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The surfaces of growing biological tissues, swelling gels, and compressed rubbers do not remain smooth,
but frequently exhibit highly localized inward folds. We reveal the morphology of this surface folding in a
novel experimental setup, which permits us to deform the surface of a soft gel in a controlled fashion.
The interface first forms a sharp furrow, whose tip size decreases rapidly with deformation. Above a critical
deformation, the furrow bifurcates to an inward folded crease of vanishing tip size. We show experimentally
and numerically that both creases and furrows exhibit a universal cusp shape, whose width scales like y3=2 at a
distance y from the tip. We provide a similarity theory that captures the singular profiles before and after the
self-folding bifurcation, and derive the length of the fold from finite deformation elasticity.
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Compressing a slice of soft white bread, one observes the
formation of a crease, a localized indentation where part of
the surface folds into a self-contact. Similar patterns appear,
for instance, on the surfaces of swelling gels [1,2]. In
biology, such elastic structures are called sulci, which are
prime morphological features of human brains and growing
tumors [3–5]. As a result, creases have attracted considerable
attention, experimentally, theoretically, and from a numerical
point of view [2–18]. Yet in spite of their ubiquity and
importance, a quantitative theoretical description of the
morphology of localized indentations is still missing.
Past approaches have focused on the idealized problem

of a half-space of elastic material, which is compressed
uniformly parallel to the interface. Above a critical com-
pression, the uniform state becomes unstable toward
sinusoidal deformation of the interface [19]. However,
since this setup lacks a characteristic length scale, pertur-
bations grow without bound even in the nonlinear regime.
Additional regularizing features have to be invoked, such as
adding a thin film of stiff material on the surface [3,5].
While the metastability of smooth and creased configura-
tions has been studied in some detail [3,8,14], much less
is known on the profiles of localized indentations. Here,
we propose a new experimental setup that guarantees the
formation of a single indentation of finite size, which
bifurcates between two different structures, see Fig. 1. It
allows us to reveal for the first time the self-similar shape

properties of both structures, and to provide quantitative
analytical descriptions thereof.
A highly deformable Polydimethylsiloxane gel (Dow

Corning CY52-276, components A and B mixed 1∶1,
shear modulus μ ¼ 1 kPa) is prepared in a container of
footprint 3 × 3 cm. A 10 times stiffer gel was prepared for
some experiments by adding 5% of Dow Corning Sylgard
184 (polymer and curing agent mixed 10∶1, yielding
μ ¼ 11 kPa). The gels were cured overnight at room
temperature, protecting the air-exposed free surface from
dust. By depositing a water drop inside the gel prior to
curing, we create a liquid inclusion of initial radius R at
the bottom of the container. l denotes the initial
distance between inclusion and free surface (cf. Fig. 1);
we used l ¼ 1–8 mm and R=l ¼ 0.4–6. Subsequently, the
water is extracted slowly (≳100 s for the droplet volume)
through a small hole at the bottom (cf. Fig. 1), creating a

FIG. 1. The interface of a soft gel is deformed by slowly
reducing the volume of a liquid inclusion (initial radius R),
located at an initial distance l below the free surface. First, a
localized furrow with tip curvature κ forms; at larger deforma-
tions the furrow bifurcates into a crease that folds the free surface
onto itself over a length L.
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quasistationary axisymmetric strain field in the gel, and an
increasingly sharp indentation of the free surface. A two-
dimensional version of the experiment was realized by
creating a cylindrical inclusion at the bottom of the container.
In that case, the inclusion was templated by a cylinder of
polyethylene glycol (M ¼ 1000 g/mol, melting point 37°–
40°), which was removed by melting after the gel was cured.
The free surface profile was measured as a shadowgraph

through a long-distance microscope with a spatial resolution
on the order of 10 μm. The deformation field and the length
of the self-contacting surface fold were determined by
tracking fluorescent particles embedded inside the gel (see
the Supplemental Material for details [20]). The amplitude of
the deformation is measured by d, the deflection of the free
surface relative to its reference level. The sharpness of the
deflection is quantified by its curvature κ in the image plane.
Figure 2 shows the result of a typical experimental run,

obtained by first deflating the water drop to vanishing size
(filled symbols), and subsequently reinflating it up again
to its original size (open symbols). The deformation is
quantified by d=l shown on the horizontal axis. Upon
increasing deformation, the gel develops an increasingly
sharp furrow, as measured by the dimensionless radius of
curvature ðκlÞ−1 [Fig. 2(a); the furrow’s self-similar shape

is investigated below]. At a deformation d ¼ db, the furrow
bifurcates toward a crease (similar to previously reported
behavior [3,14]): part of the surface folds into a self-contact
of length L, connected to a free-surface cusp of vanishing
tip curvature. In the axisymmetric version of the experi-
ment, this is accompanied by a breaking of axisymmetry,
the crease being essentially two dimensional. Experimental
data are fitted with the scaling law [Fig. 2(a), solid line]

κ ¼ klðdc − dÞ−2; ð1Þ

which suggests the existence of a critical deformation dc at
which the tip radius of curvature vanishes; however, this
critical scaling is cut off by a discontinuous (first order)
transition toward the crease at d ¼ db.
Directly after formation of the crease, a self-contact of

length L ≈ 0.03l forms, while the radius of curvature of the
new structure jumps to zero. With increasing deformation,
L increases further (circles). Reinflating the liquid inclu-
sion again, so as to decrease d, L decreases beyond its
original value to go to zero in a continuous fashion at
another critical value d0; this is described by the critical
behavior [Fig. 2(b), solid line]

L ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðd − d0Þ

p
; ð2Þ

reminiscent of a second order transition, to be discussed
below. Below d ¼ d0, the crease disappears and the inter-
face shape returns to a furrow, in the course of which the tip
radius jumps to a finite value. Decreasing the deformation
further, the tip radius returns to its original value along the
same curve, indicating that the entire process is reversible.
To check reversibility, we repeated the whole cycle several
times for each specimen, which yielded nearly identical
results (typical deviation ≲2%). Merely, db was slightly
smaller by about 4% as compared to the first creasing event.
This could indicate the formation of a localized nucleation
seed due to the initial creasing [15].
The scaling laws (1) and (2) are universal features of the

creasing instability. These were consistently observed,
where we in total considered about 25 different configu-
rations (axisymmetric and 2D, soft and stiff gels) with
l ¼ 1–8 mm and R=l ¼ 0.4–6. R ≪ l precludes large
deformations because of the limited droplet volume. For
R≲ 0.8l, creasing was not induced before the droplet was
drained completely (axisymmetric samples, R≲ 0.5l for
2D). Otherwise, all experiments show similar curves as in
Fig. 2 with universal scaling laws. As expected, the precise
values of db and d0 are not universal (see the Supplemental
Material [20]).
The shape of the furrow is perfectly self-similar, as is

shown in Fig. 3. To describe this self-similar structure
analytically, we hypothesize that the surface shape is
described by a plane curve with a smooth parametric
representation xðsÞ, yðsÞ, which has been used successfully
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FIG. 2. Bifurcation between the “furrow” and the “crease”
(axisymmetric cavity, μ ¼ 1 kPa, R ¼ 2.1 mm, l ¼ 2.4 mm).
(a) Tip radius of curvature κ−1 in the image plane and (b) fold
length L, as a function of the deformation amplitude d. Arrows
indicate the course of the experiment. Increasing the deformation
(filled symbols) beyond db nucleates a fold of finite length.
Decreasing the deformation again (open symbols), the fold
disappears continuously at d0. The solid lines represent Eqs. (1)
and (2) for the curvature and the fold length, respectively. The inset
demonstrates the scaling law (1) in a double logarithmic plot (here,
R ¼ 1.9 mm, l ¼ 2.4 mm).
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to describe cusp formation quantitatively in free surface
flows and in optics [21,22]; a rigorous rationale for such a
description is provided for example by a complex mapping
between the free surface and the unit circle [23], as has
been verified experimentally for viscous flows [24]. To
picture cusp formation of a parametrized curve xðsÞ, yðsÞ
geometrically, one can imagine these components being
deformed smoothly such that the curve self-intersects. At
the point of self-intersection, the curve is a cusp with a
singular tip. Just before intersection the curve opens into a
universal smooth curve.
Namely, a critical point of the curve corresponds to

x0ð0Þ ¼ y0ð0Þ ¼ 0, so expanding about s ¼ 0 to lowest
nontrivial order yields [25]

x ¼ ϵsþ s3=ð23=2aÞ; y ¼ s2=2; ð3Þ

where ϵ ¼ 0 corresponds to the critical (cusp) point,
and a is a parameter controlling the opening of the cusp
y ¼ ðaxÞ2=3. In the x component we expanded to third
order, since any quadratic term can be eliminated using y,
implying a rotation. The curvature of Eq. (3) at the origin is
κ ¼ ϵ−2, so Eq. (3) can be written in similarity form

yκ1=2 ¼ ΦðξÞ; ξ ¼ xκ3=4; ð4Þ

where Φ is defined implicitly: ξ2 ¼ 2Φð1þΦ=ð ffiffiffi
2

p
aÞÞ2,

see Ref. [25]. As seen in Figs. 3(b), 3(d), and 3(f), the
similarity form (4) is in excellent agreement with both 2D

and 3D experiments and simulation, and the collapsed data
agrees very well with the universal similarity function
ΦðξÞ. The single adjustable parameter a is determined by
the outer geometry of the problem. In addition, the relation
between the vertical deformation scale and κ implied by
Eq. (4) is consistent with Eq. (1). Of course, this geometric
analysis cannot describe the precise value of the tip
curvature κðdÞ, which must be derived from finite defor-
mation elasticity theory [26,27].
To show that the observations above are well described

by the mechanics of elasticity, we performed two-
dimensional (plane strain) finite element simulations imple-
mented in oomph-lib, an object-oriented, open-source
finite-element library for the simulation of physics prob-
lems [28], using the theory of finite deformations [26],
with an incompressible neo-Hookean constitutive equa-
tion [27]. In finite deformation theory the coordinates X of
the undeformed state of the system (the reference state, see
Fig. 4) are mapped upon the current, deformed state of the
system as x ¼ fðXÞ. For a neo-Hookean elastic material,
the Cauchy stress is [26]

σij ¼ μ
∂xi
∂Xk

∂xj
∂Xk

− pδij; ð5Þ
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FIG. 3. Self-similar evolution of free surface profiles for 3D
and 2D experiments, and 2D simulations, prior to the creasing
instability. Left: measured (simulated) profiles. Right: profiles
rescaled according to Eq. (4), and superimposed with the
similarity solution Φ (red).
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FIG. 4. Numerical simulation of the creased state, with a self-
contacting fold of lengthL; the tip of the fold is atT; the self-contact
ends atC (the tip of the cusp). (a) The deformed statex, showing the
solid pressure as a color plot; the reference stateX is shown in the
inset. (b) Surface profile of the crease above the fold (x and y
measured relative toC; red line, fit with a 2=3-power law). The inset
shows the 1=2-power law of the normal (contact) traction near C.
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where μ is the shear modulus and p the solid pressure (here
defined up to a constant), which ensures incompressibility:
detð∂xi=∂XjÞ ¼ 1. Elastic equilibrium is determined by
∂σik=∂xk ¼ 0. For simulation details see the Supplemental
Material [20]. The result of the simulations is given in
Figs. 3(e) and 3(f). They recover the same features as in
experiments, including the similarity collapse with the
same universal shape superimposed.
The remaining challenge is to understand the morphol-

ogy of the creased state, which contains two singular
points, respectively indicated as C and T in Fig. 4(a). To
derive a solution of the creased state, we start from the fold
solution around point T [8,29], which maps an elastic half-
space onto a fold of infinite length [coordinates are defined
in Fig. 4(a); here, the origin lies in point T]:

θ ¼ 2Θ; r ¼ R=
ffiffiffi
2

p
; p ¼ −3μ ln r=2; ð6Þ

which is an exact solution of Eq. (5). On the fold (x ¼ 0), the
principal stretches are λx;y ¼

ffiffiffi
2

p
, 1=

ffiffiffi
2

p
, and the elastic free

energy density isW ¼ 5 μ=4. The logarithmic divergence of
p near T is uncritical for a macroscopic description of the
experiment since p≲ 100 kPa down to molecular length
scales. To numerically simulate the creased state, we use a
large domain (∼320L) under horizontal compression,
impose Eq. (6) near T, and require a non-negative normal
traction and vanishing tangential traction on TC (see the
Supplemental Material for details [20]).
Figure 4(a) shows the deformed computational domain,

while Fig. 4(b) reveals a power-law behavior, y ∼ ðaxÞ2=3,
of the interface above the self-contact, with four decades of
spatial resolution. Hence, the interface forms an ideal cusp,
y ∼ x2=3, which is the limiting case ϵ ¼ 0 in Eq. (3). In the
Supplemental Material [20] we also provide experimental
evidence for this scaling. To access the surface profile near
the self-contact experimentally with sufficient spatial res-
olution, we bent an elastic rod until it creased on its surface
and recorded its shadowgraph. Despite the significantly
different outer geometry, we find the same 2=3 exponent for
the morphology of the crease, highlighting the universality
of this result.
This scaling can be derived analytically by noting that

near C, where the fold opens, the shape is slender: x ≪ y
(from now on we use C as the coordinate origin). Hence,
deformations relative to that of the fold are small and we
can expand to linear order in the deformations u, v:

x ¼ λX þ uðλX; Y=λÞ; y ¼ λ−1Y þ vðXλ; Y=λÞ; ð7Þ

where λ is the stretch near C. We use coordinate systems as
shown in Fig. 4(a), but for simplicity use a reference state
that is rotated clockwise by 90 deg. As shown in Ref. [19],
if we introduce a stream function u ¼ ∂yψ , v ¼ −∂xψ , the
linearized elasticity problem reduces to

△△̄ψ ≡△Ψ ¼ 0; ð8Þ

where△ and △̄ denote the Laplacian in the deformed ðx; yÞ
and reference ðX; YÞ coordinates, respectively.
Similar to the analysis of the cusp in a viscous fluid [21],

we make the self-similar ansatz ψ ¼ rαfðθÞ ¼ Rαf̄ðΘÞ;
θ ¼ Θ ¼ π corresponds to the cusp line, along which we
impose vanishing shear and, outside the self-contact,
vanishing normal stress. Using that f is odd, we find from
the second equation (8) that [21]

△̄ψ ¼ Ψ ¼ Arα−2 sinðα − 2Þθ ð9Þ

andp¼Aμrα−2cosðα−2Þθ, whereA is an arbitrary constant.
Now solving Eq. (9) in reference coordinates, homogeneous
solutions are f̄f1;2g¼fsin;cosgðαΘÞ. In polar coordinates,
the transformation between deformed and reference
coordinates reads R=r ¼ ðλ2 cos2ðθÞ þ λ−2 sin2ðθÞÞ1=2 ≡ g
and λ2 tanΘ ¼ tan θ, and so

ff1;2g ¼ fsin; cosgðαΘÞgα: ð10Þ
An odd particular solution of Eq. (9) is found from the

standard formula as fp ¼ A(f1I2ðθÞ − f2I1ðθÞ), where

If1;2gðθÞ ¼
Z

θ

0

fsin; cosgðαΘÞ sinðα − 2Þθ
αgα

dθ: ð11Þ

A general solution to Eq. (8) can be written f ¼ fp þ Bf1,
where the constants A, B must be chosen to satisfy
σijnj ¼ 0 at θ ¼ π, where nj is the true normal.
For there to be a nontrivial solution, the determinant of

this system of equations must vanish, which after using that
2αðα − 1ÞI1ðπÞ ¼ −λ2−α sinð2παÞ=ðλ2 þ 1Þ yields the con-
dition sinð2παÞ ¼ 0. Thus, the determinant vanishes for
α ¼ i=2, where i ¼ 1; 2; 3;…, irrespective of the stretch
λ near C. Among these possible solutions, the dominant
value of α for which the pressure is not singular at the cusp
tip is α ¼ 5=2, which means that the cusp opens with the
universal exponent u ∝ y3=2, as is confirmed over four
decades in Fig. 4(b). Accordingly, α ¼ 5=2 implies that the
normal traction near the edge of the contact scales like
tn ∝ jyj1=2, as confirmed numerically (inset). Thus, both
deformation and traction scale in the same way as a Hertz
contact [30]. We also note that the above calculation
provides a rationale for the scaling in the far field of the
furrow: away from its rounded tip, the furrow’s geometry is
again slender and can be described by the same analysis.
Finally, we analyze the length L of the fold. Since

the energy density of the fold solution (6) is constant, the
contribution from the fold is Ef ¼ A0L2, since L sets the
size of the area over which deformation is significant. We
can assume that the energy E0ðdÞ of the rest of the strain
field is a smooth function of the deformation d. Hence, if
the creation of the fold takes place in a reversible fashion,
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we have A0L2 þ E0ðdÞ ¼ const. Expanding E0 linearly
about d ¼ d0, where L ¼ 0, we obtain Eq. (2). Apart
from the experiment of Fig. 2, this scaling law is confirmed
with great precision by the numerical simulation of a neo-
Hookean material shown in Fig. 4 [20].
In conclusion, our liquid-inclusion experiments allowed

us to investigate quantitatively localized furrows and creases
that form on the surface of an elastic medium under
compression, and to document the hysteretic transitions
between them. We are able to describe the self-similar
shapes of these furrows quantitatively, in agreement with
both experiment and neo-Hookean nonlinear elasticity.
Based on elasticity theory, we are able to explain the x ∝
y3=2 scaling of the width of both the furrow and the crease.
These scaling laws reveal that the elastic singularity is a
“true” geometric cusp, and belongs to the same universality
class as caustics in optics and free surface flows.
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