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Nonuniversal Critical Behavior along the A-line of ‘He

R. SCHLOMS, J. EGGERS, V. DOHM
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An accurate representation of the renormalization-group (RG) p-function of the Ginzburg-Landau
Hamiltonian is given. The nonuniversal parameters of the theory are determined from a few data points
of the specific heat above T). Application to the specific heat below T, and to the Landau-Placzek
ratio of scattered Tight explains the measured nonuniversal temperature and pressure dependence of

these quantities without adjustable parameters.

1. Introduction and strategy

4 Recent interest in the critical properties of
He has been focused on nonasymptotic features
rather than the pure powerlaw behaviour close to

the A-Tine. Starting point of our field-theoretic
approach is the Ginzburg-Landau Hamiltonian

i= [t g rgg? e Joog?eugty

or the extended Hamiltonian of model C[1]. The
traditional calculations of correction-to-scaling
amplitudes by means of the RG e-expansion [2] has
led to discrepancies with experiments [3]. These
discrepancies are resolved by our nonasymptotic
approach. Further applications are the explana-
tion of the observed nonuniversal critical be-
haviour of the superfluid density [4] and of the
Landau-Placzek ratio.

Within RG theory physical quantities can be
expressed by noncritical background functions
and RG transformations which in turn are deter-
mined by RG functions. The basic idea is to cal-
culate the dominant nonlinear RG functions with
high accuracy by means of Borel resummation
methods [4 ], whereas the background functions are
approximated with sufficient accuracy by a Tow-
order loop expansion [1,4]. We find that the most
important RG function B (for n=2, d=3) can be
represented as

B(u) = -u + 40 u(1+12.82u) (1+31.94u)L  (2)

in the range 0 < u < u®= 0.037, within the error
bars of our calculation. For other RG functions
see [4].

2. Application to thermodynamics

The main resultsof our procedure are the
following
(i) The ratio of the correction-to-scaling
amplitudes of the specific heat below T
and the superfluid density is D7/D, = -0.06
(rather than + 0.667 obtained by the two-Toop
g-expansion [2]) in good agreement with the
experimental data [3?. Thus an old discre-
pancy is resolved.
(i1) Using the specific heat data [5] above T, in a
small temperature_intervall 104 <t =
(T-Ty)/Ty < 1072+7is sufficient to determine
the pressure dependence of the renormalized
parameters of (1) and of the model C Hamiltonian,
Their values at t = 102 are listed in the following
table (last row in J/mol K).

Plbar] | sw | 6.85 |14.73 | 22.3 | 28
u 0.036 | 0.035 | 0.033 | 0.030 | 0.028
v lo.096 | 0.103 | 0.112 | 0.109 |0.128
LV, | 209 | 177 {150 |40 |12

(iii) With these nonuniversal parameters all other
thermodynamic quantities can be predicted without
further adjustments as function of the pressure

in the entire temperature range including the pre-
critical region where the description in terms of
correction-to-scaling terms is insufficient. This
has been carried out for the specific heat and the
superfluid density[4]. The agreement between our
predictions and the experimental data is shown in
Fig. 1. We find the range of validity of model (1)
to be -10"3< t< 1072 for all pressures.
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Fig. 1. Specific heat at two pressures(representa-
tive data)l 6 1 Solid curves represent the
theoretical result where adjustments hgve been
made only above Tp in 1077 < t 5.10'3' .
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3. Application to Tight scattering

This application is readily made: possible by
generalizing the thermodynamic results to finite
wave numbers k by means of an appropriately de-
fined RG flow parameter 2(t,k) and by a calcula-
tion of k dependent correlation functions. Of
particular importance is the Landau-Placzek ratio

I, (k) € (k)
IO N (3] -1 (3)

where the k dependent spec1f1c heats Cpand Cy can
be calculated within model (1) or modeP C. With
the nonuniversal parameters taken from the Table
presented above our RG calculations lead to pre-
dictionsfor I/17 without adjustable parameters
shown as full curves in Fig. 2.
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Fig. 2. Temperature dependence of the Landau-
PTaczek ratio for k = 1.79+10% cm~1. The solid
curves are the prediction of our theory, the
dashed lines are k = 0 extrapolations. The data
are from Ref. 7.
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Good overall agreement with the data [7,8] is
found but systematic differences exist below T, .
Corresponding purely experimental differences
exist between the light-scattering data and
thermodynamic specific-heat measurements [ 6,8 ]
whose extrapolations are shown as dashed lines

in Fig. 2. Our finite k theory is based on k = 0
thermodynamics, therefore the differences with
the data for T < T, in Fig. 2 was to be expected.
A possible solution to this puzzle is a complete
calculation of a dynamically defined ratio I,/I
within an appropriate modeT including first Sound

(9].

Our results differ significantly from those of
a previous theory [10]. Their results are in-
consistent with thermodynamic data [6]; further-
more the data presented in [10] for T » T, at
23 bar do not agree with the original data [71.

A further application of the theory is the cal-
culation of the frequency dependence of the
Rayleigh part of the spectrum. It has turned out
that the temperature dependence of the total
intensity I, is not adequately described within
the standard model F. Furthermore there exist
significant differences between the calculated and
measured halfwidths whose origin should be studied
within a more complete model [ 9]. The details of
the results discussed here will be published
elsewhere[11].
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