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How many ways a cell can move: the modes of
self-propulsion of an active drop

Aurore Loisy, * Jens Eggers and Tanniemola B. Liverpool *

Numerous physical models have been proposed to explain how cell motility emerges from internal activity,

mostly focused on how crawling motion arises from internal processes. Here we offer a classification of

self-propulsion mechanisms based on general physical principles, showing that crawling is not the only way

for cells to move on a substrate. We consider a thin drop of active matter on a planar substrate and fully

characterize its autonomous motion for all three possible sources of driving: (i) the stresses induced in the

bulk by active components, which allow in particular tractionless motion, (ii) the self-propulsion of active

components at the substrate, which gives rise to crawling motion, and (iii) a net capillary force, possibly self-

generated, and coupled to internal activity. We determine travelling-wave solutions to the lubrication

equations as a function of a dimensionless activity parameter for each mode of motion. Numerical

simulations are used to characterize the drop motion over a wide range of activity magnitudes, and explicit

analytical solutions in excellent agreement with the simulations are derived in the weak-activity regime.

1 Introduction

To perform essential biological functions such as wound heal-
ing and immune response, but also in pathological processes
such as cancer metastasis, eukaryotic cells adapt their mode of
migration to the geometrical and physicochemical properties
of their environment while relying on the same machinery, the
actomyosin cytoskeleton.1–3 In view of the complexity of cell
motility, one may want to ask first: what are the physical require-
ments for autonomous motion, and what are the possible ways to
move? Here we answer these questions by taking a deformable
drop of active matter (such as the cytoskeleton) and classifying the
possible mechanisms for self-propulsion on a substrate.

Motion on a hard surface is a particularly important class of
motility, because it is the first step towards understanding the
self-propulsion of cells in the tissue of multicellular organisms,
and in vitro experimental investigations of cell motility often
involve the study of cells in contact with a solid substrate.1,4–7

However, how such self-propulsion emerges from the compo-
nents of living cells remains a subject of debate.7–14

A minimal system to study motility is provided by a deformable
drop of material with anisotropic components that consume
energy (active matter) on a flat rigid surface.13–15 For a drop of
soft material to self-propel, two things are required: an asymmetry
to give a direction of motion and a mechanical energy flux
to provide the source of motion. The asymmetry may be in
the drop shape, resulting from an imbalance in surface tension,

typically due to imposed chemical or thermal gradients
which provide a non-zero flux leading to motion even for a
passive drop.16–18 A drop of active matter, in contrast, generates
fluxes and asymmetry all by itself due to energy input from
its components19–23 that can cause the drop to move
spontaneously.10–13,15,24–27 Several studies have shown propulsion
of active drops on a surface with a number of related
models.8,9,13,14,28,29 However the complexity of the underlying
dynamics means identifying similarities and differences between
them is difficult, leading to an ongoing debate about mechanisms.

The hydrodynamic theory of active matter provides a now
well-accepted description of active liquids in terms of a limited
number of coupled nonlinear governing equations for con-
served fields and broken-symmetry fields.19,20,22,23 One way to
study the problem of a moving active drop is through direct
numerical simulations of those equations in a domain with
moving boundaries.13,25–27,30,31 While those provide valuable
information, they are computationally expensive and they fail
at providing a simple picture of the mechanisms at play.
Another approach, which we shall follow here, takes advantage
of the geometry of the problem: assuming that the drop is
characterized by a small height-to-width ratio, one can use the
disparity of length scales to reduce the full set of governing
equations and boundary conditions to a single evolution
equation much easier to analyze and comprehend. This frame-
work, known as the lubrication (or long-wave) theory,32,33 has
been exploited extensively for the study of thin films and
droplets of passive nematic liquid crystals34–39 and has recently
been extended to active liquids with (nematic or polar) orienta-
tional order.14,29,40–42 Prior work has been concerned with

School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.

E-mail: aurore.loisy@bristol.ac.uk, t.liverpool@bristol.ac.uk

Received 12th January 2020,
Accepted 26th February 2020

DOI: 10.1039/d0sm00070a

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
7 

Fe
br

ua
ry

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
B

ri
st

ol
 o

n 
6/

16
/2

02
0 

12
:5

8:
59

 P
M

. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-8089-8636
http://orcid.org/0000-0002-0011-5575
http://orcid.org/0000-0003-4376-5604
http://crossmark.crossref.org/dialog/?doi=10.1039/d0sm00070a&domain=pdf&date_stamp=2020-03-09
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/d0sm00070a
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM016012


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 3106--3124 | 3107

thin film stability,40 dewetting,29 and drop spreading.41 But to
the best of our knowledge the question of motility has only
been tackled superficially,14,29 mostly due to the difficulty in
obtaining a closed form for the evolution equation.

In this paper, we present a unifying description of a thin
active drop on a planar substrate in terms of a single ODE. We
show that its available modes of motion fall into three distinct
classes which can be identified based on general principles,
independent of the details of the model (Fig. 1).

A first way to generate motion is through the extra stresses
generated by the active components in the bulk. At the
continuum scale, these active stresses yield an extra contribution
to the stress tensor ra = �ann where n is the director (a unit vector
that describes the local orientation of the active units). We show
that the motion of a drop that originates from active stresses is
controlled by the global topology of the director field, and can be
achieved without exerting traction on the surface, a remarkable
property which has been the subject of a recent communication.43

The second possible source of motion is the self-advection
term wn that arises if the active units propel themselves at a

speed w along their own tangent. When coupled to strong
enough friction with the substrate, self-advection allows a drop
to ‘‘crawl’’ along the surface.7–10,13,44,45 Crawling driven by self-
advection encompasses much prior work on motile active drops
on hard surfaces,7–10,13,29,44,45 and is revisited here within our
simple framework.

The third way to move is due to the action of a net capillary
force, as would result from (possibly self-induced) thermal or
chemical gradients. This mechanism has been exploited exten-
sively to create self-propelled passive droplets,16–18,46–50 and
here we address the effect of coupling it to internal activity.

2 Model of a thin active drop

Our model, illustrated in Fig. 2, consists of a 2D drop of viscous,
active, nematic liquid on a rigid substrate and confined by surface
tension. The director is strongly anchored at the boundaries, and
the interaction of the liquid with the substrate is modelled by a
partial slip boundary condition. The number density of active units
is assumed uniform: motility induced by density gradients11,12,24 is
not considered here. We further assume a drop geometry with a
small height-to-width ratio and use the lubrication approximation
to reduce the original problem to a nonlinear third-order ordinary
differential equation for the drop shape which involves the drop
velocity as an unknown constant and with prescribed contact
angles as boundary conditions. It is obtained from the balance of
activity, viscosity and surface tension in a regime where the director
field minimizes the free energy (no backcoupling to the flow). In
the following subsections we outline each of the ingredients that go
into our model and analysis. The reader not interested in the
details of the model and the derivation can find the thin drop
problem we solve summarized in Section 2.6.

2.1 Height equation

We consider a drop moving on a substrate in the x-direction. At
steady-state, the drop shape is described by the height function
h(x), and the constant drop velocity is denoted V (both being

Fig. 1 Classification of the modes of motion of an active drop. In traction-
less tank-treading driven by active stresses, here drawn in the drop frame of
reference, motion arises from the internal net flow (blue arrows) generated
by active stresses (pa), and is achieved without exerting any traction
anywhere on the substrate except near the contact line. In crawling driven
by self-advection, macroscopic motion arises from the self-advection (pw)
of polarized active units, provided that adhesion with the substrate is strong
enough to transmit momentum effectively. In sliding driven by capillarity,
the drop is pulled by a net capillary force (due to, e.g., an asymmetry
in contact angles f1 and f2), the driving mechanism is an external or a self-
generated gradient of surface tension or energy.

Fig. 2 Model of a 2D drop of active fluid moving at velocity V on a rigid
surface. The fluid motion inside the drop is governed by the incompressible
Stokes flow equations, with u the velocity and r the stress tensor, which
includes an active contribution ra = �ann where n is the director field. The
mechanical interaction with the substrate is modeled by a partial slip
boundary condition (cu is the slip length, Z is the viscosity) and a free surface
boundary condition is applied at the interface (g is the surface tension
coefficient and k is the curvature). The drop shape is described by the height
function h(x) on the domain x A [�L/2,L/2] where L is the drop width.
Contact angles f1 and f2 are prescribed on each side of the drop.
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unknown). In the co-moving frame of reference, the flux
through a cross section must vanish. This reads

ðh
0

ux þ wnx � Vð Þdz ¼ 0 (1a)

where u is the fluid velocity inside the drop (with =�u = 0) and
wn describes the additional transport due to the self-advection
at speed w of active units whose orientations are characterised
by a local orientation n (a unit vector).

The height function, defined on the domain x A [�L/2,L/2],
must satisfy eqn (1a) together with four boundary conditions at
the contact lines:

h �L
2

� �
¼ 0; h

L

2

� �
¼ 0;

h0 �L
2

� �
¼ f1; h0

L

2

� �
¼ �f2;

(1b)

where f1,2 are the contact angles on each side of the drop. The
drop velocity V enters as a constant which must be determined
as part of the solution. The drop width L is also unknown and is
determined by the volume constraint

ðL=2
�L=2

h dx ¼ O (1c)

where O is the (prescribed) drop volume. To close the problem
described by eqn (1a)–(1c), one must now determine an explicit
expression of the integral on the left-hand-side of eqn (1a) in
terms of h.

2.2 Self-advection of active units

The self-advection velocity wn in eqn (1a) accounts for the
ability of polarized active components, such as motile bacteria
or cytoskeletal filaments undergoing polymerization and
treadmilling, to propel themselves along their own tangent.
Such self-advection is confined close to the substrate, and to
facilitate comparison with prior work we assume the same
following functional form as in ref. 13:

w ¼ w0 exp �
z

‘w

� �
(2)

where w0 is a characteristic self-advection speed and cw is the
characteristic height over which the self-advection term decays
in the direction normal to the substrate.

2.3 Hydrodynamics of an active liquid

The equations of motion for an active liquid are well-
established.19,20,22,23 Inside the drop, the velocity field is
solution of the momentum conservation equation (neglecting
inertia, see Appendix B):

qjsij = 0 (3a)

where sij is the stress tensor

sij = �pdij + Z(qjui + qiuj) + sn
ij + sa

ij (3b)

and p is the pressure, Z is the viscosity, sa
ij is the contribution to the

stress arising from activity, and sn
ij is the contribution to the stress

arising from its nematic elasticity.51 The active stress reads20

sa
ij = �aninj (3c)

and is due to the forces exerted by the active units on the surround-
ing fluid. It can be derived from modeling active units as force
dipoles52 and subsequent coarse-graining. The magnitude of a is
proportional to the strength of the force pair and the density of units,
and the sign of a depends on whether the induced flow is extensile
(a 4 0) or contractile (a o 0). For a = 0, one recovers the standard
momentum balance for passive nematic liquid crystals. Since thin
films and drops of passive nematics have been studied extensively
(e.g. ref. 34–39), and since we are chiefly concerned here by aa 0, we
will first work in a regime where nematic stresses sn

ij can be neglected
(see Appendix B). They will be included later on in Appendix E.

At the solid/liquid interface we use a partial slip boundary
condition:

ux ¼
‘usxz
Z

at z ¼ 0 (4a)

where cu is a slip length (no-slip is obtained for cu = 0). At the
gas/liquid interface we use a free surface boundary condition:

r�m = gkm at z = h (4b)

where m is the unit outward vector normal to the free surface, g is
the uniform surface tension, and k =�=�m is the signed curvature.

The director n = (cos y,sin y), which describes the coarse-
grained orientation of the active units, is determined by
minimizing the free energy of a nematic liquid crystal in the
strong elastic limit:51

r2y = 0. (5)

Hence the effect of the director on the flow is taken into
account, but the back-coupling of the flow on the director is
negligible in this regime (see Appendix B).

As for boundary conditions, we assume strong anchoring
(fixed angle relative to the surface orientation) at both the
substrate and the free surface. Restricting to situations where
anchoring is either parallel or normal to the surfaces, and
remarking that a rotation of n by p/2 is equivalent to a change
of sign of a, we assume without loss of generality that the
director is anchored parallel to the substrate:

y = 0 at z = 0. (6a)

At the free surface, we assume that the anchoring angle with
respect to the surface tangent is op/2 (oAZ), which reads

y ¼ o
p
2
þ arctan h0ð Þ at z ¼ h: (6b)

2.4 Force and traction on the drop

Before going further it is useful to write down, without any
simplifying assumptions, the force balance for a drop on a
substrate. It reads (as shown in Appendix C)

Ffriction + Fcapillary = 0 (7a)
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with

Fcapillary = g(cosf2 � cosf1) (7b)

Ffriction ¼
ð
substrate

�sxz z¼0j dx (7c)

where Fcapillary is a driving force due to an imbalance in surface
energies (with f1 and f2 the contact angles on each side of the
drop), and Ffriction is the opposing force (of frictional nature)
exerted by substrate on the drop. If the f1 a f2, |Fcapillary| 4 0:
the drop is pulled by the net capillary force, and its velocity is
determined by the balance with friction (leading to capillarity-
driven sliding). If the contact angles are the same, Fcapillary =
Ffriction = 0: while a passive drop would necessarily remain
static, this is not the case in the presence of activity (leading
to tractionless tank-treading or crawling).

Besides, the mechanical interaction of the drop with the
substrate can be characterized by the spatial distribution of the
traction, the latter being defined as the local force per unit area
exerted by the substrate on the drop. The tangential component
of the traction, denoted ssubstrate/drop, is

ssubstrate/drop = ex�r�(�ez)|z=0 = �sxz|z=0 (8)

(in Section 3 we report instead sdrop/substrate = �ssubstrate/drop as
this is what one would measure experimentally).

From eqn (7) one can remark that, for Fcapillary = 0, we
necessarily have

ð
substrate

ssubstrate=dropdx ¼ 0 (9)

but ssubstrate/drop does not have to be identically zero. In other
words, autonomous propulsion driven by active processes is
necessarily force-free (in the sense that Fcapillary = Ffriction = 0)
but is not, in general, traction-free (sdrop/substrate is not zero
everywhere).

2.5 Lubrication approximation

We consider a geometry where the drop characteristic height
H is much smaller than its characteristic width L. We introduce
a small parameter e = H/L { 1 and work in the framework
of lubrication theory.32,33 Following the usual procedure (e.g.,
ref. 14, 36, 37 and 39–42), we rescale the coordinates and
variables as follows: t̃ = (tU)/L, x̃ = x/L, z̃ = z/(eL), h̃ = h/(eL),
~‘u;w ¼ ‘u;w

�
ðeLÞ, ũx = ux/U, ũz = uz/(eU), p̃ = (pe2L)/(ZU), ~sij =

(sijL)/(ZU) where U is a characteristic velocity scale in the
x-direction for the internal flow.

We introduce several dimensionless groups that reflect the
physics at play: C ¼ g=ðZUÞ is an inverse capillary number which
compares surface tension to viscous stresses, A ¼ ðaLÞ=ðZUÞ is
the ratio of active stresses to viscous ones, and W ¼ w0=U

controls the strength of self-advection compared to the internal
fluid flow.

At leading order in e, eqn (5) reduces to qz̃
2y = 0. Integrating

twice and using the anchoring conditions [eqn (6)], we find the

expression of the orientation field:

y ¼ m
op
2
þ e~h0

� �~z
~h

(10)

where o is effectively a winding number which measures the
number of quarter-turns of the director across the drop height,
and where

m ¼ h2

h2 þ ‘y2
(11)

is an ad hoc regularizing function, borrowed from ref. 36 and
37, and introduced to alleviate the conflict of strong anchoring
conditions for h - 0. Here cy is a characteristic small length
scale such that for h c cy, one retrieves the strong anchoring
limit (m = 1) and for h { cy, the anchoring constraint is relaxed
(m = 0).

Then, we have to distinguish between two situations:
1. o a 0 implies y = O(1), therefore no rescaling is needed

(~y = y) and at leading order the director is not coupled to the
drop shape;

2. o = 0, the director remains aligned with the bounding
surfaces (deviations from the aligned state are due to deforma-
tions of the free interface), y = O(e) so we rescale the director
orientation as ~y = y/e.

The expression of the (rescaled) director orientation is, at
leading order in e,

~y ¼
mop~z

.
2~h
� �

if oa0;

m~h0~z
.

~h if o ¼ 0:

8><
>: (12)

The derivation of the thin drop equation then proceeds as
follows. The z-component of the Stokes flow equation [eqn (3a)]
gives, at leading order in e, qz̃p̃ = 0, and using the normal
component of the free surface boundary condition [eqn (4b)]
we find

~p ¼ �Ce3 ~h00 for any o: (13)

The x-component of eqn (3a) gives, at leading order, qz̃~sxz = qx̃p̃.
This can be integrated once in z̃, and using the tangential
component of eqn (4b) we find the expression of the shear
stress:

~sxz ¼
�Ce3 ~h000 ~z� ~h

� �
if oa0;

�Ce3 ~h000 ~z� ~h
� �

�Ae2 ~h0 if o ¼ 0:

8><
>: (14)

Substituting the definition of ~sxz [eqn (3b)] into eqn (14) and
integrating once in z̃ with the partial slip boundary condition
[eqn (4a)] yields the parallel component of the fluid velocity:

ũx = ũc
x + ũa

x (15a)

with ũc
x the capillary flow

~ucx ¼ �Ce3
~z2

2
� ~zþ ~‘u
� �

~h

� �
~h000 (15b)
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and ũa
x the active flow

~uax ¼
Aeð1� cos 2~yÞ

2pom
~h if oa0;

Ae2 m~z2

2
� ~zþ ~‘u
� �

~h

� �~h0

~h
if o ¼ 0:

8>>>><
>>>>:

(15c)

Averaging the flow over the drop height we find

1

~h

ð ~h

0

~ucx d~z ¼ Ce3
~h

3
þ ~‘u

 !
~h~h000 (16a)

and

1

~h

ð ~h

0

~uax d~z ¼

Ae 1

2pom
~h if oa0;

�Ae2 ð3�mÞ~h
6

þ ~‘u

 !
~h0 if o ¼ 0:

8>>>><
>>>>:

(16b)

Using the expression of w given by eqn (2) we can also write the
mean flow due to self-advection

1

~h

ð ~h

0

~w~nx d~z ¼

not considered if oa0;

W~‘w
1� exp �~h

.
~‘w

� �h i
~h

if o ¼ 0:

8>><
>>: (16c)

Eqn (16) closes eqn (1a) which, in rescaled variables, can be
written as

~V ¼ 1

~h

ð ~h

0

~ucx þ ~uax þ ~w~nx
� �

d~z (17)

Note that we must have C � e�3 such that surface tension
enters at leading order,A � e�1 for oa 0 andA � e�2 for o = 0
such that active stresses play a role at leading order, andW � 1

to have the effect of self-advection at leading order.

2.6 Thin drop equation

To summarize, the steady-state shape h of a thin active drop
moving at constant (unknown and possibly zero) velocity V along
the substrate is the solution of a third-order nonlinear ODE. The
form of this ODE depends on the winding number o, defined as
the number of quarter-turns of the director across the drop
height imposed by the anchoring boundary conditions.

Introducing appropriate nondimensionalization and rescaling
(denoted by a tilde), such that all rescaled quantities are O(1),
and defining

~V ¼ ZV
ge3
; (18)

~A ¼

aL
2poge2

if oa0;

aL
ge

if o ¼ 0;

8>>><
>>>:

(19)

~W ¼ Zw0

ge3
(20)

we can write the problem as

~h

3
þ ~‘u

 !
~h~h000 þ ~A~f að~hÞ þ ~W ~f wð~hÞ ¼ ~V

~f að~hÞ ¼

~h

m
if oa0;

� ð3�mÞ~h
6

þ ~‘u

 !
~h0 if o ¼ 0;

8>>>><
>>>>:

~f wð~hÞ ¼
not considered if oa0;

~‘w
~h

1� exp �~h
.

~‘w

� �h i
if o ¼ 0;

8><
>:

(21a)

where ~V is the dimensionless rescaled drop velocity, to be
determined as part of the solution, and m is a regularizing
function, defined by eqn (11), that relaxes the strong anchoring
boundary conditions for h - 0. This ODE is supplemented by
four boundary conditions

~h �
~L

2

� �
¼ 0; ~h

~L

2

� �
¼ 0;

~h0 �
~L

2

� �
¼ ~f1;

~h0
~L

2

� �
¼ �~f2;

(21b)

where ~f1,2 are the contact angles on each side of the drop, and
where the drop width L̃ is determined from

ð ~L=2

� ~L=2

~h d~x ¼ ~O (21c)

where ~O is a prescribed drop volume.
To characterize the local mechanical interaction of the drop

with the rigid surface, we also introduce

~sdrop=substrate ¼
L

ge3
sxzjz¼0 (22)

which is the (rescaled dimensionless) local traction exerted by
the drop on the surface in the x-direction. It can be expressed in
terms of the local drop shape and reads:

~sdrop=substrate ¼
~h~h000 if oa0;

~h~h000 � ~A~h0 if o ¼ 0:

8<
: (23)

Finally the flow inside the drop is, at leading order, parallel
to the wall. Redefining

~ux ¼
Zux
ge3

(24)
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the rescaled fluid velocity is given as a function of the drop
shape by

~ux ¼
~ucx þ ~A

~h

m
1� cos

op~z
~h

� �	 

if oa0;

~ucx þ ~A m~z2

2
� ~zþ ~‘u
� �

~h

� �~h0

~h
if o ¼ 0;

8>>>><
>>>>:

(25)

where ũc
x is the usual capillary parabolic flow

~ucx ¼ �
~z2

2
� ~zþ ~‘u
� �

~h

� �
~h000: (26)

2.7 Numerical methods and parameters

Stable solutions to eqn (21a)–(21c) and presented in Section 3
were obtained numerically as steady solutions to the time-
dependent problem (presented in Appendix A and given by
eqn (40)) in the thin drop approximation.

Our time integration algorithm is based on a Crank–Nicolson
scheme with adaptive time-stepping. For space discretization, we
use second-order finite difference schemes on a uniform grid. At
each time step, the resulting nonlinear system of equations was
solved using the Matlab nonlinear system solver. The solution
was advanced in time until the steady-state was reached, corres-
ponding to the sought-after travelling-wave solution.

Numerical parameters used in the simulations are summar-
ized in Table 1. The volume (surface area) of the drop was kept
constant across all the simulations and set to ~O = 1.

3 Results

Three distinct driving mechanisms (active stresses, self-
advection, and capillary forces due to different contact angles)
are embedded in eqn (21a)–(21c), leading to the three modes of
motion summarized in Table 2 and that we will analyze
separately in the following.

3.1 Self-propulsion driven by active stresses

We consider the motion of a drop arising solely from active

stresses ( ~W ¼ 0, ~f1 = ~f2). We found that if o = 0, the drop is
static (we comment on this at the end of this subsection).

Therefore we assume o a 0, that is, we enforce a winding of the
director through anchoring conditions at the bounding surfaces
[Fig. 3(a)]. The governing ODE for the drop shape reduces to

~h

3
þ ~‘u

 !
~h~h000 þ ~A

~h

m
¼ ~V: (27)

One can readily see that the drop shape and velocity are controlled

by the dimensionless parameter ~A ¼ ðaLÞ
�

2poge2
� �

, where a
and o can be of either sign.

Since ~Aða;oÞ ¼ ~Að�a;�oÞ, changing the direction in which
the director winds (from counter-clockwise to clockwise) is
equivalent to changing the sign of activity (from extensile to

contractile). It is also interesting to note that if ~hð~xÞ;V
n o

is a

solution for ~A then ~hð�~xÞ;� ~V
n o

is a solution for � ~A: reversing

the sign of ~A simply reverses the direction of motion. Therefore

in the following we will only consider ~A � 0.
The evolution of the drop shape and velocity with ~A is

shown in Fig. 3(b and c). Overall, the drop becomes thinner
and faster as activity increases. Solutions are however qualita-

tively different at low and high ~A.
In the limit of small ~A, the drop shape is close to a parabola

(the equilibrium shape for a passive drop), and its velocity can

be computed analytically at linear order in ~A (Appendix D.1):

~V ¼ ~A
~f ~L0

4

ffiffiffi
~b

p
� ð~b� 1Þarctanh 1

. ffiffiffi
~b

p� �
arctanh 1

. ffiffiffi
~b

p� � (28)

where ~b ¼ 1þ 12~‘u= ~L0
~f

� �
and ~L0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
6~O=~f

q
. The first

correction for the drop width is quadratic, so at linear order ~L ¼

~L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6~O=~f

q
and the mean drop height is H̃ = H̃0 = ~O/L̃0 where ~O is

the drop volume (kept constant across simulations). Comparison to
the numerical solution (dash-dotted lines in Fig. 3(c)) (left panels) is

excellent and shows that this solution remains valid up to ~A � 0:1.
For ~A � 1, the drop is locally flat (the numerical value of this

threshold depends on ~‘u and f, so the fact it is unity here is
coincidental). The extent of the flat region rapidly increases

with ~A: analysis of numerical data indicates that, for ~A � 1, the

fraction of the drop which is not flat first decreases as ~A�1. For
~A �4 10, more than 90% of the drop is bounded by a flat free

Table 1 Numerical parameters used in the simulations (unless mentioned
otherwise): number of grid points (Ngrid), drop volume ( ~O), slip length ~‘u

� �
,

characteristic thickness for strong anchoring relaxation (~‘y, set equal to ~‘u),

and contact angles ( ~f1 and ~f2)

Self-propulsion driven by

Active stresses Self-advection Capillarity

Ngrid 800 400 200
~O 1 1 1
~‘u 0.05 0.01 0.05
~‘y 0.05 0.01 0.05
~f1 1 1 10
~f2 1 1 5

Table 2 The three basic modes of motion: (i) tractionless tank-treading driven
by active stresses / ~A

� �
and controlled by the winding number o (if o = 0 the

drop is static), (ii) crawling driven by self-advection / ~W
� �

, (iii) sliding driven by

a capillary force Fcapillary = g(cosf2� cosf1) and possibly modulated by activity

Self-propulsion driven by

Active stresses Self-advection Capillarity

o a0 0 0
~A a0 0 0 and a0
~W 0 a0 0
f2 � f1 0 0 a0
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surface [Fig. 3(c), top right panel]. In this regime the drop

velocity is exactly given by ~V ¼ ~A~hflat where h̃flat is the height of
the flat region. In practice, the drop velocity is well

approximated by [Fig. 3(c), bottom panels]

~V ¼ ~A ~H (29)

Fig. 3 Self-propulsion driven by active stresses: the motion of a drop endowed with active stresses is controlled by the global topology of the director field
and can be achieved without exerting traction locally on the surface. (a) Model of a thin active drop with active stresses and a winded director. The drop shape
and velocity are controlled by ~A ¼ ðaLÞ

�
2poge2
� �

where o is the winding number. (b) Numerical profiles of the drop shape and tangential traction exerted on

the substrate. (c) Effect of ~A on the drop shape and velocity, H̃ is the mean height and the analytical solution for ~V is given by eqn (28). (d) Effect of slip on the

drop shape and velocity ð ~A ¼ 1Þ. (e) Sketch of a tractionless flat drop moving at velocity V = (aH)/(2poZ): director and velocity fields in the co-moving frame of
reference (solution for o = 2 is also valid for a drop confined between two walls). Colored symbols in (b–d) mark corresponding state points across panels.
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with H̃ the mean drop height: the error on ~V is less than 5% for
~A � 1 and goes to zero as ~A !1. The mechanical interaction

with the wall (modeled through the slip length cu) does not appear
in eqn (29), but it enters indirectly through the dependence of H̃ on
~‘u (Fig. 3d): more slip yields thicker (and hence faster) droplets.

At high ~A, the drop is flat everywhere except near the contact
lines, and the local tangential traction ~sdrop/substrate induced by
this drop on the substrate is identically zero almost everywhere
(Fig. 3b, right panel). This is remarkable: while autonomous
propulsion driven by active processes is necessarily force-free, it
is not, in general, tractionless (see Section 2.4). Strictly speaking
~sdrop/substrate = 0 where h0 0 0 = 0 (from eqn (23)), that is, everywhere
except at the drop edges. Integrating ~sdrop/substrate over an edge

yields a force of magnitude ~f2/2 and directed inward: as seen
from the substrate, the drop effectively acts as a contractile force

dipole, independent of activity and due to finite contact angle ~f.
A sketch of the tractionless motion of a flat drop is provided in

Fig. 3(e), where we also illustrate the role played by the winding
number o. The winding of the director (green rods) induces an
active stress in the liquid which must be balanced by the viscous
stress such that the total shear stress vanishes. The internal fluid
flow thereby generated is sinusoidal, rather than parabolic in other
modes of motion (blue arrows, plotted in the co-moving frame of
reference). Going back to the original dimensional variables, the
fluid velocity reads, in the laboratory frame of reference,

ux ¼ V 1� cos
opz
H

� �h i
(30)

where H is the drop height and where

V ¼ aH
2poZ

: (31)

The net flow is not zero and causes the drop to move at a velocity V
in a tank-treading fashion while exerting no tangential traction on
the surface. The winding number controls the number of fluid
circulation cells, which is exactly equal to |o|. The drop speed is
maximum for |o| = 1, which corresponds to antagonist anchoring
conditions for the director at the wall and at the free surface.

The case |o| = 2, while less favored energetically, generates a flow
which is symmetric with respect to the drop midplane. In particular,
the solution has zero fluid velocity and zero shear stress at both
boundaries, therefore it also solves the problem of a drop squeezing
through a narrow channel [right panel in Fig. 3(e)]. In this configu-
ration the drop motion is completely independent of the amount of
slip at the walls, since the drop height is geometrically constrained.
This solution is reminiscent of contraction-based amoeboid motility
such as exhibited by leukocyte and human breast cancer cells
squeezing through complex 3D extracellular geometries53,54 and by
confined cells migrating in microchannels.2,55

This geometrically constrained setup is perhaps the easiest to
control experimentally: one can imagine confining a drop of bacter-
ial suspension56,57 or of microtubule–kinesin mixture15 between two
surfaces, one used for imaging the traction maps58–60 and the other
designed to ensure appropriate anchoring (through, e.g., manipula-
tion of the surface chemistry or architecture61–65). Traction maps
would show a zero traction on the channel walls everywhere except

at the drop edges, where the traction magnitude and sign would
only depend on the wettability of the walls.

It is important to emphasize that tractionless motion controlled
by oa 0 is not related to the spontaneous flow transition in active
nematics films.66 Our analysis describes a drop of active nematic in
the strong elastic limit, that is, in a regime where K � Oð1Þ (see
Appendix B), where K ¼ ðGKÞ=ðULÞ with 1/G the rotational visc-
osity and K the nonequilibrium analog of an elastic constant. In
this limit, there is no internal flow (and hence no drop motion) for
o = 0. It is well-known that for o = 0, internal flows can occur
spontaneously in thin films of active nematics beyond a critical
height due to a splay (or bend) instability.66 Within our framework
and with our notations, this instability requires K � OðeÞ, in other
words, it requires a drop thicker than the one we consider here.
Whether the spontaneous flow transition for active films66 results
in a ‘‘spontaneous tractionless motion transition’’ for active drops
remains an open question. To answer it, one must first integrate
the full dynamic equation for the director [eqn (41)] rather than its
strong elastic limit [eqn (5)]. This problem, significantly more
intricate, is left to future work.

In any case it is of fundamental importance to note that this
kind of motion is only possible for active matter driven in the
bulk and cannot happen for propulsion due to driving at or near
boundaries (the other two modes considered in this paper).

3.2 Self-propulsion driven by self-advection

Crawling is a mode of cell motility well-characterized experi-
mentally5,6,67 and captured by various physical models.7–9,13,14,28

Crawling motility is usually understood as follows: polymeriza-
tion of actin filaments in a thin protrusion at the leading edge
generates a pushing force against the cell membrane, which,
when combined with anchoring to the substrate via focal adhe-
sions, causes the cell to move forward.

A simple way to account for this mechanism, illustrated in
Fig. 4(a), consists in adding a self-advection term to the mass
conservation equation (which describes the net polymerization
of filaments in a given direction), while adhesion is controlled by
the amount of slip at the substrate (here through the slip length
cu). To ease comparison with prior work13 we chose an advection
velocity which is maximum at the substrate (denoted w0) and
decays exponentially over a characteristic length cw in the
direction normal to the substrate, as described in Section 2.2.

We emphasize that what generates motion here is a flux
of matter: crawling can be obtained solely from self-advection,

in the absence of active stresses ð ~A ¼ 0Þ or mismatch in the

contact angles ( ~f1 = ~f2). The governing equation then
reduces to

~h

3
þ ~‘u

 !
~h~h000 þ ~W

~‘w
~h

1� exp �~h
.

~‘w

� �h i
¼ ~V: (32)

Besides ~‘w (which is kept constant here, ~‘w ¼ 0:1) and ~‘u (set

here to ~‘u ¼ 0:01), the drop shape and velocity are controlled by

a single dimensionless group: ~W ¼ Zw0ð Þ
�

ge3
� �

.
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Numerical solutions of eqn (32), computed for a range of ~W,
are presented in Fig. 4(b and c). They reveal the existence of a

critical value of ~W, denoted ~Wc, above which a protrusion

develops at the front. The numerical value of ~Wc increases

linearly with ~‘u [Fig. 4(d), bottom panel], and the transition is

sharper for larger ~‘u, in agreement with prior work.13

For ~Wo ~Wc, the drop profile is nearly parabolic and it is
possible to derive an analytical expression of the drop velocity

Fig. 4 Self-propulsion driven by self-advection: a drop with directed self-advection of active units (due to e.g. polymerization toward the front) develops
a frontal protrusion and crawls more effectively as slip is reduced. (a) Model of a thin active drop with self-advection close to the substrate. The effect of
self-advection on the drop shape and velocity is controlled by ~W ¼ w0Zð Þ

�
ge3
� �

where w0 is the characteristic self-advection speed of the active units.

The height over which the strength of self-advection decays was kept constant across simulations ~‘w ¼ 0:1
� �

. (b) Numerical profiles of the drop shape

and tangential traction exerted on the substrate. (c) Effect of ~W on the drop shape and velocity, the analytical solution is given by eqn (33). (d) Effect of slip

on the drop shape and velocity (top and middle panels, ~W ¼ 0:25), and on the transition between non-protruded and protruded drops (bottom panel).
Colored symbols in (b–d) mark corresponding state points across panels.
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at linear order in ~W (Appendix D.2):

~V ¼ ~W 2~‘w
~L0

~f

1

ð~b� 1Þarctanh 1
. ffiffiffi

~b
p� �

� 2
ffiffiffi
~b

p
~d 2F2 f1; 1g;f3=2;2g;� ~d

� �n

þ 2 eð
~b�1Þ ~d � 1

h i
ln 1þ 2 cot arcsin 1

. ffiffiffi
~b

p� �.
2

� �
� 1

h i�1� �

� eð
~b�1Þ ~d 2arctanh

ffiffiffi
~b

p� �
þ ip 1þ 4T

ffiffiffiffiffiffiffiffi
2~b ~d

p
; i
. ffiffiffi

~b
p� �h ih io

(33)

with i2 = �1, ~b ¼ 1þ 12~‘u= ~L0
~f

� �
, d ¼ ~f ~L0

� �
= 4~‘w
� �

, and where

T(w,c) is Owen’s T function68 and 2F2({a1,a2},{b1,b2},z) is the
generalized hypergeometric function69 (these functions are
implemented in Mathematica). The first correction to the

drop width is quadratic, so at linear order ~L ¼ ~L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6~O=~f

q
.

Comparison to the numerical solution is shown in Fig. 4(c)

(left panels): agreement is excellent nearly up to ~Wc.
For ~W4 ~Wc, the drop has a frontal protrusion of thickness

� ~‘w which grows in length upon increasing ~W [Fig. 4(c), right

panels]. The drop velocity magnitude is of the order of ~W, but

its growth with ~W is faster than linear. Increasing slip reduces
the drop velocity [Fig. 4(d), middle panel]: as expected crawling
is most effective when the substrate provides strong adhesion.

We finally emphasize that these results, here obtained under
the thin drop approximation, are in very good agreement with
prior full numerical simulations13 (Fig. 1 and Fig. S1 (ESI) therein).

3.3 Self-propulsion driven by capillarity and modulated by
activity

We consider an asymmetric drop moving under the action of a
net capillary force (f1 a f2 implies |Fcapillary| 4 0), as depicted
in Fig. 5(a). The director field is chosen to be nearly aligned
(o = 0), as larger distortions would essentially lead back to
Section 3.1 (motion driven by active stresses and controlled by
the winding of the director). Here we ask: can activity facilitate
(or impede) the drop motion, and does the sign of activity
(extensile or contractile) matter? The answer: Yes, and yes.

A minimal mathematical description of capillarity-driven

sliding is obtained by setting ~W ¼ 0 and o = 0 in eqn (21a),
which yields

~h

3
þ ~‘u

 !
~h~h000 � ~A ð3�mÞ~h

6
þ ~‘u

 !
~h0 ¼ ~V (34a)

with different contact angles imposed at the boundaries (as
may arise, from, e.g., a gradient of surface energy):

~f1 ¼ ~fþ ~j
2
; ~f2 ¼ ~f� ~j

2
(34b)

with ~j = ~f1 � ~f2 the contact angle difference, as depicted in
Fig. 5(a). The effect of activity on the drop shape and velocity is

controlled by the dimensionless parameter ~A ¼ ðaLÞ=ðgeÞ. The

sign of ~A depends on whether active units, modelled as force
dipoles,52 induce an extensile flow (a 4 0, e.g. certain bacteria)
or a contractile flow (a o 0, e.g. the actin–myosin complex).

Numerical solutions to eqn (34) for various ~A are presented
in Fig. 5(b and c). With respect to the passive case, the drop
base is narrower (wider) with contractile (extensile) activity
[Fig. 5(b and c)], as is the case for static symmetric drops.41

At high � ~A (high contractility), the drop breaks up; this
phenomenon is outside the scope of this paper and its analysis
is left to future work. Activity also influences the drop speed:
contractile (extensile) drops are faster (slower) than their pas-
sive counterpart [Fig. 5(c)] (note that with normal anchoring,
the extensile drop would be narrower and faster). Increasing
slip results in greater drop velocities, as for a passive drop since
friction hinders sliding motion [Fig. 5(d)].

The dependence of ~V and L̃ on ~A is approximately linear

over a rather large range of ~A, and can be computed exactly
from a perturbation analysis in the limit of small | ~j| and small

j ~Aj. We find (Appendix D.3) that the drop width is

~L ¼ ~L0 þ ~A ~La þO ~A2; ~j2
� �

(35a)

with (O is the drop volume)

~L0 ¼

ffiffiffiffiffiffi
6~O
~f

s
; ~La ¼

~O

2~f2
(35b)

and the drop velocity is

~V ¼ ~j ~Vj;L0
þ ~A ~Vj;La þ ~Vj;a

� �h i
þO ~A2; ~j2

� �
(36a)

where the coefficients are given below:

~Vj;L0
¼

~b0~f

6 ln ~bp=m
� � (36b)

~Vj;La ¼ �
~f2 ~La

~b0 ~L0 þ 6~‘u ln ~bp=m
� �h i

6 ~L0
2~b0 ln ~bp=m

� �h i2 (36c)

~Vj;a ¼
~L0

~bp=m

24~b0 ln ~bp=m
� �h i2

� þ 2~b0
2 � ~bm

2
� �

dilog ~bp=m
� �n

� 2~b0
2 þ ~bm

2
� �

dilog 2~f=~bp
� �

� ~b0
2 ln ~bp

� �h i2
� ln ~bm

� �h i2� 

þ 2~b0
2 þ ~bm

2
h i

lnð2~fÞ � ~bm
2 1þ ln ~bp

� �h in o
ln ~bp=m
� �

þ p2

6
2~b0

2 þ ~bm
2

� �
� 2

~b0~f
~bp=m

)

(36d)

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
7 

Fe
br

ua
ry

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
B

ri
st

ol
 o

n 
6/

16
/2

02
0 

12
:5

8:
59

 P
M

. 
View Article Online

https://doi.org/10.1039/d0sm00070a


3116 | Soft Matter, 2020, 16, 3106--3124 This journal is©The Royal Society of Chemistry 2020

with ~b0 ¼ ~f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12~‘u

� �
= ~L0

~f
� �r

, ~bp = ~b0 + ~f, ~bm = ~b0 � ~f,

~bp/m = ~bp/~bm and with dilogðyÞ ¼
ðy
1

lnðtÞ
1� t

dt. Comparison with the

numerical solution is excellent [bottom panels in Fig. 5(c)].

Embedding an active suspension into an otherwise self-
propelled passive droplet, driven by a gradient of surface energy
or surface tension,47–50 could be a rather straightforward way
to realize experimentally this activity-modulated, capillarity-
driven self-propulsion.

Fig. 5 Self-propulsion driven by capillarity and modulated by activity: the motion of an asymmetric drop is enhanced by contractility and hindered by
extensility. (a) Model of a thin active drop driven by the capillary force that results from the difference in contact angles (here ~f1 = 10 and ~f2 = 5) that may arise
from, e.g., a gradient of surface energy. Parallel anchoring of the director is prescribed at both bounding surfaces. The effect of activity on the drop shape and
velocity is controlled by ~A ¼ ðaLÞ=ðgeÞ, whose sign depends on whether the active stress is extensile (a4 0) or contractile (ao 0). (b) Numerical profiles of the

drop shape and tangential traction exerted on the substrate. (c) Effect of ~A on the drop width and velocity with respect to the passive case, analytical
expressions are given by eqn (35) and (36). (d) Effect of slip on the drop velocity. Colored symbols in (b–d) mark corresponding state points across panels.
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4 Conclusions

To summarize, we have obtained a generic and unified descrip-
tion of a thin 2D drop of active liquid moving on a solid
substrate that consists of a single ODE. We have analyzed,
using a combination of numerical simulations and asymptotic
analysis, the autonomous propulsion of this drop induced by
three possible driving sources (summarized in Fig. 1): active
stresses (Fig. 3), active self-advection (Fig. 4), and a (possibly
self-generated) capillary force (Fig. 5).

Motion driven by active stresses does not require a shape
asymmetry, is efficient even in the presence of slip and allows
self-propulsion without the need to exert traction anywhere on
the surface, giving rise to ‘‘tractionless tank treading’’. This new
mode of motion, driven in the bulk rather than at the bound-
aries, is topologically protected and is particularly suited for
moving rapidly through tiny pores. Therefore it provides a robust
physical mechanism for efficient cell migration in tissues.

In contrast, motion driven by the self-advection of polarized
active units at the substrate, known as crawling, is characterized by
a strong shape anisotropy and is most efficient in the absence of
slip. Therefore this mode of self-propulsion is particularly suited
for moving on 2D surfaces which provides strong anchoring
points. A prominent example of crawling is mesenchymal migra-
tion, a mode of cell motility characterized by strong cell–substrate
adhesions, with self-advection provided by actin polymerization in
a leading edge protrusion.5,67

Finally the third mode motion is, unlike the other two, not
driven by active processes but by a net capillary force, as can be
induced by (external or self-generated) thermal or chemical
gradients. By coupling this driving with internal activity, one
can further tune the drop velocity and create droplets faster
than their passive counterparts.

Our 2D model is expected to be valid for any 3D drop where
variations in the additional spatial dimension are much slower
than in the other two. Beyond that, while extending the thin
drop formulation to 3D is rather straightforward, solutions may
be far more complex (for example, based on the form of
eqn (27), we expect a fingering instability for a 3D drop driven
by active stresses).

Our present attempt to provide a generic classification of self-
propulsion mechanisms, one of them being the extensively
studied treadmilling-driven crawling, led us to introduce an
entirely new class (tractionless tank-treading driven by bulk
active stresses) and to give a new twist to an old mechanism
(self-propulsion driven by gradients): we hope those will trigger
further theoretical investigations and experimental realizations.

Conflicts of interest

There are no conflicts to declare.

Appendix A: unsteady height evolution

Consider the general (unsteady) case of a drop shape described
by a height function h*(x*,t) in the laboratory frame of

reference (denoted by a star). It is related to the flow at the
free surface by a kinematic boundary condition32,70

qth* + (ux + wnx)qx*h* � (uz + wnz) = 0 (37)

with u the fluid velocity and wn the self-advection at speed w of
active units with local orientations n = (cos y,sin y). At the free
surface, the anchoring angle is y ¼ o

p
2
þ arctan @x	h

	ð Þ. It
follows that

nx@x	h
	 � nz ¼ � sin

op
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @x	h	ð Þ2

q
: (38)

Besides, using flow incompressibility and wall impermeability,
one can show that

ux@x	h
	 � uz ¼ @x	

ðh	
0

ux dz: (39)

Therefore the kinematic boundary condition eqn (37) can be
rewritten as

@th
	 þ @x	

ðh	
0

ux dz ¼ w h	ð Þ sin op
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @x	h	ð Þ2

q
(40)

In this paper we restrict to either w = 0 or o = 0, so the right-
hand-side of eqn (40) is zero.

Appendix B: regime of validity

The evolution of the director field in a nematic liquid crystal is
governed by

@tni + [(uj + wnj)qj]ni � Oijnj = dT
ij(lEjknk + GKr2nj) (41)

where dT
ij = dij � ninj is a transverse projection operator,

Eij = (qiuj + qjui)/2 and Oij = (qjui � qiuj)/2 are the strain-rate
and rotation-rate tensors, l is the flow alignment parameter,
1/G is the rotational viscosity and K is the nonequilibrium
analog of a Frank constant.

Momentum conservation reads, including inertial terms,

r(qt + ujqj)ui = qjsij (42)

where r is the mass density of the fluid and where sij is given by
eqn (3b) with sn

ij = �Kqinkqjnk.
In addition to e and f1,2, the dynamics of the drop is

controlled by seven dimensionless groups that can be con-
structed from those equations: l, W ¼ w0=U, K ¼ ðGKÞ=ðULÞ,
A ¼ ðaLÞ=ðZUÞ, C ¼ g=ðZUÞ, N ¼ K=ðZULÞ and R ¼ rUL=Z.
The equations we solve here, presented in Section 2, are
obtained when the dimensionless groups satisfy the conditions
summarized in Table 3. They describe a thin drop whose
dynamics is determined from the balance of active, viscous
and surface tension forces in a regime where inertia and
nematic stresses are negligible and where the director field is
not back-coupled to the flow.
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Appendix C: force balance on the drop

The sum of the forces exerted on the drop, denoted Ftotal,
satisfies Ftotal = 0 (as follows from integrating eqn (3) over the
drop) and is defined by

Ftotal = Fsubstrate/drop + Ffree surface/drop (43a)

with

Fsubstrate=drop ¼
ð
@Dsol=liq

r �m ds (43b)

F free surface=drop ¼
ð
@Dgas=liq

r �m ds (43c)

whereD is the domain occupied by the drop, @D is its boundary
(decomposed into solid/liquid and gas/liquid interfaces), and m
is the unit normal directed outward the boundary.

The x-component of the force exerted by the substrate on the
drop is

Fsubstrate=drop;x ¼
ð
@Dsol=liq

�sxzjz¼0dx

¼
ð
@Dsol=liq

�Z @zux þ @xuzð Þdx


 Ffriction

(44)

Since the active contribution sa
xz|z=0 vanishes for parallel or

normal anchoring of the director, Fsubstrate/drop,x is purely
frictional and we denote it Ffriction in the main text.

The force exerted by the free surface on the drop is, using
eqn (4b),

F free surface=drop ¼
ð
@Dgas=liq

gkm ds (45)

and in 2D we have

m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p �h0; 1ð Þ

k ¼ h00

1þ h02½ �3=2

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p
dx

(46)

It is straightforward to show that in the x-direction,

Ffree surface=drop;x ¼ g cosf2 � cosf1ð Þ


 Fcapillary

(47)

where f1 and f2 are the contact angles on each side of the drop.
Since Ffree surface/drop,x originates purely from surface tension, we
refer to it as Fcapillary in the main text.

Appendix D: perturbation analysis

In this section we will derive, using a perturbation analysis, the

first effect of activity ~A or of self-advection ~W on the drop shape

h̃, velocity ~V, and width L̃.
To facilitate the derivation we first rescale the x-coordinates

by introducing the change of variable ỹ = ~xx̃ with ~x = 2/L̃, and we
set m = 1. The governing ODE for g̃(ỹ) = h̃(x̃) is then

~x3
~g

3
þ ~‘u

� �
~g~g000 þ ~A~f að~gÞ þ ~W ~f wð~gÞ ¼ ~V

~f að~gÞ ¼
~g if oa0;

�~x
~g

3
þ ~‘u

� �
~g0 if o ¼ 0;

8><
>:

~f wð~gÞ ¼
not considered if oa0;

~‘w
~g

1� exp �~g
�

~‘w
� �� �

if o ¼ 0;

8><
>:

(48a)

with boundary conditions

~gð�1Þ ¼ 0; ~x~g0ð�1Þ ¼ ~fþ ~j
2
; (48b)

where ~j = ~f1 � ~f2 is the difference between contact angles on
each side of the drop, and with the volume constraintð1

�1
~g d~x ¼ ~x~O: (48c)

In the following all quantities are scaled in the lubrication
framework and we drop the tilde in the remaining of this
section.

We start from the exact analytical solution, denoted by
subscript 0, for a symmetric passive drop (j ¼ 0, A ¼ 0,
W ¼ 0):

g0 = f(1 � y2)/(2x) (49a)

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6O=f

p
(49b)

V0 ¼ 0: (49c)

Table 3 Range of validity of our analysis in terms of the dimensionless
groups governing the drop dynamics

Self-propulsion driven by

Active stresses Self-advection Capillarity

o a 0 o = 0 o = 0

y = O(1) y = O(e) y = O(e)

W ¼ w0=U rO(e) =O(1) rO(e)
A ¼ ðaLÞ=ðZUÞ =O(e�1) rO(e�1) =O(e�2)
C ¼ g=ðZUÞ =O(e�3) =O(e�3) =O(e�3)
N ¼ K=ðZULÞ rO(e) rO(e�1) rO(e�1)
R ¼ rUL=Z rO(e�1) rO(e�1) rO(e�1)
K ¼ ðGKÞ=ðULÞ ZO(1) ZO(e�1) ZO(e�1)
l rO(1) rO(1) rO(1)
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We will then expand the solution to eqn (48) as a perturbation
power series of the relevant parameters for each mode of
motion:

g = g0 + dgd + O(d2) (50a)

L = L0 + dLd + O(d2) (50b)

V ¼ V0 þ dVd þO d2
� �

; (50c)

where d is the small parameter in which we expand.
As we shall see later on, substituting this expansion into the

governing ODE and matching terms at order d yield an ODE of
the form

gd
0 0 0 ðyÞ ¼ VdR1ðyÞ þ R2ðyÞ (51)

with boundary conditions

gd(�1) = 0 gd0(�1) = c

where c is a constant which depends on the mode of motion
considered.

Conveniently Vd and Ld can be computed without solving
eqn (51) by using a solvability condition in the spirit of the
approach presented in ref. 71. We introduce a test function t(y)
which satisfies t(�1) = 0. We can writeð1

�1
tgd

0 0 0
dy ¼ Vd

ð1
�1
tR1 dyþ

ð1
�1
tR2 dy (52)

The left-hand-side can be integrated by part three times to yieldð1
�1
tgd

0 0 0
dy ¼ �c t 0½ �1�1�

ð1
�1
t 000gd dy (53)

Choosing an adequate test function which satisfies t00 0 = 0, we
can determine Vd from

�c t 0½ �1�1 ¼ Vd
ð1
�1
tR1 dyþ

ð1
�1
tR2 dy: (54)

On the other hand, choosing a test function with t00 0 = d yields

�c t 0½ �1�1�d
ð1
�1
gd dy ¼ Vd

ð1
�1
tR1 dyþ

ð1
�1
tR2 dy (55)

From the volume constraint one has

d
ð1
�1
gd dy ¼ xO�

ð1
�1
g0 dy (56)

therefore we can determine x (and then L = 2/x) from

�c t 0½ �1�1 � xOþ
ð1
�1
g0 dy ¼ Vd

ð1
�1
tR1 dyþ

ð1
�1
tR2 dy (57)

D.1 Self-propulsion driven by active stresses

We consider here the case of motion solely driven by active
stresses (o a 0, j = 0, Aa0, W ¼ 0), so the ODE reduces to

x3
g

3
þ ‘u

� �
gg000 þ Ag ¼ V: (58)

We write the perturbation solution as

g ¼ g0 þAga þO A2
� �

(59a)

L ¼ L0 þALa þO A2
� �

(59b)

V ¼ V0 þAVa þO A2
� �

: (59c)

At linear order the correction is solution of

ga
0 0 0 ¼ Va � g0

x3
g0

3
þ ‘u

� �
g0

(60a)

with

ga(�1) = 0, ga0(�1) = 0, (60b)

and we find after integration

ga ¼
3

2fx2ðb� 1Þarctanh 1
� ffiffiffi

b
p� �

� c ð1þ yÞ2 lnð1þ yÞ � ð1� yÞ2 lnð1� yÞ � 22 ln 2
� �

y
� ��

�
ffiffiffi
b
p
þ y

� �2
ln

ffiffiffi
b
p
þ y

� �
�

ffiffiffi
b
p
� y

� �2
ln

ffiffiffi
b
p
� y

� �	 


þ
ffiffiffi
b
p
þ 1

� �2
ln

ffiffiffi
b
p
þ 1

� �
�

ffiffiffi
b
p
� 1

� �2
ln

ffiffiffi
b
p
� 1

� �	 

y


(61a)

La = 0 (61b)

Va ¼
f
2x

c

arctanh 1
� ffiffiffi

b
p� � (61c)

where b = 1 + 6cux/f and c ¼
ffiffiffi
b
p
� ðb� 1Þarctanh 1

� ffiffiffi
b
p� �

.

D.2 Self-propulsion driven by self-advection

We consider here the case of pure advective crawling (o = 0,
j = 0, A ¼ 0, Wa0), so the ODE reduces to

x3
g

3
þ ‘u

� �
gg000 þ W‘w

g
1� exp �g=‘wð Þ½ � ¼ V (62)

Writing the perturbative solution as

g ¼ g0 þWgw þO W2
� �

(63a)

L ¼ L0 þWLw þO W2
� �

(63b)

V ¼ V0 þWVw þO W2
� �

; (63c)

we have the following problem at linear order

gw
0 0 0 ¼

Vw �
‘w
g0

1� exp �g0=‘wð Þ½ �

x3
g0

3
þ ‘u

� �
g0

(64a)

with

gw(�1) = 0, gw
0(�1) = 0. (64b)
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The constant Vw can be determined from a solvability condi-
tion. Using the test function t = 1 � y2 we obtain

Vw ¼
x‘w
f

ffiffiffi
b
p

arctanh 1
� ffiffiffi

b
p� �I (65)

where I is the definite integral

I ¼
ð1
�1

1� exp �d 1� y2
� �� �� �

1� y2ð Þ b� y2ð Þ dy (66)

with b = 1 + 6cux/f and d = f/(2xcw). A series of manipulations
allowed us to obtain an explicit expression of I, which reads

I ¼ 1

ðb� 1Þ
ffiffiffi
b
p 2

ffiffiffi
b
p

d 2F2ðf1; 1g; f3=2; 2g;�dÞ
n

þ 2 eðb�1Þd � 1
h i

ln 1þ 2 cot arcsin 1
. ffiffiffi

b
p� �.

2
� �

� 1
h i�1� �

�eðb�1Þd 2 arctanh
ffiffiffi
b
p� �

þ ip 1þ 4T
ffiffiffiffiffiffiffiffi
2bd
p

; i
. ffiffiffi

b
p� �h ih io

(67)

where i2 = �1, where T(w,c) is Owen’s T function68 defined by

Tðw; cÞ ¼ 1

2p

ðc
0

exp �1
2
w2 1þ t2
� �	 


1þ t2
dt

and where 2F2({a1,a2},{b1,b2},z) is the generalized hypergeo-

metric function.69 The functions T
ffiffiffiffiffiffiffiffi
2bd
p

; i
� ffiffiffi

b
p� �

and

2F2({1,1},{3/2,2}, �d) can be evaluated in Mathematica using
OwenT[Sqrt[2*b*d],I/Sqrt[b]] and HypergeometricPFQ[{1,1},{3/
2,2},�d], respectively.

Finally a solvability condition can also be used to show that
Lw = 0, therefore one can substitute x = 2/L0 in eqn (65).

D.3 Self-propulsion driven by capillarity and modulated by
activity

We consider here the case of pure capillary sliding (o = 0, j a
0, Aa0, W ¼ 0), so the governing ODE reduces to

x3
g2

3
þ ‘ug

� �
g000 � Ax g

3
þ ‘u

� �
g0 ¼ V (68a)

with boundary conditions

gð�1Þ ¼ 0; xg0ð�1Þ ¼ fþ j
2
; (68b)

If the contact angle are the same (j = 0), the drop does not
move, therefore write the solution to eqn (68) as a perturbation
power series of both j and A:

g ¼ g0 þ jgj þAga þAjgj;a þO A2;j2
� �

(69a)

L ¼ L0 þ jLj þALa þAjLj;a þO A2;j2
� �

(69b)

V ¼ V0 þ jVj þAVa þAjVj;a þO A2;j2
� �

: (69c)

The subscript j denotes the correction at order j due to asym-
metric contact angles for a passive drop A ¼ 0ð Þ. It is
solution of

gj
0 0 0 ¼ Vj

x3
g0

3
þ ‘u

� �
g0

(70a)

with

gj(�1) = 0, gj0(�1) = 1/(2x) (70b)

and we find after integration:

gj ¼
1

2x
yþ bf

2x b2 � f2ð Þ ln ðbþ fÞ=ðb� fÞ½ �

� ð1þ yÞ2 lnð1þ yÞ � ð1� yÞ2 lnð1� yÞ � 22 lnð2Þy
� ��

þ 1

bf
�ðbþ fyÞ2 lnðbþ fyÞ þ ðb� fyÞ2 lnðb� fyÞ
� �

þ 2y

b
ðbþ fÞ lnðbþ fÞ þ ðb� fÞ lnðb� fÞ½ �


(71a)

Lj = 0 (71b)

Vj ¼
bf

6 ln
bþ f
b� f

� � (71c)

where we have introduced b ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6‘ux=f

p
.

The subscript a refers to the correction at order A for a
symmetric active drop (j = 0, Aa0). It is the solution of

ga
0 0 0 ¼

Va þ x
g0

3
þ ‘u

� �
g0
0

x3
g0

3
þ ‘u

� �
g0

(72a)

with

ga(�1) = 0, ga0(�1) = 0 (72b)

and we find

ga ¼
1

2x2
ð1þ yÞ2 lnð1þ yÞ þ ð1� yÞ2 lnð1� yÞ
�

� ð2 ln 2þ 1Þy2 � 2 ln 2þ 1
� (73a)

La ¼
O
2f2

(73b)

Va ¼ 0 (73c)
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Finally gj,a is the correction at order Aj for an asymmetric
active drop which satisfies

gj;a
0 0 0 ¼

Vj;a � x3
2g0

3
þ ‘u

� �
gagj

0 0 0 þ gjga
0 0 0� �

x3
g0

3
þ ‘u

� �
g0

þ
1

3
xgjg0

0 þ x
g0

3
þ ‘u

� �
gj
0

x3
g0

3
þ ‘u

� �
g0

(74a)

with

gj,a(�1) = 0, gj,a
0(�1) = 0 (74b)

Here we do not solve eqn (74), but determine instead Vj;a and
Lj,a using a solvability condition and we obtain

Lj,a = 0 (75a)

Vj;a ¼
1

12xb
bþ f
b� f

1

ln
bþ f
b� f

� �	 
2

� � �2b2 þ ðb� fÞ2
� �

dilog
bþ f
b� f

� ��

� 2b2 þ ðb� fÞ2
� �

dilog
2f

bþ f

� �

þ b2 � lnðbþ fÞ½ �2þ lnðb� fÞ½ �2
n o

þ 2b2 þ ðb� fÞ2
� �

lnð2fÞ ln bþ f
b� f

� �

� ðb� fÞ2 1þ lnðbþ fÞ½ � ln bþ f
b� f

� �

þ p2

6
2b2 þ ðb� fÞ2
� �

� 2bf
b� f
bþ f

� �
:

(75b)

Note that since A affects L, it also affects indirectly VjðLÞ.
We can expand

VjðLÞ ¼ Vj L0ð Þ þ ALa
dVj
dL

����
L0

þO A2;j2
� �

; (76)

therefore in the main text we write

V ¼ j Vj;L0
þAVj;La

� �
þ jAVj;a þO A2; ~j2

� �
(77)

where Vj;L0
¼ Vj L0ð Þ and Vj;La ¼ La

dVj
dL

����
L0

.

Appendix E: including nematic stresses

We now retain nematic stresses sn
ij = �Kqinkqjnk in the momen-

tum balance at leading order. The additional relevant dimen-
sionless parameter isN ¼ K=ðZULÞ. Note that in the following,
m = m(h̃) is the regularizing function defined by eqn (11), and
m0 = dm/dh̃.

The expressions of the shear stress [eqn (14)] and of the velocity
[eqn (15)] now contain nematic contributions. Those are given by

~snxz ¼

N p2o2

2~h3
m2 � ~hmm0
� �

~h0 ~z�
~h

2

 !
if oa0;

2N e2

~h3
m2 � ~hmm0
� �

~h03 �m2 ~h~h0 ~h00
h i

~z�
~h

2

 !
if o ¼ 0;

8>>>><
>>>>:

(78)

~unx¼

N p2o2

4~h3
m2� ~hmm0
� �

~h0
z2

2
� ~h~z� ~‘u ~h

� �
if oa0;

N e2

~h3
m2� ~hmm0
� �

~h03�m2 ~h~h0 ~h00
h i z2

2
� ~h~z� ~‘u ~h

� �
if o¼0:

8>>>><
>>>>:

(79)

Averaging the velocity over the drop height gives:

1

~h

ð ~h

0

~unxd~z¼

�No2p2

4~h2

~h

3
þ ~‘u

 !
m2� ~hmm0
� �

~h0 ifoa0;

�N e2

~h2

~h

3
þ ~‘u

 !
m2� ~hmm0
� �

~h03�m2 ~h~h0 ~h00
h i

ifo¼0:

8>>>>>><
>>>>>>:

(80)

Note that we must have N � 1 for o a 0 and N � e�2 for o = 0
such that nematic stresses play a role at leading order.

The thin drop eqn (21a) becomes

~h

3
þ ~‘u

 !
~h~h000 þ ~A~f a ~h

� �
þ ~W ~f w ~h

� �
þ ~N ~f n ~h

� �
¼ ~V

~f n ~h
� �
¼

� 1

~h2

~h

3
þ ~‘u

 !
m2 � ~hmm0
� �

~h0 if oa0;

� 1

~h2

~h

3
þ ~‘u

 !
m2 � ~hmm0
� �

~h03 �m2 ~h~h0 ~h00
h i

if o¼ 0;

8>>>>>><
>>>>>>:

(81)

with

~N ¼

Ko2p2

4gLe3
if oa0;

K

gLe
if o ¼ 0:

8>>><
>>>:

(82)

We show in Fig. 6 how ~N affects the solutions presented in

the main text. Overall, increasing ~N causes the drop to flatten.
For self-propulsion driven by active stresses [Fig. 6(a)], the

tractionless flat solution at high ~A is essentially independent

of ~N . For self-propulsion driven by self-advection [Fig. 6(b)], ~N
favors the growth of the protrusion and simply renormalizes

the transition to a protruded shape ( ~Wc decreases upon
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Fig. 6 Effect of nematic stresses on the drop shape and velocity (shaded drops are those obtained for ~N ¼ 0 in the main text), for each mode of motion.
Colored symbols/lines mark corresponding state points between left and right panels.
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increasing ~N ). For self-propulsion driven by capillarity

[Fig. 6(c)], increasing ~N dramatically reduces the drop speed.
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8 K. Kruse, J. F. Joanny, F. Jülicher and J. Prost, Phys. Biol.,
2006, 3, 130–137.

9 D. Shao, H. Levine and W.-J. Rappel, Proc. Natl. Acad. Sci.
U. S. A., 2012, 109, 6851–6856.

10 C. Blanch-Mercader and J. Casademunt, Phys. Rev. Lett.,
2013, 110, 078102.

11 A. C. Callan-Jones and R. Voituriez, New J. Phys., 2013,
15, 025022.

12 P. Recho, T. Putelat and L. Truskinovsky, Phys. Rev. Lett.,
2013, 111, 108102.

13 E. Tjhung, A. Tiribocchi, D. Marenduzzo and M. E. Cates,
Nat. Commun., 2015, 6, 5420.

14 D. Khoromskaia and G. P. Alexander, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2015, 92, 062311.

15 T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann and
Z. Dogic, Nature, 2012, 491, 431–434.

16 P.-G. de Gennes, F. Brochard-Wyart and D. Quéré, Capillar-
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