centre of the dynamical system, in that many of the unsteady features of the system
originate close to this point (such as the neutral curves for the two different families of
self-excited oscillations). The importance of the critical point for inviscid steady states
has previous been elucidated by Xu et al. (2013), who used an external pressure gradient.
Stewart (2017) also described another branch of steady solutions maintained by viscous
effects, which becomes increasingly collapsed as the wall tension is reduced. As the
Reynolds number increases this viscous branch of steady solutions merges with one
of the (essentially) inviscid branches. When the viscous branch merges smoothly with
the stable inviscid branch then the stable steady state is unique. However, the other
possibility is that the viscous branch merges with the unstable inviscid branch in a limit
point bifurcation, where the system then exhibits three co-existing steady states across
a narrow region of the parameter space: the stable inviscid solutions become the upper
branch, the unstable inviscid solutions become the intermediate branch and the stable
viscous solutions become the lower branch. Stewart (2017) also showed that the lower
branch of steady solutions can become unstable to two distinct families of self-excited
oscillation, with high and low frequency, respectively. However, in addition to the flow
profile assumption, this study considered the flexible wall to be a thin (massless) pre-
stressed membrane with no bending rigidity. To overcome these simplifications, this study
revisits the predictions of Stewart (2017) by modelling the flexible wall as a pre-tensioned
hyperelastic solid, using the finite element method to compute the fully two-dimensional
steady wall and flow profiles, and test their stability to time-dependent perturbations
using a fully two-dimensional eigensolver. Our new model includes the wall thickness and
wall mass as explicit parameters, and we investigate their influence on the predictions
below.

Another approach for theoretical modelling of this collapsible channel system has very
recently been presented by Wang et al. (2021a,b), who treat the flexible wall as an
asymptotically thin beam with resistance to both bending and stretching but with no
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pre-tension (based on an earlier model by Cai & Luo 2003; Luo et al. 2008). Using fully
nonlinear simulations of this model, they identified a similar three-branch steady system
for some parameters, showing that both the upper and lower branches of oscillation
could (independently) become unstable to self-excited oscillations (Wang et al. 2021a)
and these families of oscillations could merge together for low external pressures (Wang
et al. 2021b). In this case the upper branch instability is restricted to a region in the near
neighbourhood of that which exhibits multiple steady states (Wang et al. 2021b). In this
study we also isolate a family of upper branch instabilities, but show that these are not
limited to region with multiple steady states but are instead unstable well away from
the region of parameter space which exhibits instabilities of the lower steady branch (see
§3.4 below).

The role of wall mass in the onset of self-excited oscillations in flexible-walled vessels has
already been considered for the flexible wall modelled as a thin membrane. For example,
in the asymmetric channel system, Luo & Pedley (1998) coupled the heavy membrane
to fully two-dimensional (unsteady) flow, showing that increasing the wall mass expands
the region of parameter space where the system exhibits the primary global instability,
and also results in an additional high-frequency oscillatory mode (superimposed on the
fundamental mode) which eventually grows to dominate the lower frequency mode.
Also, Pihler-Puzović & Pedley (2014) investigated this channel system using interactive
boundary layer theory, showing that wall mass drives an oscillatory instability which is
always unstable in the presence of a cross-stream pressure gradient across the core flow
(the system is always neutrally stable with no cross-stream gradient). Finally, Walters
et al. (2018) considered the role of wall mass in a thin shell model of flow in a collapsible
tube in the limit of large pre-stress (where the tube is almost uniform), finding that wall
inertia destabilises the primary mode of instability of the system while also lowering the
corresponding oscillation frequency.

In this paper we consider the planar channel analog of the Starling Resistor introduced
by Pedley (1992), and propose a new numerical method to solve the combined fluid and
solid problem based on that developed by Snoeijer et al. (2020) (which already has
application to viscoelastic fluids, Eggers et al. 2019). The model formulation is described
in §2, highlighting the novel features of the numerical method. In particular, we treat
the elastic solid as a pre-tensioned hyperelastic material of uniform initial thickness
with non-negligible density and subject to a uniform external pressure. We validate
this numerical method against the steady predictions of Heil (2004), who considered
an identical setup with a thin shell model for the wall (§3.1), use unsteady simulations to
examine the transition between the upper and lower branches of steady solutions (§3.2),
examine the onset of self-excited oscillations from these steady solutions (§3.3), before
using our new model to examine the role of membrane pre-tension (§3.4), the dynamics
of oscillations growing from the upper branch of steady solutions (§3.5), as well as the
role of wall thickness (§3.6) and wall inertia (§3.7) on the nonlinear steady solutions and
the accompanying onset of oscillation.

2. Model formulation

We consider the configuration sketched in figure 1, where an incompressible Newtonian
fluid is flowing through a planar rigid (two-dimensional) channel of uniform internal
width h. An interior section of length L is removed from the upper wall of the channel
and replaced by a pre-tensioned elastic solid of (initially) uniform thickness e, subject
to a passive external gas at uniform pressure, Pext. This elastic wall can be deformed
by the load of the external gas and by the fluid traction. The rigid sections upstream
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Figure 1. Sketch of the flow geometry considered in this study.

and downstream of the compliant segment are of length L1 and L2, respectively. In
this case the flow is driven by a prescribed upstream flux q, while the fluid pressure at
the downstream end of the channel can be set to zero without loss of generality. The
stability of this fluid-structure interaction problem has already been studied extensively
using reduced models for the elastic wall (eg Luo & Pedley 1996; Jensen & Heil 2003; Luo
et al. 2008; Stewart 2017). In this work, we model the wall as a continuum hyperelastic
solid of finite thickness, with no simplifications or reductions.

2.1. Equations of motion

The fluid domain Ω1 is described by the planar coordinates x = xex + yey, where x
parametrises the lower wall of the channel, with x = 0 at the intersection between the
upstream rigid segment and the compliant segment, while y parametrises the direction
normal to the entirely rigid wall pointing into the fluid (in the plane of the channel).
The solid domain Ω2 is measured relative to a reference configuration parametrised by
the coordinates X = Xex +Y ey, where X parametrises the lower surface of the flat wall
and Y parametrises the direction pointing into the wall (in the plane of the channel).

The conservation of mass and momentum equations in the fluid (i = 1) and solid
(i = 2) subdomains are given by

∇ · vi = 0, (i = 1, 2), (2.1a)

ρi

(
∂vi
∂t

+ (vi ·∇)vi

)
= ∇ · σi, (i = 1, 2), (2.1b)

where ρi is the density, vi the velocity field and σi is the stress tensor of material i
(i = 1, 2). Each stress tensor depends on the characteristics of the material through a
constitutive model. In region 1 we consider an incompressible Newtonian fluid, where
this stress tensor takes the form

σ1 = −p1I + η1
(
∇v1 + ∇vT1

)
, (2.1c)

where p1 is the fluid pressure and η1 is the fluid viscosity. In region 2 we consider a
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neo-Hookean (hyperelastic) solid which has a pre-stress, σ
(0)
2p , in the initial undeformed

state, where the stress tensor is given by (Snoeijer et al. 2020)

σ2 = −p2I + µ2

(
F · FT − I

)
+ F · σ(0)

2p · FT , (2.1d)

where p2 is the solid pressure, µ2 is the elastic shear modulus, x(X, t) is the position of a
material point after deformation of the solid and F = ∂x/∂X is the deformation gradient
tensor. In the initial state, x = X and F · FT = I. To make a connection between the
Eulerian formulation for the conservation of mass and momentum equations for the solid
(Eq. (2.1) with i = 2) and the Lagrangian formulation for the elastic stress, we need
to determine the deformation generated by transport by the solid velocity v2. This is
achieved using the inverse Lagrangian map X(x, t) (Kamrin et al. 2012), which satisfies

∂X

∂t
+ v2 ·∇X = 0, (2.1e)

because the reference coordinates are invariant under the flow.
Given the bi-dimensionality of the problem, the material points can be expressed in

Cartesian coordinates and so the velocity vectors can be written as

vi = vyiey + vxiex, (i = 1, 2), (2.1f )

while the stress tensors can be written as

σ = σyyey ⊗ ey + σyxey ⊗ ex+σxyex ⊗ ey + σxxex ⊗ ex, (2.1g)

and finally the deformation tensor in the solid can be written as

F =
∂y

∂Y
ey ⊗ ey +

∂y

∂X
ey ⊗ ex +

∂x

∂Y
ex ⊗ ey +

∂x

∂X
ex ⊗ ex. (2.1h)

In the undeformed position the elastic solid is subject to an initial longitudinal tension,

To and therefore, the initial stress is σ
(0)
2p = (T0/e)ex ⊗ ex.

For the elastic domain, it is convenient to replace the incompressibility equation based
on the velocity field (2.1a with i = 2) by a constraint involving the deformation tensor
F (Snoeijer et al. 2020) in the form

det(F) =

(
∂y

∂Y

∂x

∂X
− ∂y

∂X

∂x

∂Y

)
= 1. (2.1i)

To impose the upstream flux boundary condition for the liquid, we impose a Poiseuille
profile at the channel entrance, x = −L1, in the form

v1x =
6q

h3
y(h− y), v1y = 0, (x = −L1, 0 6 y 6 h). (2.1j )

At the channel exit, x = L+L2, we impose zero fluid pressure, p1 = 0. Along the entirely
rigid wall we apply no-slip conditions in the form

vx1 = vy1 = 0, (y = 0,−L1 6 x 6 L+ L2). (2.1k)

Similarly, along the rigid parts of the upper wall we apply no-slip boundary conditions
in the form

vx1 = vy1 = 0, (y = h,−L1 6 x 6 0, x > L). (2.1l)

We assume that the flexible surface (where the elastic solid and the fluid interact) can be
written as a function of x (ie the surface does not overturn or expand beyond the range
0 6 x 6 L), so that y = h1(x, t). Across this interface we impose that the velocity field
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must be continuous, in the form

vx1 = vx2, vy1 = vy2, (y = h1, 0 6 x 6 L), (2.1m)

and impose a balance of normal and tangential stresses between the solid and the fluid,
in the form

n1 · (σ1 − σ2) · n1 = 0, t1 · (σ1 − σ2) · n1 = 0, (2.1n)

where

n1 =
ey − exh1,x
(1 + h21,x)1/2

, t1 =
ex + eyh1,x
(1 + h21,x)1/2

, (2.1o)

are normal and tangential vectors to the surface y = h1(x, t), respectively, and the
subscript x represents a derivative with respect to x. We enforce no deformation along
the surfaces where the elastic material is adhered to the rigid walls,

v2x = v2y = 0, Y = y, X = x, (x = 0, x = L with h 6 y 6 h+ e). (2.1p)

Finally, we denote the external surface of the flexible wall as y = h2(x, t), (0 6 x 6 L)
and impose that the normal and tangential elastic stresses are balanced with the external
pressure, in the form

n2 · (σ2 − PextI) · n2 = 0, t2 · (σ2) · n2 = 0, (2.1q)

where

n2 =
ey − exh2,x
(1 + h22,x)1/2

, t2 =
ex + eyh2,x
(1 + h22,x)1/2

, (2.1r)

are normal and tangential vectors to the surface y = h2(x, t).

2.2. Mapping technique

The numerical technique used in this study is a variation of that developed by Herrada
& Montanero (2016) for interfacial flows and extended by Snoeijer et al. (2020) to apply
to hyperelastic solids. The spatial domain occupied by the fluid, Ω1(t), is mapped onto
a rectangular domain (parameterised by Cartesian coordinates ξ1 and χ1, where ξ1
parameterises the lower rigid wall and χ1 parameterises the channel inlet) by means
of a non singular mapping

y = f1(ξ1, χ1, t), x = g1(ξ1, χ1, t), [−L1 6 ξ1 6 L+ L2]× [0 6 χ1 6 1],

where the shape functions f1 and g1 are obtained as part of the solution. In order
to capture large anisotropic deformations, the following quasi-elliptic transformation
(Dimakopoulos & Tsamopoulos 2003) was applied

g22
∂2f1
∂ξ21

+ g11
∂2f1
∂χ2

1

− 2g12
∂2f1
∂ξ1∂χ1

= Q, (2.2a)

g22
∂2g1
∂ξ21

+ g11
∂2g1
∂χ2

1

− 2g12
∂2g1
∂ξ1∂χ1

= 0, (2.2b)

where the coefficients take the form

g11 =

(
∂g1
∂ξ1

)2

+

(
∂f1
∂ξ1

)2

, g22 =

(
∂g1
∂χ1

)2

+

(
∂f1
∂χ1

)2

, g12 =
∂g1
∂χ1

∂g1
∂ξ1

+
∂f1
∂χ1

∂f1
∂ξ1

,

with

Q = −
(
∂D1

∂χ1

∂f1
∂ξ1
− ∂D1

∂ξ1

∂f1
∂χ1

)
J

D1
, J =

∂g1
∂χ1

∂f1
∂ξ1
− ∂g1
∂ξ1

∂f1
∂χ1

,
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and

D1 = εp

√√√√[(∂f1
∂ξ1

)2

+

(
∂g1
∂ξ1

)2
]
/

[(
∂f1
∂χ1

)2

+

(
∂g1
∂χ1

)2
]

+ (1− εp).

In the above expressions, εp is a free parameter between 0 and 1 where the case εp = 0
corresponds to the classical elliptical transformation. All the simulations in this work
were conducted using εp = 0.2. Although there is no overturning in the wall profiles for
the cases analysed in this work, this transformation of the liquid domain facilitates the
analysis of more complicated geometries. For example, it has been successfully used to
describe pinch-off in pendant drops (Ponce-Torres et al. 2020).

The spatial domain occupied by the elastic solid in the current stage, Ω2(t), and in the
initial stage, Ω2o, are also mapped onto rectangular domains (parameterised by Cartesian
coordinates ξ2 and χ2, where ξ2 parameterises the lower surface of the flexible wall and
χ2 parameterises the edges in contact with the rigid segments of the channel) by means
of non-singular mappings in the form

y = f2(ξ2, χ2, t), x = g2(ξ2, χ2, t),

Y = F2(ξ2, χ2, t), X = G2(ξ2, χ2, t), [0 6 ξ2 6 L]× [0 6 χ2 6 1],

where again the functions f2, g2, F2 and G2 should be obtained as a part of the solution.
To determine these functions, the following equations have been used

g2 = ξ2, (2.3a)

F2 = h+ eχ2. (2.3b)

Note that equation (2.3a) guarantees that the discretisation used for the variable ξ2 is
automatically applied to variable x. Finally, equation (2.3b) indicates that at the initial
stage the elastic part of the upper channel wall is a perfect rectangle of uniform width e.

Some additional boundary conditions for the shape functions are needed to close the
problem. At the channel entrance, we impose

g1 = −L1, f1 = hχ1, (x = ξ1 = −L1), (2.4a)

while at the channel exit, we use

g1 = L+ L2, f1 = hχ1, (x = ξ1 = L+ L2). (2.4b)

On the lower wall, we impose

g1 = ξ1, f1 = 0, (y = χ1 = 0), (2.4c)

while on the rigid parts of the upper channel wall, we use

g1 = ξ1, f1 = h, (−L1 6 x = ξ1 6 0, x = ξ1 > L, y = h). (2.4d)

At the flexible surface, we also impose

f1 = f2, g1 = g2, (0 6 x = ξ1 = ξ2 6 L, y = h1(x, t), χ1 = 1, χ2 = 0). (2.4e)

We use no-displacement conditions along the two edges of the rectangle in contact with
the rigid walls in the form

g2 = G2 = ξ2, f2 = F2 = h+eχ2, (x = ξ2 = 0, x = ξ2 = L, h 6 y 6 (h+e), 0 6 χ2 6 1).
(2.4f )

Other boundary conditions are possible along these surfaces (eg. hinged conditions by
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Global stability analysis of flexible channel flow with a hyperelastic wall 9

Figure 2. Computational subdomains and grids for the original and mapped variables.

instead imposing boundary conditions on the derivatives of displacement), but these are
not considered here for simplicity.

Figure 2 shows an example of the mappings used in this work. The green (magenta)
lines represent the liquid (solid) mesh in the real space (right panel) and in the com-
putational domains (left panel). The unknown variables in the liquid domain are f1, g1,
p1, v1x and v1y while the unknown variables in the solid domain are f2, g2, p2, v2x, v2y,
F2 and G2. All the derivatives appearing in the governing equations are expressed in
terms of χ, ξ and t. These mappings are applied to the governing equations (2.1) and
the resulting equations are discretised in the χ-direction with nχ1

and nχ2
Chebyshev

spectral collocation points in the liquid and solid domains, respectively. Conversely, in
the ξ-direction we use fourth-order finite differences with nξ1 and nξ2 equally spaced
points in the liquid and solid domains, respectively. The results presented in this work
were carried out using nξ1 = 641, nξ2 = 201, nχ1 = 19 and nχ2 = 14. In appendix
A we demonstrate that the eigenvalues characterizing the linear modes do not change
significantly when the number of grid points is increased.

2.3. Steady solutions

Steady solutions of the nonlinear equations (2.1) with all variables independent of time
are obtained by solving all equations simultaneously (a so-called monolithic scheme) using
a Newton–Raphson technique. One of the main characteristics of this procedure is that
the elements of the Jacobian matrix J (p,q) of the discretised system of equations are
obtained by combining analytical functions and collocation matrices. This allows us to
take advantage of the sparsity of the resulting matrix to reduce the computational time
on each Newton step.

We denote the steady solution of the system with the subscript b. We trace the steady
solutions as a function of the model parameters and quantify using the minimal and
maximal positions of the lower surface of the flexible wall, denoted as

ĥmin = minx

(
h1b
h

)
and ĥmax = maxx

(
h1b
h

)
. (2.5)

2.4. Small amplitude perturbations

To test the stability of a given steady state we calculate the linear two-dimensional
global modes by assuming the temporal dependence

Ψ(x, y; t) = Ψb(x, y) + ε δΨ(x, y)e−iωt, (ε� 1), (2.6)

where Ψ(x, y; t) represents any dependent variable while Ψb(x, y) and δΨ(x, y) denote the
base (steady) solution and the spatial dependence of the eigenmode for that variable,
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respectively, while ω = ωr + iωi is the frequency (an eigenvalue). Both the eigenfre-
quencies and the corresponding eigenmodes are calculated as a function of the governing
parameters. The dominant eigenmode is that with the largest growth factor ωi. If that
growth factor is positive, the base flow is asymptotically unstable.

As explained by Herrada & Montanero (2016), the numerical procedure used to
solve the steady problem can be easily adapted to solve the eigenvalue problem which
determines the linear global modes of the system. In this case, the temporal derivatives
are computed assuming the temporal dependence (2.6). The spatial dependence of
the linear perturbation δΨ (q) is the solution to the generalized eigenvalue problem

J (p,q)
b δΨ (q) = iωQ(p)

b δΨ (q), where J (p,q)
b is the Jacobian of the system evaluated with

the basic solution Ψ
(q)
b , and Q(p,q)

b accounts for the temporal dependence of the problem.
This generalized eigenvalue problem is solved using Matlab eigs function.

2.5. Fully nonlinear dynamical simulations

The numerical method can be extended to compute unsteady solutions of the full non-
linear equations (2.1). Temporal derivatives are discretised using second-order backwards
differences and at each time step the resulting system of (nonlinear algebraic) equations
is solved using the Newton–Raphson technique (as in §2.3). Simulations employ the same
mesh as the steady simulations with a fixed timestep of ∆t = 0.0125 required to capture
the strong oscillations observed in the full saturated nonlinear regime (this translates into
approximately 640 timesteps per period for the oscillation shown in figure 12 below). We
have verified that the nonlinear predictions are unchanged when the timestep is reduced
to ∆t = 0.0075. Given the large number of timesteps required, these simulations are
much more computationally expensive than the global stability eigensolver and so only
two relevant cases will be considered to support the global stability analysis (see figures 6
and 12 below). For example, the nonlinear simulation described in §3.5 takes more than
one week to reach the corresponding nonlinear limit cycle, while for the same machine
the computation of the eigenvalues takes just a few minutes.

2.6. Control parameters

To non-dimensionalise the system we scale all lengths on the baseline channel width
h, velocities on the mean inlet speed q/h, time on h2/q, the fluid stress on the viscous
scale η1q/h

2 and the solid stress on the elastic shear modulus µ2. The solutions are

characterised by the dimensionless profile of the interface between fluid and solid ĥb1 =
hb1/h, the dimensionless frequency ω̂ = ωq/h2 and the dimensionless eigenfunction profile

of the surface between the fluid and the solid, denoted δ̂h1 = (δh1)/h. As is conventional

in this literature, a wall profile is termed as mode-n if δ̂h1 has n extrema across the
compliant segment. The resulting problem is governed by six dimensionless parameters,

Re =
ρ1q

η1
, Q =

η1q

h2µ2
, p̂ext =

Pext
µ2

, T̂0 =
T0
hµ2

, ê =
e

h
, ρ̂ =

ρ2q
2

h2µ2
, (2.7)

representing the Reynolds number, the ratio of the viscous stresses in the fluid to the
elastic shear stresses in the wall, the dimensionless external pressure, the dimensionless
longitudinal pre-tension, the dimensionless thickness of the flexible wall and the ratio
between the inertial and the elastic forces in the solid. The dimensionless system also
involves three geometrical factors,

L̂1 =
L1

h
, L̂ =

L

h
, L̂2 =

L2

h
, (2.8)
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Global stability analysis of flexible channel flow with a hyperelastic wall 11

which will be held constant throughout this study.

3. Results

In this section we predict the stability of flow through a flexible-walled channel with
a hyperelastic wall. We first validate our model against published results for steady flow
through channels with thin flexible walls presented by Heil (2004) (§3.1) and then examine
the unsteady transition from beyond the upper branch limit point to the lower branch of
steady solutions (§3.2). We then consider the onset of self-excited oscillations associated
with these steady states across the parameter space spanned by Reynolds number and
external pressure (§3.3), before examining the role of wall pre-tension (§3.4), the nonlinear
limit cycles of oscillations which grow from the upper branch of steady solutions (§3.5),
as well as the role of wall thickness (§3.6) and the role of wall inertia (§3.7) in the onset
of these oscillations. Following Heil (2004), in all simulations we hold L̂1 = 1, L̂ = 5,
L̂2 = 10 and fix the fluid-structure interaction parameter as Q = 0.01, indicating that
elastic stresses dominate viscous stresses. In the results below we vary the Reynolds
number Re, external pressure p̂ext, the wall pre-tension T̂0 (§3.4), the wall thickness ê
(§3.6) and the wall inertia parameter ρ̂ (§3.7).

3.1. Steady flow with thin flexible walls

We first compare the predictions from our numerical method against the predictions
of Heil (2004), who studied the flow through the geometry shown in figure 1 but where
his elastic wall was modelled using (geometrically nonlinear) shell theory, intended to
capture large displacements in the elastic solid. Our choice of non-dimensionalisation is
identical to Heil (2004), with the exception that he defines a membrane pre-stress σ0,
which is related to our membrane pre-tension parameter through

σ0 =
T̂0
ê
. (3.1)

To compare to the predictions of Heil (2004), we consider a small wall thickness ê = 0.01.
We then use pre-tension T̂0 = 10 to ensure that σ0 = 1000, as used by Heil (2004). Since
the inertia of the solid was neglected in that work we also set ρ̂ = 0 in our simulations
in this section (we consider non-zero wall inertia in §3.7 below).

In order to compare the predictions of our model to those of Heil (2004), in figure 3 we
illustrate the steady flow-field computed using our method (figure 3a) and the steady flow-
field obtained using the model of Heil (2004) (figure 3b). We observe excellent quantitative
agreement between the two approaches, not only in the pressure distribution but also in
the streamlines, where both exhibit a recirculating flow separation region downstream of
the point of strongest wall collapse. Quantitatively, we compute the relative error in the
maximal (minimal) fluid pressure as 0.2028% (0.2089%) between our approach and the
data from Heil (2004) for these parameter values.

Following Heil (2004), in figure 4 we characterise the steady solutions of the system

by the minimal (ĥmin) and maximal (ĥmax) channel width as a function of the model
parameters. Similar to previous studies in collapsible channels (Luo & Pedley 2000;
Heil 2004; Stewart 2010, 2017) and collapsible tubes (Heil & Boyle 2010), we find
that for sufficiently large Reynolds numbers the system can admit multiple steady
solutions at the same point in parameter space. For example, figure 4(a) shows that

the minimum dimensionless channel width (ĥmin), when plotted as a function of the
external pressure, p̂ext, lies on a curve with three branches connected by two limit points
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Figure 3. Streamlines and pressure contours for the steady solution computed at fixed Reynolds
number (Re = 500) and fixed external pressure (p̂ext = 3.204) obtained from: (a) the present

model; (b) the model of Heil (2004). Here T̂0 = 10, ê = 0.01 and ρ̂ = 0.

(or fold bifurcations), where these three branches are labelled I, II and III. In order to
quantify the difference between our results and those of Heil (2004), figure 4(b) compares
our prediction of the intermediate and lower steady branches as a function of external
pressure to those depicted in figure 4 of Heil (2004) (for the same parameter values). We
observe excellent quantitative agreement, although the two approaches do diverge slightly
for larger external pressures when the channels are significantly more collapsed, which
we attribute to the increased prominence of the differences between the wall models.
Furthermore, we also produce the same plot for a smaller Reynolds number (Re = 250)
for which the wall profile is unique for all external pressures. Again we see excellent
quantitative agreement between the models, with a slight divergence as the channel
becomes increasingly collapsed.

Along branch I (solid black line in figure 4), whose points correspond to a flow field
like the one depicted in figure 5(a), where the wall is entirely bulged outwards: this
branch was termed the upper branch of steady solutions by Stewart (2017). This upper
branch persists as external pressure increases until an upper branch limit point is reached
(denoted p̂ext = p̂ext1). For values of external pressure larger than p̂ext1 the elastic wall
instantaneously collapses and the steady solution jumps catastrophically towards branch
III (solid yellow line), where the wall is highly collapsed and the steady flow has separated
beyond the constriction (figure 5c); this entirely collapsed branch was termed the lower
branch of steady solutions by Stewart (2017). This re-circulating region is a prominent
feature of branch III flow fields (figure 5c). We explore the transition from the upper
branch limit point toward the lower steady branch in §3.2 below, showing the birth
of the re-circulation region as the channel becomes more collapsed. However, such a re-
circulation region may not necessarily be a requirement for multi-valued steady solutions,
since ad hoc one-dimensional models (which employ a flow profile assumption which does
not allow flow separation) also exhibit these multiple steady states (Stewart 2010, 2017)
The lower branch (branch III) persists as we decrease the external pressure below p̂ext1
until the lower branch limit point is reached (denoted p̂ext = p̂ext2, where p̂ext2 < p̂ext1).
For even lower external pressures the system jumps to the upper branch, the recirculating
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Global stability analysis of flexible channel flow with a hyperelastic wall 13

Figure 4. Nonlinear steady solutions of the model for fixed Reynolds number (Re = 500) and

pre-tension (T̂0 = 10) showing: (a) the maximal and minimal channel widths as a function of
the external pressure; (b)the channel width at x̂ = 3.5 as a function of the external pressure
(black line), compared to the prediction from figure 4 in Heil (2004) (green line). The dotted
lines in (b) show the comparison the present model (black) to Heil (2004) (green) for a smaller
Reynolds number, Re = 250, where the steady state is unique. Here ê = 0.01 and ρ̂ = 0.

region disappears and the channel wall bulges outward (figure 4a). The upper and lower
branches (I and III) are connected by an intermediate branch termed branch II, which we
trace by numerical continuation. Below we confirm the observation of previous studies
that this intermediate branch is always unstable to perturbations. A typical flow field for
a solution along this intermediate branch is shown in figure 5(b).

3.2. Transition from the upper branch limit point

As the external pressure increases beyond the upper branch limit point the system
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Figure 5. Streamlines and pressure contours for three branches of steady solutions for fixed
Reynolds number (Re = 500) and fixed external pressure p̂ext = 1.52: (a) the upper branch
(branch I); (b) the intermediate branch (branch II); (c) the lower branch (branch III). Here

T̂0 = 10, ê = 0.01 and ρ̂ = 0.

Figure 6. Unsteady transition from the upper branch limit point to the lower steady branch for
a thin wall (ê = 0.01) with no wall inertia (ρ̂ = 0): (a) time-trace of the minimal channel width

(ĥmin); streamlines and pressure colormap of the channel close to the outlet of the compliant
segment at four selected times: (b) t = 215.0; (c) t = 230.0; (d) t = 245.0; (e) t = 260.0. The

time points plotted in (b)-(e) are marked on panel (a). Here p̂e = 1.54, Re = 500 and T̂0 = 10.
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Global stability analysis of flexible channel flow with a hyperelastic wall 15

abruptly transitions to the lower branch steady state. This transition is explored in
figure 6, where we plot the unsteady evolution of the system from the upper branch limit
point when the external pressure is instantaneously increased. In particular, we consider
an unsteady simulation from the upper branch limit point at R = 500 for T̂0 = 10,
displacing the external pressure from p̂ext = 1.52 to p̂ext = 1.54 (marked with a cross in
figure 8). Over time the channel wall collapses monotonically toward the lower branch
steady state (figure 6a). Initially the rate of collapse is slow and the flow is laminar (figure
6b), but as the channel becomes increasingly constricted the rate of collapse increases and
boundary layer separation takes place (figure 6c), where a re-circulation region becomes
evident close to the downstream outlet of the compliant segment of the channel (figure
6d), creating a region of much lower pressure (figure 6e). A movie showing the entire
transition is provided in the online supplementary material.

There is an interesting analogy between these observations and others reported for
swirling flows in pipes (see for example Lopez 1994; Herrada et al. 2003) and in swirling
open jets (Shtern & Hussain 1996): these swirling flows also exhibit multiple (stable)
steady solutions for a given set of parameters (when the Reynolds number is larger than
a critical one) and the steady solutions can be described using bifurcation diagrams with
three branches of steady solutions and two limit points, analogous to those presented
in figure 4; this behaviour was recently termed ‘two-fold hysteresis’ (Shtern 2018).
These swirling flows also exhibit an unsteady transition from a nearly columnar flow
to a recirculating flow when the swirling parameter is larger than a critical value,
in a transition is known as vortex breakdown. This transition is important in the
aerodynamics of delta wings, where it leads to an undesirable loss in lift or downforce.
This sudden development of a recirculating vortex (see figures 6-9 in Herrada et al. 2003)
is reminiscent of the transition observed in figure 6.

3.3. Linear stability results

Having computed the steady configurations of the system, we now analyse the temporal
linear stability of the three different steady solution branches depicted in figure 4. For this
large value of pre-tension (T̂0 = 10) we find that the steady solutions along the section
of the upper branch tested are globally stable to time dependent perturbations (all the
eigenvalues have ωi < 0) for all external pressures greater than than the outlet pressure
(ie p̂ext > 0), while the solutions along the intermediate branch are always unstable (at
least one eigenvalue has ωi > 0 with ωr = 0). Figure 7 illustrates the stability of the lower
steady branch, showing the eigenvalue spectrum of the frequency ω for several values of
the external pressure, p̂ext. In this case (and in figure 11 below) we focus only on the most
unstable eigenvalues, illustrating those with ωi > −0.5. We find that the lower branch
is stable for sufficiently small external pressure, becoming globally unstable via a Hopf
bifurcation when the external pressure exceeds a critical value, p̂∗ext ≈ 1.752 (ie a pair
of complex conjugate eigenvalues cross the real axis with non-zero ωr). At this critical
point, the corresponding steady state is shown in figure 7(b), where it is inflated at the
upstream end and collapsed at the downstream end (termed mode-2). The corresponding
eigenfunction of the wall profile for the neutrally stable mode is shown in figure 7(c),
which has two extrema (mode-2). We label the oscillatory modes associated with the
lower branch with lower case Roman numerals (i), (ii), (iii)... in the order of increasing
frequency, which is generally the order they become unstable as the external pressure
increases, and so this primary instability is denoted mode-(i). These stability predictions
agree well with the results presented by Heil (2004), where his figure 5 shows that the
flow becomes unsteady and exhibits self-excited oscillations for p̂ext = 2.5, well inside
our unstable regime. These results are also qualitatively similar to the predictions of the
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Figure 7. Stability of the lower steady branch to time-dependent perturbations for fixed

Reynolds number (Re = 500) and fixed pre-tension (T̂0 = 10): (a) five eigenvalue spectra in
the ω-plane for increasing values of p̂ext; (b) profile of the lower surface of the steady wall at
neutral stability (p̂ext ≈ 1.752); (c) real and imaginary parts of the wall profile eigenfunction at
neutral stability (p̂ext ≈ 1.752). Here ê = 0.01 and ρ̂ = 0.

one-dimensional model of Stewart (2017), who showed that his lower branch of steady
solutions becomes unstable to a mode-2 oscillation as the primary global instability of
the system as the external pressure increases.

We overview the parameter space in figure 8 to summarise the regions of interest. We
illustrate the region with multiple steady solutions by tracing the value of the external
pressure at the limit points of the upper and lower steady branches (p̂ext1 and p̂ext2,
analogous to those found in figure 4) as a function of the Reynolds number; similar to
Stewart (2017), we find that this region with multiple steady states exists for Reynolds
numbers greater than a threshold (Re > Recusp ≈ 330). We further plot the critical
external pressure for the onset of oscillatory instability, p̂∗ext, as a function of the Reynolds
number, finding that for the range of Reynolds numbers explored here the neutral stability
curve lies entirely within the range where there is a unique steady solution along the lower
steady branch, so p̂∗ext > p̂ext1. Note that we observe no instability of the upper steady
branch for this choice of the wall pre-tension (T̂0 = 10) across the range 0 6 p̂ext 6 p̂ext1.
It emerges below that this branch only becomes unstable for p̂ext < 0 for this value of
T̂0, which is not considered here. For large Reynolds number we might expect the neutral
stability curve to enter the region of parameter space with multiple steady states (in a
similar manner to Stewart 2017), but this possibility is discussed in more detail below.

3.4. The influence of the pre-tension in the solid.

When the pre-tension of the elastic wall is reduced, we observe a decrease in the
critical Reynolds number beyond which multiple steady flows exist, and the steady state
bifurcation diagram and neutral stability curves become more complicated. To illustrate
this complexity, in figure 9 we characterize the multiplicity of steady solutions that exist
for a lower value of the pre-tension (T̂0 = 5) while holding the Reynolds number fixed
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Figure 8. Overview of the critical conditions for self-excited oscillations for pre-tension T̂0 = 10,
plotting the critical external pressure for instability as a function of the Reynolds number.
The cross symbol indicates the point in parameter space which corresponds to the unsteady
simulation shown in figure 6. Here ê = 0.01, ρ̂ = 0.
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Figure 9. Nonlinear steady solutions of the model for fixed Reynolds number (Re = 500) and

pre-tension (T̂0 = 5), showing the maximal and minimal channel widths as a function of the
external pressure p̂e. Here ê = 0.01 and ρ̂ = 0.

(Re = 500), plotting the minimal (ĥmin) and maximal (ĥmax) widths of the steady
channel as a function of the external pressure, for the upper and lower branches of
steady solutions, obtained following the same procedure as §3.1. Similar to the case we
considered in figure 4 (T̂0 = 10), when the external pressure increases beyond a certain
value, p̂ext = p̂ext1, there is a jump from a solution on the upper branch to a solution
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Figure 10. Overview of the critical conditions for self-excited oscillations for lower pre-tension

T̂0 = 5, plotting the critical external pressure for instability as a function of the Reynolds
number. The plus symbol indicates the point in parameter space which corresponds to the
nonlinear portrait of the upper branch instability shown in figure 12. Here ê = 0.01, ρ̂ = 0.

on the lower branch (where the channel becomes much more collapsed). In the same
way, as we decrease the external pressure along the lower branch below a certain value,
p̂ext = p̂ext2, there is a jump back to the upper branch.

To overview these steady solutions across the parameter space, in figure 10 we plot the
external pressure at the limit points of the steady solutions (p̂ext1 and p̂ext2) as a function
of the Reynolds number for a lower value of the pre-tension (T̂0 = 5), where we find that
the critical Reynolds number for multi-valued solutions has reduced (Recusp ≈ 275 in
this case). To further illustrate the stability of these steady solutions, in figure 10 we
also trace the critical external pressure for the onset of instability as a function of the
Reynolds number, finding again that the lower branch of steady solutions (branch III)
becomes unstable for external pressures greater than a critical value, p̂∗ext, and is stable
otherwise (figure 10). This observation is similar to our observation for large pre-tension
(T̂0 = 10), with the only difference that now the loss of stability is closer to the region
of multiplicity of steady solutions, with the two bounding curves almost overlapping
for the largest Reynolds numbers considered. Tracing these curves to larger Reynolds
numbers is an interesting direction of future work, where we might expect the neutral
stability curve and the trace of the lower branch limit point to eventually intersect. Such
an intersection was previously observed by Stewart (2017), where the Hopf bifurcation
(associated with the oscillation) and the saddle node bifurcation (associated with the
steady solutions) interact in a co-dimension 2 bifurcation, suggesting a nearby homoclinic
orbit (Glendinning 1994).

However, for this lower value of the pre-tension we also observe that steady solutions
along the upper branch (branch I in figure 9) also become temporally unstable for external
pressures below a critical value, denoted p̂∗extI , and are stable otherwise (see figure 10).
This means that for Re > Recusp there is only a narrow interval of external pressures
compatible with a steady stable flow, focused around the region with multiple steady
solutions. Instability of the upper branch of steady solutions has recently been noted by
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Figure 11. Exploration of the lower branch instability for lower pre-tension T̂0 = 5: (a) five
eigenvalue spectra in the ω plane the lower branch for increasing external pressure; (b) steady
wall profiles for the choice of external pressure where the system is neutrally stable; (c) real and
imaginary parts of the corresponding eigenfunction of the wall profile at neutral stability. Here
ê = 0.01 and ρ̂ = 0.

Wang et al. (2021a) using a flexible wall modelled as a thin nonlinear beam, but in their
case the region of instability is located within and directly adjacent to the region with
multiple steady solutions (Wang et al. 2021b), in contrast to that noted here. The fully
developed limit cycles also exhibit some significant differences (see §3.5 below).

To further explore this upper branch instability for lower pre-tension (T̂0 = 5) and
fixed Reynolds number (Re = 400), in figure 11(a) we plot the corresponding eigenvalue
spectra for several values of the external pressure, where a complex conjugate pair of
eigenvalues cross into the upper half plane for p̂ < p̂∗extI ≈ 1.12, consistent with a Hopf
bifurcation. At neutral stability the steady configuration of the flexible wall is entirely
inflated with a single hump (termed mode-1, see figure 11b), while the neutrally stable
eigenfunction of the oscillating wall profile is mode-2 (figure 11c), similar to the instability
of the lower branch. Note that the frequency of oscillation along the upper branch is
generally larger than the corresponding instability along the lower branch. Given that
this oscillation also has a mode-2 structure of the wall shape eigenfunction, we label modes
associated with the upper branch using Roman letters (a),(b),· · · in order of increasing
frequency, which is generally the order they become unstable as the Reynolds number
increases. The primary oscillatory mode associated with the upper branch is therefore
labelled mode-(a). It is interesting to note that the instability of the mode-1 steady state
exhibits a mode-2 eigenfunction profile, presumably because the prescribed upstream
flux suppresses modes that induce large volume changes in the flexible segment of the
channel (such as the mode-1 oscillations observed with prescribed upstream pressure eg.
Jensen & Heil 2003; Stewart et al. 2009, 2010).

The upper branch neutral stability point, p̂∗extI , can be traced (by numerical continu-
ation) to larger values of the wall pre-tension; we find that the critical external pressure
must become negative to induce instability for T̂0 = 10, explaining why it was not
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observed in figures 7 and 8, where we restrict attention to external pressures larger than
the channel outlet pressure (p̂ext > 0).

We note that the neutral stability curves associated with both the upper and lower
steady branches trace close to the region with multiple steady solutions as the Reynolds
number increases, suggesting this region plays a key role in the structure of the dynamical
system. Stewart (2017) showed that the limit point on the upper steady branch (traced
by the blue curve in figures 8 and 10) asymptotes to the saddle node bifurcation point
for steady solutions of the inviscid system as the Reynolds number increases. Indeed,
both Xu et al. (2013) and Stewart (2017) identified the threshold where inviscid steady
states emerge as an organising centre of the dynamical system, consistent with our
observation. Conversely, the lower branch of steady solutions is entirely maintained by
the fluid viscosity (Stewart 2017), and is thus absent in the inviscid limit.

3.5. Limit cycles of upper branch instability

Fully nonlinear simulations of self-excited oscillations growing from the lower branch
of steady solutions have been widely reported elsewhere (eg. Heil 2004; Luo et al. 2008).
An instability of the upper branch of steady solutions was recently reported by Wang
et al. (2021a), who considered flow through a similar two-dimensional collapsible channel
system modelling the flexible wall as a thin (nonlinear) beam with resistance to both
bending and stretching (with no pre-stress), and the nonlinear limit cycles were explored
using fully nonlinear simulations. However, the upper branch oscillations evident from
the present model exhibit a significant difference: for the oscillations reported by Wang
the unstable region restabilises as the upper branch limit point is reached (Wang et al.
2021a) and remains confined to the neighbourhood of the region with multiple steady
states (Wang et al. 2021b), whereas for the present model the system is stable in the
neighbourhood of the upper branch limit point and instead the unstable region extends
over a wide range of external pressures away from the region with multiple steady states
(figure 10).

Given the difference in behaviour between our predictions and those of Wang et al.
(2021a), in figure 12 we examine the underlying dynamics of our upper branch oscillations
using fully nonlinear simulations of our model (method described in §2.5) at a point in
parameter space within the upper branch neutral stability curve. In this case we choose
Re = 500, p̂ext = 1 and T̂0 = 5, marked with a plus inside the unstable region in figure 10.
Initiating the simulation on the upper branch steady solution, numerical noise is enough
to trigger an oscillatory instability evident in the timetrace of the maximal channel width
(see figure 12(a) with growth rate and frequency consistent with the global linear stability
eigensolver), eventually saturating into a complicated nonlinear limit cycle (one period
shown in figure 12b). A movie showing the flow-field and vorticity over several periods
of this limit cycle is provided in online supplementary material.

Over a period of this limit cycle the wall profile grows a single hump at the downstream
end of the compliant segment (figure 12c); this hump propagates upstream reaching
a global maximum (figure 12d) before being reflected back downstream again by the
upstream rigid segment, where its amplitude subsequently decreases. As this hump
propagates downstream a second hump appears at the downstream end of the compliant
segment (figure 12e) which eventually dominates the first (figure 12f). However, these
two humps do not coalesce but instead the x-location of the maximum wall deflection
changes discontinuously at the global minimum of ĥmax (figure 12(f), explaining the
cusp in figure 12(b) at t ≈ 911.8). This second hump grows in amplitude, engulfing the
remains of the first hump and shedding a low pressure vortex into the downstream rigid
segment (figure 12g). This propagating vortex creates a so-called vorticity wave in the
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Figure 12. The mechanism of upper branch instability for a thin hyperelastic wall (ê = 0.01)

with no wall inertia (ρ̂ = 0): (a) the maximal channel width ĥmax as a function of time; (b)
zoom-in over panel (a) over one period of oscillation; streamlines and pressure colourmap of
the channel close to the outlet of the compliant segment at six selected times over a period of
oscillation including: (c) t = 908.6; (d) t = 910.2; (e) t = 911.8; (f) t = 913.0; (g) t = 914.0
and (h) t = 914.6. The fully developed limit cycle of interest is enclosed in the red box in (a).
The times corresponding to the snapshots in panels (c-h) are labelled in (b). Here Re = 500,

p̂ext = 1 and T̂0 = 5.

downstream rigid segment (particularly evident in figures 12c,g,h) while the large hump
at the downstream end of the compliant segment drives a short region of channel collapse
at the upstream end. As this vorticity wave propagates downstream, the single hump in
the compliant segment propagates upstream, repeating the cycle. This oscillation exhibits
many of the features of the nonlinear upper branch oscillations described by Wang et al.
(2021a), including the development of an upstream propagating hump. However, for their
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Figure 13. The influence of the wall thickness on the steady and oscillatory solutions in the

absence of wall inertia (ρ̂ = 0): (a) the minimal steady channel width ĥmin as a function of the
wall thickness; (b) the maximal steady flow speed vmax as a function of the wall thickness; (c)
the growth rate of the primary oscillatory mode (mode-2) as a function of the wall thickness;
(d) the frequency of the primary oscillatory mode (mode-2) as a function of the wall thickness.

Here T̂0 = 5, p̂ext = 2.98 and Re = 50.

upper branch oscillations this hump is annihilated by the upstream rigid segment (not
reflected) and the flow remains entirely laminar throughout, with no evidence of low
pressure vortex shedding.

These vorticity waves have previously been observed in channel flows with self-excited
oscillations from a collapsed (lower branch) steady state (Luo & Pedley 1996; Luo et al.
2008) or with prescribed (oscillatory) wall motion in one compartment (Stephanoff et al.
1983; Pedley & Stephanoff 1985).

3.6. The influence of the wall thickness

In this subsection we analyse the influence of the dimensionless wall thickness, ê, on
the model predictions. We consider a particular case holding the pre-tension, external
pressure and Reynolds number fixed (T̂0 = 5, p̂ext = 2.98 and Re = 50). For these
parameters, with wall thickness ê = 0.01, the system has a unique steady wall shape
where the external pressure is sufficiently large to collapse the channel wall (ĥmin < 1).
These parameters are chosen so that the system is just inside the unstable regime for
lower branch oscillations (Re = 50 and T̂0 = 5 which has critical p̂∗ext ≈ 3.001). In figure
13 we characterize how an increase in the wall thickness influences the underlying steady
flow (figure 13a,b) and the critical conditions for the onset of lower-branch oscillations
(figure 13c,d). Considering the steady system first, figure 13(a) shows that the increase
in wall thickness has little effect on the overall shape of the flexible wall; the minimal
channel width ĥmin increases only slightly as the wall thickness becomes sufficiently
large. Similarly, figure 13(b) shows that increasing wall thickness has negligible influence
on the maximal streamwise velocity along the channel, v̂max = maxx,y(v̂1xb), located
in the most collapsed region of the channel. However, the wall thickness plays a more
significant role in determining the stability of these steady solutions. The increase of the
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Figure 14. Overview of the critical conditions required for the onset of oscillations while
changing the wall thickness, plotting the critical external pressure for the onset of oscillation
p̂∗ext as a function of the Reynolds number for three different wall thicknesses (ê = 0.01, ê = 0.2

and ê = 0.4. Here T̂0 = 5.

wall thickness results in the initially unstable solution (for ê = 0.01) becoming stable for
a critical value of the wall thickness ê & 0.08 (figure 13c), with a corresponding decrease
in the frequency of oscillation (figure 13d).

In order to quantify the effect of increasing the wall thickness across the parameter
space, in figure 14 we plot the critical external pressure for the onset of the mode-(i)
instability of the lower branch, p̂∗ext, as function of the Reynolds number for fixed pre-
tension (T̂0 = 5) and three different wall thicknesses (ê = 0.01, 0.2, 0.4). Note that we
have limited our investigation to values of the Reynolds numbers smaller than the critical
value required for multiple steady solutions (Recusp), so the steady profile is unique. In
summary, at least for the cases analysed here, in the absence of wall inertia (ρ̂ = 0) the
effect of the wall thickness on the critical conditions for instability is weak: the steady
flow remains almost unchanged (figure 13a,b) and there is only a mild stabilization of
the instability, characterized by an increase in the critical pressure needed to generate
self-excited oscillations (figure 14). We show in §3.7 below that changes to the stability
of the system are more prominent when we include wall inertia.

3.7. The influence of wall inertia

We now examine the influence of increasing wall inertia. It should be noted that the
steady version of the full nonlinear equations (2.1) is independent of the wall inertia
parameter ρ̂, and so all steady results are unchanged from those reported above. To
study the additional influence of wall inertia on the onset of lower branch instability, in
figure 15 we trace the growth rate (figure 15a) and frequency (figure 15b) of the mode-
(i) instability from figures 8 and 10 as a function of the wall inertia parameter ρ̂; this
oscillation has a mode-2 wall profile at neutral stability (figure 15c). For this choice of
parameters this mode is stable for ρ̂ = 0, becoming unstable as the wall inertia parameter,
ρ̂, increases (figure 15a), while the corresponding oscillation frequency decreases (figure
15b). The perturbation growth rate for lower branch mode-(i) exhibits a local maximum

Page 23 of 30

Cambridge University Press

Journal of Fluid Mechanics



24

-1 4 9 14
-1

0

1

-1 4 9 14
-1

0

1

0 20 40 60 80 100
0

1

2

3

4

-1 4 9 14
-1

0

1

0 20 40 60 80 100

-0.1

0

0.1

0.2

Figure 15. The role of increasing wall inertia in the growth rate and frequency of self-excited
oscillations for fixed wall thickness ê = 0.2: (a) the growth rate of the first four oscillatory
modes as a function of the wall inertia parameter; (b) the corresponding frequency of the first
four oscillatory modes as a function of the wall inertia parameter; spatial profiles of real and
imaginary parts of the eigenfunctions at neutral stability for (c) mode-(i) (ρ̂ = 0.631); (d)

mode-(ii) (ρ̂ = 12.73); (e) mode-(iii) (ρ̂ = 21.02). Here T̂0 = 5, p̂ext = 2.98 and Re = 50.

at ρ̂ ≈ 10 before asymptoting toward zero as the wall inertia parameter continues to
increase. Hence, this mode of instability approaches stability with decreasing oscillation
frequency as the wall gets heavier. However, as the wall inertia parameter increases a
second mode of oscillation also becomes unstable at ρ̂ ≈ 12.72; we term this mode-(ii),
which also has a mode-2 profile (figure 15d) albeit with a narrow boundary layer at the
upstream end of the profile. Unlike the primary mode, the growth rate of this instability
continues to increase as ρ̂ increases for these parameter values, while the corresponding
oscillation frequency again approaches zero (figure 15b). As the wall mass parameter
becomes even larger, we eventually observe another mode becoming destabilised for ρ̂ ≈
21.02 which we term mode-(iii), again with a mode-2 profile with a narrow upstream
boundary layer (see eigenfunction wall profile in figure 15e). Further increases in the wall
inertia parameter destabilises mode-(iv) (figure 15a,b). Note that in accordance with our
naming convention the oscillation frequency of each mode increases with increasing mode
number (figure 15b). In summary, increasing the wall inertia parameter destabilises the
primary global instability of the system, but also destabilises higher modes of instability.

In order to summarise the influence of increasing wall inertia across the parameter
space, in figure 16 we plot the critical external pressure for the onset of lower branch
oscillations, p̂∗ext, as a function of the Reynolds number for constant wall thickness (ê =
0.2) and fixed pre-tension (T̂0 = 5) for three different values of the wall inertia parameter
(ρ̂ = 0, 10, 50). For small values of the wall inertia parameter (ρ̂ = 0, 10) we find only
mode-(i) across the section of parameter space considered (a direct continuation of mode-
(i) identified in the absence of wall inertia); this mode becomes increasingly unstable as
ρ̂ increases (figure 16a), while the corresponding frequency of oscillation decreases (figure
16b). This observation is consistent with the work of Luo & Pedley (1998), who found
that increasing wall mass enlarges the unstable region of parameter space. However,
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Figure 16. An overview of the critical conditions for the onset of instability for fixed wall
thickness ê = 0.2 for three different values of the wall inertia parameter ρ̂ = 0, 10, 50: (a) the
critical external pressure for the onset of the four most unstable modes of the system (modes-(i)
to (iv)) as a function of the Reynolds number; (b) the corresponding neutrally stable oscillation

frequency of these four modes as a function of the Reynolds number. Here T̂0 = 5.

consistent with figure 15, as the wall inertia parameter increases, additional (higher-
frequency) modes of instability also arise in the system. In particular, we identify modes
(i), (ii), (iii) and (iv), labelled in order of increasing frequency. In fact, it emerges that
for ρ̂ = 50, for the parameters investigated the mode-(ii) oscillation is more unstable
than mode-(i) until Re ≈ 46. Beyond this critical value mode-(iii) becomes the most
unstable mode, while for even larger Reynolds numbers (Re & 166) there is another
cross-over in parameter space and mode-(iv) becomes the most unstable mode. Note
that the frequency of the oscillation increases with increasing mode number (figure 16b).
These observations are again consistent with the predictions of Luo & Pedley (1998), who
found that a higher frequency oscillatory mode eventually dominated the fundamental
mode as the wall inertia parameter increased.

Figure 16(a) also highlights that the structure of the neutral stability curve for mode-
(iii) oscillations is somewhat different to the traces of mode-(i), (ii) and (iv), exhibiting a
maximal Reynolds number and a two-branch structure analogous to the tongue structures
seen in other collapsible channel systems (Luo et al. 2008; Stewart 2017).

4. Discussion

In this paper we have developed a model for the flow of Newtonian fluid through a
finite-length (asymmetric) flexible-walled channel, as a planar analogue of flow through
a Starling Resistor experiment. The flexible wall of the channel was assumed to be a
pre-tensioned hyperelastic material of finite thickness, overcoming the limitation with
more approximate models that require the elastic wall to be asymptotically thin (such
as a membrane (eg. Luo & Pedley 1996), a nonlinear beam (eg. Luo et al. 2008; Wang
et al. 2021a) or an elastic shell (eg. Heil 2004)) and providing a much closer resemblance
to the experiments where the tube walls are typically on the order of the tube radius (eg.
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Bertram et al. 1990, 1991; Bertram & Castles 1999). It should be noted that in the limit
of an asymptotically thin wall our hyperelastic model can be rationally reduced to either
a membrane or an elastic shell depending on the assumptions, but cannot reproduce
the resistance to bending of an elastic beam. Flow through the channel is driven by a
prescribed upstream flux against a prescribed downstream pressure, while the compliant
segment of the channel is externally pressurised. This model is validated against previous
predictions which approximated the wall using nonlinear shell theory (Heil 2004), showing
excellent agreement (figures 3,4).

The numerical method used in this study is based on an Arbitrary Lagrangian-Eulerian
(ALE) approach (Hirt et al. 1974; Donea et al. 2004; Basting et al. 2017; Hron & Turek
2006; Ryzhakov et al. 2020), in that one can either move with the fluid (Lagrangian
description) or view the flow from a fixed position (Eulerian description). The novelty
of our method lies in the use of non-singular mappings between these two descriptions,
in which all fields are solved simultaneously and which allow the method to be fully
implicit. At the same time, we use high-order (fourth-order) finite differences or spectral
Chebyshev collocation to discretise the transformed domains. Thus, while there are other
such monolithic methods (eg Hron & Turek 2006; Ryzhakov et al. 2020), we are able to
construct a stable method with high spatial accuracy. The numerical method used herein
is well suited for solving other fluid-structure interaction (FSI) problems (eg Bungartz
& Schäfer 2006) since it can handle large deformation of the solid with the help of these
non-singular mappings; many standard implementations of FSI fail due to excessive mesh
deformation.

The model predicts that at least one steady configuration of the system exists for all
values of the parameters. For sufficiently large Reynolds numbers the system exhibits
three co-existing steady states for a narrow range of the parameters. These states are
connected by a pair of limit points, similar to earlier predictions using more approximate
models (Luo & Pedley 2000; Stewart 2017) with two stable configurations (figures 4,9):
an upper branch (where the channel wall is entirely inflated) and a lower branch (where
the channel wall is collapsed). Beyond the upper limit point the system transitions
(dynamically) from the upper branch of steady solutions to the lower, where the wall
profile becomes increasingly collapsed, the flow separates beyond the constriction and
a low pressure vortex is shed into the downstream rigid segment (figure 6); such an
observation has many similarities to swirling flows in pipes and open jets (Lopez 1994;
Herrada et al. 2003; Shtern & Hussain 1996).

Similar to previous studies (Heil 2004; Stewart 2017), we found an instability of the
lower branch of steady solutions via a Hopf bifurcation when either the Reynolds number
or the external pressure becomes sufficiently large (figures 8,10). For the parameter values
considered in this study we did not observe the neutral stability curve entering the region
of multiple steady states. However, in line with observations of Stewart (2017), we expect
that the neutral stability curve will eventually terminate when it intersects the line of
limit points along the lower branch of steady solutions.

However, our model also predicted that the upper branch of steady solutions could
become unstable via a Hopf bifurcation to an entirely separate branch of mode-2 in-
stabilities when the pre-tension is sufficiently low (figure 10). Note that an analogous
instability of the upper branch has very recently been found in a model of Newtonian
flow in a collapsible channel with a nonlinear elastic beam (Wang et al. 2021a). The fully
developed limit cycle of our upper branch oscillations bears many similarities to those
described by Wang et al. (2021a), exhibiting a hump propagating upstream along the
compliant segment and interacting with flow in the upstream rigid segment (figure 12);
however in our oscillations the hump is reflected by the upstream rigid segment and the
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ξ1 ξ2 χ1 χ2 ω̂r ω̂i

641 201 19 14 1.052 0.0232
641 201 19 19 1.054 0.02229
641 201 25 14 1.053 0.02404
641 201 25 19 1.055 0.02314
721 226 19 14 1.051 0.02064
721 226 25 14 1.051 0.02140
801 251 21 19 1.054 0.02239

Table 1. Mesh sensitivity for an unstable case on the upper branch of steady solutions for a thin
wall (ê = 0.01) with no wall inertia (ρ̂ = 0), listing the real and imaginary parts as a function
of the discretisation parameters ξ1, ξ2, χ1 and χ2. The row listed in bold corresponds to the

parameters used for the simulations in the main text. Here T̂0 = 5, p̂ext = 0.82 and Re = 400.

flow sheds a low pressure vortex which drives a vorticity wave into the downstream rigid
segment (Stephanoff et al. 1983; Pedley & Stephanoff 1985).

Our new hyperelastic formulation provides an opportunity to investigate the role of
wall thickness on the onset of instability. Previous studies of flow in thick-walled tubes
or channels have been restricted to steady configurations (Marzo et al. 2005; Zhang et al.
2018), while unsteady systems have typically considered asymptotically thin walls (Luo
& Pedley 1996; Jensen & Heil 2003; Luo et al. 2008). We found that, in the absence of
wall inertia, increasing the wall thickness alone makes negligible difference to the steady
solutions (figure 13a,b), and makes very little difference to the onset of oscillations (figures
13c,d, 14).

However, we found that increasing the wall inertia promotes the onset of instability
by enlarging the unstable region of the primary (mode-2) global instability in the
space spanned by Reynolds number and external pressure (figure 16); inertia-driven
destabilisation was previously noted by Luo & Pedley (1998). In addition, increasing
the wall inertia also destabilises higher frequency modes of instability, which eventually
dominate the primary global instability as the wall inertia parameter increases (figure
16), again consistent with the observations of Luo & Pedley (1998).
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Appendix A. Convergence study of the numerical method

To illustrate the mesh independence of the numerical results we compute the real
and imaginary components of the eigenvalue ω̂ obtained from the global linear stability
eigensolver for different discretisations of the domain, changing the number of mesh
points ξ1, ξ2, χ1 and χ2 (listed in §2.2). A typical example for an unstable point on the
upper branch of steady solutions is provided in Table 1, where we find that the real and
imaginary parts of ω̂ show only negligible variations as the mesh is refined. The data
listed in boldface corresponds to the numerical mesh used in this work.
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Pihler-Puzović, D. & Pedley, T. J. 2014 Flutter in a quasi-one-dimensional model of a
collapsible channel. Proc. Roy. Soc. A 470 (2166), 20140015.

Ponce-Torres, A., Rubio, M., Herrada, M. A., Eggers, J. & Montanero, J. M. 2020
Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-
inviscid surfactants. Sci. Rep. 10 (1), 1–12, arXiv: 2004.04621.

Ryzhakov, P. B., Rossi, R., Idelsohn, S. R. & Onate, E. 2020 A monolithic Lagrangian
approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899.

Shapiro, A. H. 1977 Steady flow in collapsible tubes. ASME J. Biomech. Engng. 99 (3), 126–
147.

Shtern, V. 2018 Models of fold-related hysteresis. Phys. Fluids 30 (5), 2–7.

Page 29 of 30

Cambridge University Press

Journal of Fluid Mechanics



30

Shtern, V. & Hussain, F. 1996 Hysteresis in swirling jets J. Fluid. Mech. 309, 1–44.
Snoeijer, J. H., Pandey, A., Herrada, M. A. & Eggers, J. 2020 The relationship between

viscoelasticity and elasticity. Proc. Roy. Soc. A 476 (20200419), 1–38.
Stephanoff, K., Pedley, T. J., Lawrence, C. & Secomb, T. W. 1983 Fluid flow along a

channel with an asymmetric oscillating constriction. Nature 305, 692–695.
Stewart, P. S. 2010 Flows in flexible channels and airways. PhD thesis, University of

Nottingham.
Stewart, P. S. 2017 Instabilities in flexible channel flow with large external pressure.

J. Fluid. Mech. 825, pp. 922–960.
Stewart, P. S., Heil, M., Waters, S. L. & Jensen, O. E. 2010 Sloshing and slamming

oscillations in a collapsible channel flow. J. Fluid Mech. 662, 288–319.
Stewart, P. S., Waters, S. L. & Jensen, O. E. 2009 Local and global instabilities of flow

in a flexible-walled channel. Eur. J. Mech. B/Fluids 28 (4), 541–557.
Walters, M. C., Heil, M. & Whittaker, R. J. 2018 The effect of wall inertia on high-

frequency instabilities of flow through an elastic-walled tube. Quart. J. Mech. Appl. Math.
71 (1), 47–77.

Wang, D., Luo, X. Y. & Stewart, P. S. 2021 Energy analysis of collapsible channel flow
with a nonlinear fluid-beam model. to appear in J. Fluid Mech., last submitted version
available at http://arxiv.org/abs/2106.16234 .

Wang, D., Luo, X. Y. & Stewart, P. S. 2021 Multiple Steady and Oscillatory Solutions
in a Collapsible Channel Flow. to appear in Int. J. Appl. Mech., last submitted version
available at http://arxiv.org/abs/2107.05327 .

Whittaker, R. J., Heil, M., Jensen, O.E. & Waters, S. L. 2010 Predicting the onset of high-
frequency self-excited oscillations in elastic-walled tubes. Proc. Roy. Soc. A 466 (2124),
3635–3657.

Xu, F., Billingham, J. & Jensen, O. E. 2013 Divergence-driven oscillations in a flexible-
channel flow with fixed upstream flux. J. Fluid Mech. 723, 706–733.

Xu, F., Billingham, J. & Jensen, O. E. 2014 Resonance-driven oscillations in a flexible-
channel flow with fixed upstream flux and a long downstream rigid segment. J. Fluid
Mech. 746, 368–404.

Xu, F. & Jensen, O. E. 2015 A low-order model for slamming in a flexible-channel flow.
Quart. J. Mech. Appl. Math. 68 (3), 299–319.

Zhang, S., Luo, X. Y. & Cai, Z. 2018 Three-dimensional flows in a hyperelastic vessel under
external pressure. Biomech. Mod. Mechanobiology 17 (4), 1187–1207.

Page 30 of 30

Cambridge University Press

Journal of Fluid Mechanics


