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Abstract If a long air bubble is placed inside a vertical tube closed at the top it can rise by
displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller
than a critical value Rc = 0.918 �c, where �c = √

γ /ρg is the capillary length, there is
no solution corresponding to steady rise. Experimentally, the bubble rise appears to have
stopped altogether. Here we explain this observation by studying the unsteady bubble motion
for R < Rc. We find that the minimum spacing between the bubble and the tube goes to
zero in limit of large t like t−4/5, leading to a rapid slow-down of the bubble’s mean speed
U ∝ t−2. As a result, the total bubble rise in infinite time remains very small, giving the
appearance of arrested motion.

Keywords Singularities · Thin film flow · Lubrication theory · Surface tension

1 Introduction

A very common and useful observation, for example in the biological sciences, is that the
flow of liquid out of a narrow capillary can be arrested by sealing off the top or bottom (for
example using a finger). This is illustrated in the sequence on the right of Fig. 1: a capillary of
inner radius R = 1.9 mm is closed off at the bottom. As a result, a column of water remains
suspended above the air bubble at the bottom, without any apparent motion, even over long
periods of time.

This observation appears to contain a paradox, since the buoyancy of the bubble exerts a
force on the liquid, which is compensated by an opposing force from the liquid. A viscous
liquid, however, cannot sustain a permanent tangential stress; a viscous force can only result
if there is at least some motion. In all cases studied here, we assume the inner wall of the tube
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Arrested Bubble Rise in a Narrow Tube 657

Fig. 1 A home experiment illustrating the motion of long bubbles in tubes filled with water (using coffee as
a colorant), closed off at the end. Based on the surface tension of water, Rc ≈2.5 mm. On the left, a bubble
rises steadily in a tube with inner radius R = 2.9 mm. On the right, no motion is detectable evenover a long
period in a tube with R = 1.9 mm

to have been prewetted, or the fluid to wet the walls perfectly, so all of the solid is covered
by at least a thin film of liquid. As a result, there are no contact lines to be considered.

The setup shown on the left of Fig. 1 differs from that on the right only by the radius of
tube, which at R = 2.9 mm is slightly wider. But now buoyancy drives a viscous flow: as an
air bubble rises at a constant rate, fluid escapes from above the bubble, passes through a thin
film surrounding the bubble, and eventually adds to the fluid below the bubble. The present
paper is devoted to resolving the paradox of the stuck bubble, and to explain the difference
between the two experiments shown in Fig. 1.

In his classical paper [1], Bretherton considers the theory of the slow motion of long
bubbles (much longer than the radius of the tube) in circular tubes. The tube is filled with
liquid of dynamic viscosity η and density ρ, having interfacial tension γ between the bubble
and liquid. In the first part of the paper, gravity is not considered, and bubbles are set in
motion by pushing liquid through the tube. The second part of the paper, which appears to
be much less well known, addresses the problem shown in Fig. 1: tubes are placed vertically
and are sealed at the bottom end, so that gravity is the driving force. The theory is developed
for narrow tubes, whose radii are in the order of the capillary length and below. Therefore,
if U is the speed of the bubble, the Reynolds number Re = ρUR/η is considered small, and
inertial effects do not play any role. Looking for traveling wave solutions describing the rise
of a bubble at constant speed U (the bubble is always considered to be far from the ends of
the tube), Bretherton finds a solution only if the radius R of the tube is larger than a critical
radius Rc = 0.918 �c, where �c = √

γ /ρg is the capillary length, and g is the acceleration
of gravity. As the critical radius is approached, the speed of the bubble goes to zero.
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658 C. Lamstaes and J. Eggers

In [1], no theoretical argument is given as to what might happen for R < Rc, but
experimental evidence is cited that a smaller bubble does not move. There is the possi-
bility that other traveling wave solutions exist for R < Rc, of a form not anticipated in
the original analysis. Apart from that, the only other possibility is that the real solution is
unsteady in some way. Since the bubble can move only by fluid moving past it, an appar-
ent cessation of motion implies that the flux through the film goes to zero. We will see
that this is because the film pinches off as its thickness approaches zero locally, so owing
to the no-slip boundary condition at the wall less and less fluid is able to pass through.
This implies that the bubble motion is slowed down, and if this slowing is sufficiently
rapid, the bubble will move only a finite distance in infinite time, and its motion appears
arrested.

Almost exactly 25 years ago, LeoKadanoff at theUniversity ofChicago initiated a research
program, which brought together Mathematicians, Physicists, and Computer Scientists to
look at singularities of nonlinear partial differential equations. A lot of effort had been devoted
to finding singular solutions to the Euler equation in three dimensions, a problem thought to
be relevant to fluid turbulence, but there had been little progress. Leo’s idea was to take much
simpler one-dimensional equations, such as the equation describing thin film flow, and to
develop tools, both analytical and numerical, to gradually chip away at singular problems. A
diverse group of people from senior professors (e.g. Peter Constantin), to first-year graduate
students (e.g.MichaelBrenner),met eachweek at “TheBarn” inRyersonPhysical Laboratory
to exchange ideas. The result was a first series of papers on thin film equations [2–5], and
the inspiration for many to look at PDE’s from a new angle [6], using scale invariance as the
guiding principle.

Here we draw on the insights from this early period to address the pinch problem that
must be taking place in a vertical tube for R < Rc. In [4] it has been conjectured that for
a thin film flowing over a solid substrate, the thickness can never reach zero in finite time.
Hence we anticipate that the thickness goes to zero in infinite time, forming an infinite time
singularity. We will see that gravity comes into our problem in an essential way, leading to
a novel set of scaling exponents, different from that found in related problems, such as the
drainage of the thin film of liquid between two drops approaching one another [7]. We will
make extensive use of Leo Kadanoff’s insight that singularities are governed by similarity
solutions [8], whose typical scales are described by power laws.

In the next section, we will revisit Bretherton’s theory of steady bubble motion in a
vertical tube, valid for R > Rc. We then describe numerical simulations of a model
equation which captures the leading-order asymptotics of the bubble motion. This allows
us to contrast the case R > Rc, for which we converge toward a steady solution, with
the unsteady motion in the case R < Rc, during which the film thickness goes to zero
in infinite time. In the fourth section, we develop an asymptotic theory of the pinch-off
observed for R < Rc. This solution is divided into three asymptotic regions: the cen-
tral pinch-off region, where the minimum film thickness lies, is matched to a static outer
region at the top of the bubble. The nature of this outer region decides whether pinch-
off is observed or not. Below the pinch point, the pinch region matches onto a thin film
region, governed by a novel similarity solution to the thin film equations, where capillary,
gravitational, and time-dependent terms all come in at the same order. We conclude this
section with a summary of observable results from our theory. In the final discussion we
contrast our solution with those found previously, and present an outlook on future lines of
research.

123



Arrested Bubble Rise in a Narrow Tube 659

Fig. 2 Sketch of a bubble in a vertical tube. The angle θ is measured anti-clockwise from the y-direction to the
tangent of the interface. The distance s is the arc-length of the interface measured from the line of symmetry

2 Bretherton’s Theory of Steady Motion

We begin by recalling Bretherton’s previous theory [1] for the dynamics of a bubble in a
vertical tube, which assumes that the bubble rises at a constant speedU . We aim to formulate
his approach more systematically using the method of matched asymptotic expansions [9],
although our final result will turn out to be equivalent to Bretherton’s. We consider both the
axisymmetric case of a cylindrical tube of radius R (see Fig. 2), as well its two-dimensional
analogue of two vertical plates a distance of 2R apart for which some of the calculations can
be performed analytically. The coordinate x denotes the vertical distance against the direction
of gravity, and h(x) is the (radial) thickness of the film between the bubble and the walls (of
the tube).

We aim to describe the transition between moving and arrested bubbles, near which the
bubble speed U goes to zero, so we are in a regime where the capillary number Ca = ηU/γ

is small. As a result, viscous deformations of the interface are small, and the solution can be
split into two asymptotic regions, similar to the structure of the celebrated Landau–Levich
problem [10]. The first (outer) region describes the top of the bubble, which is controlled by
a balance of surface tension and gravity, while viscous forces are negligible on the scale of
the tube radius R. The second (inner) region describes the thin film between the bubble and
the tube wall. In this region, viscous, surface tension, and gravitational forces are balanced.
Owing to Ca � 1, lubrication theory applies [11]. To find a complete solution in the limit
Ca � 1, the two regions will be combined using a matched asymptotic expansion [9].

2.1 Static Cap Solution

Since surface tension and gravity are of the same order, it is convenient to write all lengths in
units of the capillary length �c. With this convention, R2 is commonly called a Bond number,
which is of order one for our problem. Balancing capillary pressure and hydrostatic pressure
in the fluid, the static surface shape is described by p = 0 = −κ + x , where κ is (twice) the
mean curvature of the interface. Thus if s is the arclength of the interface and θ the tangent
angle with respect to the vertical, we have

κ(2D) = dθ

ds
, κ(3D) = dθ

ds
+ sin θ

r
(1)

in two and three dimensions, respectively. To find the outer solution, we have to solve the
equations

x = κ,
dx

ds
= − sin θ,

dr

ds
= cos θ. (2)
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660 C. Lamstaes and J. Eggers

Fig. 3 A plot of (3), (4) in the region of positive curvature, from θ = 0 (tip) to θ = θI (inflection point), for
θI = π/2 (solid line), θI > π/2 (dashed line) and θI < π/2 (dotted line). Only curves with θI >= π/2 have
a maximum radius, where θ = π/2; the maximum radius for θI = π/2 is Rc

For simplicity, we will focus on the two-dimensional case, for which the solution can be
found analytically. Namely, in two dimensions the equation for the static profile becomes
θss = − sin θ , with initial condition θ(0) = 0 at the tip of the bubble. Integrating this equation
gives

x(θ) = κ = dθ

ds
= ±√

2 (cos θ − cos θI ), (3)

where θI is the angle at the inflection point x = κ = 0. We see that the angle is always in
the range 0 ≤ θ ≤ θI , while the + and − signs in (3) describe the regions of positive and
negative curvature, respectively. We are interested in the region closest to the tip only, for
which x > 0 (+ sign in (3)). There the distance from the center of the tube to the interface is

r(θ) = 1√
2

∫ θ

0

cosψ√
cosψ − cos θI

dψ = −F

(
2 sin θ/2

x(θ)
,
x(θ)

2

)
+ 2E

(
2 sin θ/2

x(θ)
,
x(θ)

2

)
,

(4)

where

F(x, k) =
∫ x

0

1√
1 − k2t2

√
1 − t2

dt, E(x, k) =
∫ x

0

√
1 − k2t2√
1 − t2

dt

are the incomplete elliptic integrals of the first and second kinds, respectively. The radius
r(θ) is related to the film thickness h(x) by (cf. Fig. 2)

h(x) = R − r(θ). (5)

A plot of the outer solution (3), (4) is shown in Fig. 3 over the region where the curvature
is positive. It follows from the last Eq. (2) that at a maximum of r , we must have θ = π/2.
Since θ < θI , only curves with θI > π/2 have a maximum. We will see below that in order
to match to the inner solution, the slope must be positive in the region of positive curvature,
which is true only if θI < π/2. The critical case is θI = π/2, for which the radius at the
inflection point is

Rc = 1√
2

∫ π/2

0

√
cosψdψ = 
2(3/4)√

π
= 0.8472 . . . , (6)

where 
 denotes the Gamma function. This is the critical radius below which matching is no
longer possible, so no traveling wave solutions exist. In the axisymmetric case, a numerical
approximation yields R(3D)

c = 0.918 [1].
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Arrested Bubble Rise in a Narrow Tube 661

2.2 Film Solution

We now describe the thin film along the sides of the bubble, where the slope is small, and we
can use the lubrication equations for the flow of a thin film of viscous liquid over a solid wall
[8]. Since the film thickness is much smaller than the tube radius R, we can neglect the tube’s
curvature (in the three-dimensional case), making the problem effectively two-dimensional.
In the lubrication approximation, the viscous flow is driven by a pressure gradient, which
has contributions from the capillary and the hydrostatic pressure. Thus as the unit of time,
we choose τ = η�c/γ , so the speed U of the bubble is the capillary number. Apart from the
final subsection where we present results in dimensional form, everything will from now on
be written in units of �c and τ . The volume flux, in a stationary frame of reference, becomes

Q = h3

3
px = h3

3
(hxxx − 1). (7)

The term hxxx comes from the gradient of the Laplace pressure, in the limit that the interface
is nearly parallel to the wall, while the second term is the gradient of the hydrostatic pressure.

In a situation in which the bubble rises at a constant speed U and the tube is closed, the
flux past the bubble is set by the amount of fluid displaced above the bubble. In a frame of
reference in which the tip of the bubble is stationary, the top comes toward the bubble at a
speed U . Thus the volume displaced per unit time is πR2U in three dimensions, and 2RU
per unit width in two dimensions. This means that in the frame of reference of the bubble,
the flux per unit width Qb through the film is

Q(2D)
b = −UR, Q(3D)

b = −UR/2 (8)

in two and three dimensions, respectively. Transforming to a stationary frame of reference,
the flux becomes Q = Qb + hU . However, since h � R, this correction is subdominant
relative to (8), and we can think of the profile h(x) as being time-independent, represented in
a co-moving coordinate system, as indicated in Fig. 2. Thus using (7), the thin film equation
for the gap h becomes

hxxx = 1 − b3

h3
, (9)

where b3 = 3RU in two dimensions, and b3 = 3RU/2 in three dimensions. The quantity b
can be interpreted as the constant film thickness far away from the tip, cf. Fig. 2.

Equation (9) describes the inner solution of our problem, governed by the length scale b.
Looking for a similarity solution of the form

h(x) = bη(ξ), ξ = x/b1/3, (10)

(9) becomes

ηξξξ = 1 − η−3. (11)

In this equation, surface tension forces (the term on the left) are balanced by gravity (first
term on the right) and viscous forces (second term on the right).

2.3 Matching

We have to match the inner solution, described by (11), to the static outer solution (4), valid
near the end of the bubble. Since b � R, this amounts to taking the limit of large η in the
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inner solution. But for large η, (11) asymptotes to ηξξξ � 1, so the general solution of (11)
in this limit is

η = ξ3

6
+ a2ξ

2 + a1ξ + a0. (12)

Since (11) is autonomous, we can always shift the origin such that the coefficient a2 is made
to vanish, giving zero curvature at ξ0:

η = (ξ − ξ0)
3

6
+ a1(ξ − ξ0) + a0, ξ → ∞. (13)

The coefficients a1 and a0 are now determined uniquely, and have to be found by integrating
(11) from the region of constant film thickness η = 1.

To that end, we consider a small perturbation from a film of constant thickness

η = 1 + εeλξ . (14)

Inserting (14) into (11) and linearizing, we find λ3 = 3. We are interested in roots λ with
positive real part only, since negative roots do not satisfy the boundary condition η = 1 for
ξ → −∞. Thus, the only relevant perturbation is of the form

η = 1 + εe3
1/3ξ . (15)

The value of ε can be changed by shifting the ξ variable: we can put ε = 1, but choose the
initial value of ξ to be a large negative number, so the linear approximation is valid. Using
(15) to find the initial conditions and integrating (11) forward toward ξ = ∞, one finds the
coefficients of the expansion (12). Choosing ξ0 such that the quadratic coefficient cancels,
one finds the universal constants a1 = 0.572 and a0 = 1.097. These values agree with those
found by Bretherton. In terms of the outer variables, the outer limit of the inner solution is

h = x3

6
+ a1b

2/3x + a0b. (16)

A technical problemassociatedwith thematching to the outer solution is that both solutions
can be shifted by an arbitrary distance in the x-direction. To fix this shift, Bretherton chose
to expand both solutions about the point of zero curvature. What is slightly confusing about
this choice is that the full solution of (11) actually has positive curvature everywhere, and
only its outer expansion (16) has vanishing curvature. To clarify this issue, we take as the
point around which to match the inner and outer solutions as the one satisfying h(xm) = hm ,
where the height hm is chosen to lie between the length scales of the inner and outer solutions:
b � hm � R. By this choice, we ensure that κ > 0, see Fig. 4. In the limit b → 0, the
asymptotic conditions on hm are satisfied by the choice hm = bα , where α ∈ (0, 1). We will
verify that the result does not depend on on the particular choice of α.

Denoting the film height in the inner and outer solutions by hi (x) and ho(x), respectively,
we require the matching conditions

hi (xm) = ho(xm), h′
i (xm) = h′

o(xm), h′′
i (xm) = h′′

o(xm), (17)

where for the inner solution we take the outer limit (16). In (17) and in the following,
primes denote the derivative. According to (2) and (16), both inner and outer solutions satisfy
h′′′(xm) = 1, which means that to leading order gravity and surface tension are balanced.
The matching between the inner and outer solutions is illustrated in Fig. 4.
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Arrested Bubble Rise in a Narrow Tube 663

Fig. 4 Matching of the inner solution (dashed line) and outer solution (solid line) of h(x) for b = 10−2. The
two curves are matched about the point hm = b1/2 = 0.1 (α = 1/2). The outer solution has been chosen
such that the two curves are identical at hm . In this case one finds the outer solution to be a tube of radius
R = 0.879

We now evaluate each term in (17) in the limit b → 0. It follows from (16) that to leading
order bα ≈ x3m/6, and using successive approximations we find

xm ≈ 61/3bα/3 − 2a16
−1/3b(2−α)/3 − 2a06

−2/3b(3−2α)/3, (18)

so that

h′
i (xm) ≈ 62/3b2α/3/2 − a1b

2/3 − 2a06
−1/3b(3−α)/3, h′′

i (xm) ≈ xm . (19)

Since h′ goes to zero, we can approximate

h′′
o ≈ κ = √

2(cos θm − cos θI ), h′
o = −rx (θm) = cot θm ≈ cos θm,

so that using the last two of the matching conditions (17) we obtain

cos θm ≈ h′
i (xm), cos θI ≈ h′

i (xm) − h′′2
i (xm)/2 = a1b

2/3. (20)

The first matching condition (17) becomes

R − bα = r(θm) = r(θI ) + 1√
2

∫ θm

θI

cosψ√
cosψ − cos θI

dψ ≡ r(θI ) + ε(θm, θI ), (21)

which we have to evaluate in the limit θm → π/2 and θI → π/2, since both right hand sides
of (20) go to zero.

Beginning with the first integral of (21), we find

r(θI ) ≈ 1√
2

∫ π/2

0

cosψ√
cosψ − cos θI

dψ = 1√
2

∫ π/2

0

√
cosψdψ +

a1b2/3

2

1√
2

∫ π/2

0

1√
cosψ

dψ + O(b4/3) = Rc + K
(
1/

√
2
) a1b2/3

2
+ O(b4/3), (22)
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664 C. Lamstaes and J. Eggers

where K (1/
√
2) = π3/2/(2
2(3/4)) denotes the complete elliptic function of the first kind.

As for ε(θm, θI ) in (21), we use (20) to find:

ε(θm, θI ) ≈ 1√
2

−
∫ h′

i (xm )

a1b2/3

�√
� − �I

d� ≈ −bα + a0b. (23)

Combining (21), (22) and (23) we finally obtain

R − Rc = 0.5302 b2/3 + 1.097 b, b3 = 3RU, Rc = 0.8472. (2D) (24)

The value of the exponent α, used to perform the matching, does not enter, as should be the
case. The relation (24) is the two-dimensional version of the original result given in [1], valid
for circular tubes of radius R, which can be written in the same form:

R − Rc = 0.582 b2/3 + 1.01 b, b3 = 3RU/2, Rc = 0.918. (3D) (25)

If R > Rc, the bubble moves at a constant speed U , and the thickness of the film in the tail
of the bubble is b, both given by (24) or (25). As the critical radius Rc is approached, this
speed goes to zero. For R < Rc, the inner and outer solutions can no longer be matched, and
there is no solution corresponding to a bubble rising at constant speed. The rest of our paper
will be devoted to calculating the unsteady motion that takes place in that case.

3 Numerical Description

Before we explain in detail the similarity theory of pinch-off for the case R < Rc, we
introduce a numerical description of the bubble which is valid close to the critical radius Rc,
so that the bubble is moving very slowly. This will give is some insight into the bubble’s
behavior on both sides of the critical radius. We will use the numerical results to compare
the dynamics of the bubble with that predicted by the similarity theory.

Following previous authors [12,13], we use a generalized lubrication theory, in which we
replace the flat-film approximation to the curvature, hxx , by the full curvature at the interface,

κ = hxx
(
1 + h2x

)3/2 . (26)

Then the two-dimensional volume flux (7) becomes

Q = h3(κx − 1)/3, (27)

and the equation of motion is

∂h

∂t
+ 1

3
[h3(κx − 1)]x = 0. (28)

In the thin film region, hx � 1, this equation coincides with the conventional lubrication
equation. On the other hand, near the end of the bubble, controlled by a balance between
capillarity and gravity, (28) reduces to the static balance described by (2). For R > Rc, time-
independent solutions of (28) correspond to the steady solution described in the previous
section.

We solve (28) using an adaptation of the finite-difference code used in [4,14]. At each
time step, the left-hand side of (28) is discretized using a centered differences scheme. It is
then advanced in time using a second-order accurate implicit scheme. An adaptive grid is
used to obtain high resolution near the pinch point where h goes to zero [8]. To simulate
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Fig. 5 Plot of the film height h(x, t) (2D model) for R = 0.865 at time t = 0 (dotted), log10 t = 1.61
(dashed), 2.36 (dash-dotted), and 3.11 (solid lines). The film quickly approaches a film of minimum height
log10(b) ≈ −2.40. The theoretical value according to (24) is log10(b) ≈ −2.397. The initial film profile is a
rescaling of the profile of a traveling wave solution of a bubble traveling in a tube of radius R = 0.88 > Rc ,
scaled down by a factor of a = 0.98

large bubbles, we choose some large domain x ∈ [−L , 0], where L is up to 109, using an
expanding grid. For x = 0, h is held fixed at h = R with infinite gradient (hx → ∞), at
x = −L , boundary conditions are h = bin and hx = 0.

Initial conditions are generated using the steady-state solutions described in Sect. 2, rescal-
ing them in order to generate solutions with either R > Rc or R < Rc; as a result, they are
no longer steady-state solutions of (28). Figure 5 shows the case R = 0.865 > Rc, but with
an initial film thickness bin greater than the steady-state value b = 4.01 × 10−3 given by
(24). In time, a wave travels from the tip of the bubble toward the tail. After the wave has
passed, the film thickness has reached a stationary value, which is very close to the theoret-
ical prediction. This confirms that the steady state of Sect. 2 is indeed a globally attracting
solution, in agreement with [1].

If on the other hand R < Rc, the behavior is very different, as seen in Fig. 6. Instead
of converging to a stationary solution, in the long-time limit the profile pinches down in a
localized fashion. In order to study the pinch-off down to very small minimum heights, we
have to follow the solution for very long times. To that end we adopt a slightly different
procedure to that in the case R > Rc. We know from the theory to be reported below that far
downstream from the bubble tip, and in the limit of long times, the profile is asymptotically:

h(x, t) = t−1/2√x0 − x, (29)

where x0 is the pinch point. Thus in an initial period, we simulate (28), with the boundary
condition of constant film thickness at x = −L , until h has converged to a profile of the
form (29) over an x-region of order L . However, we make sure that the initial profile is still
unperturbed near the left-hand end of the interval. Once the the solution is well converged, we
cut the original interval to an interval of size O(1), on whose left-hand boundary we impose
(29) as a time-dependent boundary condition, where x0 is determined as a fit paramter to the
numerical profile. This permits us to simulate (28) for sufficiently long periods so as to reach
a minimum height of hmin ≈ 10−11, beyond which rounding errors become significant.
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666 C. Lamstaes and J. Eggers

Fig. 6 Plot of the film height h(x, t) (2D model) for R = 0.794 at time t = 0 (dotted line), log10(t) = 3.02
(dashed line), log10 t = 4.50 (dash-dotted line) and log10 t = 7.02 (solid line). The initial film profile is
obtained in the same way as that of Fig. 5, but scaled down by a factor of a = 0.9. In the limit t → ∞, the
profile pinches down at x0 ≈ −1.076

As is seen in Fig. 6, the profile becomes more and more localized around the pinch point
x0. As a result, the flux of liquid across the minimum goes to zero, and so does the speed
of the bubble, which is constrained by volume conservation. In the following section, we
will present a similarity theory of the infinite-time singularity associated with pinch-off, and
compare to the results of numerical simulations.

4 Similarity Theory of Pinch-Off

We now study the unsteady bubble motion for R < Rc. For the bubble to get stuck in tubes
with R < Rc, and as confirmed by Fig. 6, the minimum film height hmin(t) has to tend to
zero. As a result, the solution describing this pinch-off lacks a characteristic length scale,
and we expect the local structure to be universal and self-similar [8].

Thus in the limit t → ∞, we are looking for solutions of the form

h(x, t) = tαH(ξ), ξ = x ′

tβ
, x ′ = x − x0 (30)

where x0 is the pinch point. We will assume that α < β, so that hx � 1. Then inserting (30)
into (28) gives the similarity equation for the film:

tα−1(αH − ξβHξ )︸ ︷︷ ︸
T

+ 1

3
t4α−4β (

H3Hξξξ

)
ξ

︸ ︷︷ ︸
Ca

− 1

3
t3α−β(H3)ξ

︸ ︷︷ ︸
G

= 0. (31)

Since different balances are possible, we have divided the similarity equation into 3 parts:
terms coming from the time derivative are labeled ‘T’; the term originating from surface
tension has been labeled ‘Ca’, and that coming from gravity ‘G’. We will show that the
spatial structure of the film height h(x, t) about the singularity can be described uniquely
by three different dominant balances between ‘T’, ‘Ca’ and ‘G’, shown in Fig. 7. Each zone
represents a different balance as follows:

In the Pinch-off Zone II, surface tension dominates terms ‘G’ and ‘T’ in (31), resulting
in a Capillary-driven (‘Ca’) pinch-off. A similar central pinch region, controlled by surface
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Ca 

II 

T-G-Ca 

I 

Ca-G 

III 

Fig. 7 Sketch of the three zones and corresponding balances of (31) that describes pinch-off of the film at the
bubble’s interface

tension alone, has been found in [4]. Zone III represents the time-independent static outer
region given in (2). This corresponds to a ‘Ca’–‘G’ balance in (31). Finally as onemoves away
toward the left of Zone II, contributions from ‘T’ and ‘G’ becomes increasingly important as
the curvature of the profile decreases. This leads to a novel similarity solution which balances
all three terms, ‘T’, ‘Ca’ and ‘G’ in (31). Belowwe describe the similarity solutions associated
with each zone, characterized by a similarity profile H(ξ) as well as scaling exponents α and
β.

4.1 Zone II : The Pinch Region

For a ‘Ca’ dominated pinch-off, (31) reduces to

H3Hξξξ = C, (32)

where the constant of integration C is related to the surface-tension-driven current j =
h3hxxx/3 by j = C/3t−4α2+3β2 . Equation (32) is known as the “current equation” [2], since
it expresses the fact that the current is independent of position in the pinch region. The same
similarity equation has also been considered in [7,15], as well as for a different power n
(HnHξξξ = C) in [2,4] and for n = 2 in [16]. As there is only a single term, the solution
(32) does not fix either of the exponents α ≡ α2 or β ≡ β2 in its similarity representation
(30). Instead, both exponents are found by matching to the two neighboring Zones I and III.

We anticipate that the typical scale of Zone II is much smaller than that of the neighboring
zones, and so approaching Zone I corresponds to taking the limit ξ → −∞, while approach-
ing Zone III corresponds to ξ → ∞. This means we are interested in solutions to (32) which
exist on the whole real axis, which we call global solutions. Two different asymptotic behav-
iors of (32) are possible as ξ → ±∞ [4,7,16]. The generic case is quadratic growth, leading
to an asymptotic expansion of the form:

H(ξ) = Aξ2 + Dξ + E − C

60A3

1

ξ3
+ O(ξ−4), |ξ | → ∞. (33)

All other coefficients are given in terms of A, D, E , corresponding to the full three-
dimensional manifold of solutions. A singular limit of (33) is that A → 0, in which case the
asymptotic expansion becomes:

H(ξ) = Bξ + C

2B3 log |ξ | + O(ξ−1), |ξ | → ∞. (34)
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Fig. 8 The universal critical solution Ĥ(ξ̂ ) (dashed line), and numerical simulations of the full problem (solid
lines) for R = 0.794, at log10(t) = 7.18, 8.47, 9.63, 10.88, and 12.11

The same asymptotic behavior can be generalized to any n ≥ 2 [4,16]. To reach (34), a single
parameter in the initial conditions to (32) has to be adjusted, leaving uswith a two-dimensional
manifold of solutions.

To find out how many distinct solutions to the current equation there are with H going to
infinity like (34) and (33), note that (32) remains invariant under the transformation

H(ξ) = pĤ(ξ̂ ), ξ̂ =
√
q

p
ξ, C = p5/2q3/2Ĉ . (35)

Since non-negative global solutions must have a minimum, there must be a point where
Hξ = 0, which owing to the translational invariance of (32) we can choose as the origin.
Using the rescaling (35) we can ensure that at the origin values are normalized to

Ĥ(0) = Ĥ
ξ̂ ξ̂

(0) = 1, Ĥ
ξ̂

= 0, (36)

and the rescaled equation becomes

Ĥ3 Ĥ
ξ̂ ξ̂ ξ̂

= Ĉ . (37)

Thus we expect a one-dimensional family of global solutions, parameterized by Ĉ ≥ 0,
and with quadratic behavior (33) for ξ → ±∞. We only need to consider non-negative Ĉ ,
since the sign of Ĉ is flipped by a change in parity; for Ĉ = 0, Ĥ = ξ2/2 + 1 is an exact
solution. However, numerical integration of (37) with initial conditions (36) shows that such
global solutions exist for 0 ≤ Ĉ < Ĉc only, where

Ĉc = 0.92842406 . . . , (38)

in agreement with [7]. As the critical value Ĉc is approached from below, the quadratic
coefficient A in the expansion for ξ → −∞ vanishes, and hence Ĉ = Ĉc is the critical
global solution which has linear behavior (34) for ξ → −∞, and quadratic behavior (33)
for ξ → ∞, see Fig. 8. No global solution is observed for Ĉ > Ĉc; instead, Ĥξ̂ ξ̂

eventually

becomes negative, leading to Ĥ(ξ) = 0 at some finite value of ξ .
The critical solution is precisely the solution needed to solve our pinching problem.

Namely, in Sect. 4.3 we will show that to match to an outer solution with time-independent
positive curvature requires
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hxx = tα2−2β2Hξξ = Hξξ > 0.

Thus, we will obtain α2 = 2β2 and we must have H ≈ Aξ2 as ξ → ∞. On the other hand,
in Sect. 4.2 we see that matching to a flat film on the left requires the profile to be linear, so
we anticipate that H ∼ Bξ for ξ → −∞. For this critical solution, the quadratic and linear
coefficients for ξ → ∞ and ξ → −∞, respectively, are

Âc = 0.84538 . . . , B̂c = −1.10750 . . . . (39)

In Fig. 8 this universal solution is shown as the dashed line. The sequence of solid lines is the
simulation of (28) shown in Fig. 6, but rescaled according to (36). In the long-time limit, the
local profile is seen to converge onto the global solution of (37). However, the region over
which the full solution agrees with the similarity solution increases quite slowly, an issue to
which we return in Sect. 4.4 below. Comparing to (34) and (33), one finds that

q = A

Â
, p = Â

A

B2

B̂2
, (40)

so that C = Ĉ(B/B̂)5 Â/A. Below we calculate the constants A, B by matching the pinch
region to Zones I and III, thus determining the scaling function H(ξ) in the pinch region.

4.2 Zone I : Thin-Film Region

Aswe have argued before, we expect all three terms in (31) to balance in this region. Equating
α1 − 1 = 4α1 − 4β1 = 3α1 − β1, one finds α1 = −3/5 and β1 = −1/5:

h(x, t) = t−3/5F(η), η = x ′

t−1/5
, (41)

where F satisfies the fourth order ODE:

− 3F

5
+ ηFη

5
+ 1

3

[
F3(Fηηη − 1)

]
η

= 0. (42)

Toward the left, the limit η → −∞ describes the tail of the bubble. Toward the right, we
match to Zone II, which is much smaller in size, corresponding to a constant value η+.

In order to match to (34), and since the typical scale of the pinch region is small compared
to that of the thin-film region, the solution of (42) must satisfy

F(η) ≈ Bη (43)

as η → 0−. Equating (43) and (34) in the limit x ′ → 0−, we find

t−3/5Bη = t−2/5Bx ′ = tα2 Bξ = tα2−β2 Bx ′,

and thus

α2 = β2 − 2/5. (44)

As shown in more detail in Appendix 1, the full asymptotic expansion of F in the limit
η → 0− is

F(η) =
∞∑

j=1

max( j−2,1)∑

i=0

a jiη
j (log |η|)i , (45)
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Fig. 9 Comparison of the asymptotic form (47) (solid line) with the simulation shown in Fig. 6, for t1 =
2.4 × 105 (dotted line), t2 = 2.9 × 106 (dot-dashed line), and t3 = 2.5 × 107 (dashed line). The initial film
height is b = 0.01; the profiles at t1 and t2 are a constant film h = b beyond the value of x ′ given by (48)

where the coefficients a ji are given in terms of the two free parameters B and P . The first
few coefficients are

a10 = B, a11 = 0, a20 = P − 9

20B2 , a21 = 3

10B2 ,

a30 = − 4P

15B3 + 19

75B5
+ 1

6
, a31 = − 2

25B5
, . . . . (46)

To examine the behavior of F as η → −∞, we seek solutions of the form F ≈ a(−η)m ,
which yields two possible balances. First, for m = 3 one finds a balance Ca ∼ G >> T .
However, this would lead to an increasing curvature, which cannot be matched to a flat film.
The other possibility is m = 1/2 and a = 1, which yields the balance T ∼ G >> Ca as
η → −∞:

F(η) ≈ √−η. (47)

In outer variables, this yields the asymptotic form (29) of the tail of the bubble given earlier.
The asymptotic form (47) is shown as the solid line in Fig. 9. Since the initial condition is
such that h = b = const toward the tail of the bubble, (47) breaks down when b is reached,
leading to the condition

t−1/2
√−x ′ = b. (48)

At a given time t , h is constant beyond the value of x ′ given by (48), as seen in the dotted
and dot-dashed profiles in Fig. 9. The criterion (48) was used in the simulations described
in Sect. 3: given the length L of the original computational interval, it determines the time
t = tthr up to which the boundary condition of constant film thickness may be used.

As described in more detail in Appendix 2, the family of solutions of (42) consistent with
the asymptotic behavior (47) is described by the asymptotic series

F̄ =
∞∑

i=0

ci |η|1/2−5i/6, (49)
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Fig. 10 Solution F(η) of (42) with boundary conditions (43) and (47) (dashed line); the linear behavior at
the origin is also indicated. Results from the numerical simulation of Fig. 6 are shown at times log10(t) = 7.8
and log10 t = 8.2, and converge toward the asymptotic solution

where c1 = 1, c2 = Q, and the remaining coefficients ci are given in (80) in terms of the
single parameter Q.

We would like to find a solution to (42) on the interval (−∞, 0] which is linear near the
origin (cf. (43)), and grows like a square root toward infinity, as described by (47). To that end
we integrate (42) from near the origin, using the expansion (45), toward −∞. As shown in
Appendix 2, the manifold of solutions having the asymptotic behavior (47) has two unstable
directions, which carry the solution away from the desired behavior as described by (86). To
find the desired solution, we adjust the two free parameters P and B contained in (45), so
that the perturbation amplitudes ε1, ε2 remain zero. The values of the constants are

B = −1.16978, P = −0.07164, (50)

and the resulting unique solution is shown as the dashed line in Fig. 10. As time goes to
infinity, profiles found from a numerical simulation of the full problem agree well with this
universal solution.

4.3 Zone III: Static Outer Region

Finally we have to match the right-hand side of the pinch region to the static solution at the
end of the bubble, described in Sect. 2.1. In view of (33), the outer limit of the pinch solution
behaves like

h(x, t) = tα2−2β2 Ax ′2 = t−2/5−β2 Ax ′2, (51)

which can only match a time-independent outer solution if β2 = −2/5. Then according to
(44), we find α2 = −4/5. Comparison to (41) shows that the size of the central region is
indeed small compared to the typical scale of region I, as required by matching. In both
regions, the slope of the interface is asymptotically small: hx � 1.

To match (51) to the outer solution, we have to identify the pinch point x ′ = 0 with the
maximum of the outer solution, which exists for θI > π/2 only, see Fig. 3. In that case
R = r(π/2), and the outer solution has the form

h(x ′) ≡ R − r(x ′) = k(R)x ′2

2
+ O(x ′3), (52)
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(a)  (2D) (b)  (3D)

Fig. 11 The one-dimensional curvature k(R) as function of the radius. In a we show the two-dimensional case
(cf. (53)), with the approximation (54) added as the dashed line. The corresponding curve in three dimensions,
obtained numerically, is shown in b, with the approximation (55) shown as the dashed line

which matches (51) with A = k(R)/2 > 0. Here k(R) = hxx is the (one-dimensional)
curvature of the outer solution at θ = π/2 (the maximum of r(θ)). The critical case occurs
for θI = π/2, for which R = Rc, while matching is not possible for R > Rc, for which
traveling wave solutions are found.

In two dimensions, using (3) and (4), k(R) is given implicitly by

R = 1√
2

∫ π/2

0

cosψ
√
cosψ + k2/2

dψ, (53)

which is shown on the left of Fig. 11. An approximate form of this curve can be obtained by
expanding about the critical value θI = π/2. According to (22),

R = Rc +
K

(
1/

√
2
)

2
cos θI + O

(
cos2 θI

)
,

and thus

k(R) = 2
√
Rc − R

√
K

(
1/

√
2
) ≈ 1.468

√
Rc − R (2D). (54)

In three dimensions, to obtain k(R), (2) has to be integrated numerically from θ = 0 (the
tip) to θ = π/2 (the maximum), with κ(3D) instead of κ(2D). For a given value of the initial
condition κ0 = dθ/ds at θ = 0, one finds the tube radius R = r(π/2), and k = dθ/ds at
θ = π/2. By varying κ0, one finds k(R) in parametric form, as shown in Fig. 11 (right). As in
two dimensions, the curve ends at R = Rc (Rc being given in (25)), because for R > Rc the
profile does not have a maximum. An expansion about R = Rc yields in three dimensions:

k(R) = 1.36
√
Rc − R (3D). (55)

4.4 The Pinch Region

We can now summarize the properties of the self-similar solution around the pinch point,
which has the form

h(x, t) = t−4/5H(ξ), ξ = x ′

t−2/5
. (56)
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The similarity function H(ξ) is found from (35), where Ĥ(ξ̂ ) is the universal function shown
in Fig. 8. The factors A and B are given by A = k(R)/2 and (50), respectively, where k(R)

is shown in Fig. 11 (a) and (b). Using the expressions (40) for the scale coefficients, the
similarity function becomes

H(ξ) = 1.886

k(R)
Ĥ

(
k(R)

1.786
ξ

)
. (57)

We now investigate the convergence of the full dynamics to the similarity solution (56), by
considering the matching to Zone I and Zone III. In particular, we would like to understand
the remarkably slow convergence onto the similarity solution seen in Fig. 8. To that end we
estimate the location of the left and right boundary points x ′

l and x ′
r , and their dependence

on time. We start with x ′
l , determined by the matching between Zones I and II.

The flux Q in the pinch region is dominated by the capillary contribution h3hxxx/3. Since
the flux is constant in space, we can calculate it from the asymptotics (34) to find

Q ≈ C

3t2
= 2Ĉ B5 Â

3B̂5k(R)t2
= 0.687

k(R)t2
, (58)

which is positive. However, the corresponding flux in Zone I as η → 0 is Ql = Bη2l /(5t
9/5),

which on account of B < 0 is negative. Thus there must be a sub-leading correction δ(ξ)

to (56) which makes the flux turn negative as one goes from Zone II to Zone I. Inserting
H(ξ)+ δ(ξ) into the full similarity Eq. (31) and linearizing in δ(ξ) one finds to leading order
as t → ∞ that

t−9/5
(

−4

5
H + 2

5
ξHξ

)

︸ ︷︷ ︸
T

+ 1

3
t−8/5 (

H3δξξξ

)
ξ

︸ ︷︷ ︸
Ca

= 0. (59)

Substituting (34) into (59) it follows to leading order that

δ = t−1/5 3

10B2 ξ2 ln |ξ |, (60)

which satisfies δξξξ < 0, and so the flux becomes negative as one passes from Zone II to
Zone I. Thus we can define the transition point ξl by the condition |δξξξ | ≈ Hξξξ , which
results in

ξl ≈ −
(
−5C

3B

)1/2
t1/10 ≈ − 1.71√

k(R)
t1/10. (61)

In terms of the variable of Zone I, η, this corresponds to

ηl ≈ − 1.71√
k(R)

t−1/10. (62)

Since the scale of the pinch solution is small on the scale of Zone I, the pinch point is located
at η = 0, so ηl goes to zero as expected. The outer limit of the inner (pinch) solution, on
the other hand, is ξ → −∞, which again agrees with (61). The significant point is that
in both cases, the convergence toward the expected limit occurs very slowly, which agrees
qualitatively with Fig. 8, where it is seen that the point where the full lines start to deviate
from the dashed line (the asymptotic solution) moves to the left very slowly.

Now we estimate the location of the transition point x ′
r between Zone II and Zone III, for

finite time. Zone III is controlled by a static balance between surface tension and gravity,
described by κx ≈ hxxx = 1. As in the traveling wave solution of Sect. 2, the matching point
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Fig. 12 A close up of the simulation of Fig. 6 near the transition region between Zones II and III, for
t1 = 2.38 × 109 (circles), t2 = 9.66 × 109 (squares) and t3 = 4.31 × 1010 (triangles). In time, curves
approach the static outer solution (3),(4) for R = 0.794 < Rc (dashed line). The vertical dashed (red) lines
indicate x ′

r as given by (64) (Color figure online)

is determined by the requirement that hxxx = 1, where the left hand side is computed from
(56) in the limit ξ → ∞, i.e. (33). This condition yields

23Ct2/5

k3(R)ξ6m
≈ 16.509t2/5

k3(R)ξ6m
= 1, (63)

which implies

x ′
r ≈

√
2C1/6

√
k(R)

t−1/3 ≈ 1.596√
k(R)

t−1/3, ξr ≈ 1.596√
k(R)

t1/15. (64)

Oncemore, in the outer variable (which is the variable x ′ ofZone III in this case), the transition
point goes to zero. The prediction (64) is tested in Fig. 12. The positions x ′

r , shown for three
different times, agree well with the point where the simulation curves start to deviate from
the static solution.

4.5 Physical Results

The above calculation completes the description of the solution R < Rc in the limit t → ∞.
We now summarize some key results of particular physical significance, explaining in what
sense the bubble is “stuck”. To ease comparison to experiment, from now on everything will
be reported in dimensional form, using the length scale �c and time scale τ = η�c/γ .

Using (57), the minimum film thickness reads in dimensional form

hmin ≈ 1.89�c
k(R/�c)

(
tγ

η�c

)−4/5

, (65)

where k(R/�c) is shown in Fig. 11. For R � Rc we can use the approximations (54) and
(55). If the initial condition is such that h(x) is a film of constant thickness b (apart from the
tip region), such as in the simulation shown in Fig. 6, (65) becomes valid only if hmin < b.
This means that the scaling (65) applies for times t with
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Fig. 13 A comparison between numerical results for the mean speed of a bubble in a 2D tube of radius
R/�c = 0.749, and the asymptotic behavior U ∝ t−2. The solid line is the scaling (67), triangles the
numerical results from the run shown in Fig. 6. The dashed vertical linemarks the time t∗ ≈ 2.3×103τ given
by (66), beyond which the asymptotic solution applies

t > t∗ ≈ 2.21
η�c

γ

(
bk(R/�c)

�c

)−5/4

. (66)

Apart from the film thickness, the quantity of greatest physical relevance is the speed of
the bubble. We estimate the mean motion of the upper part of the bubble, beyond the pinch
point, by the total flux across the pinch point, using volume conservation (8) as well as (58).
Thus for R � Rc one obtains:

U (t) ≈ −A2D/3D ν�c

Rg

t−2

√
(Rc − R)/�c

, A2D ≈ 0.468 and A3D ≈ 1.01. (67)

Note the remarkable fact that asymptotically the flux across the minimum is always positive
(owing to the properties of the current equation), so the amount of fluid above the bubble
increases. As a result, the bubble is pushed down on average, rather than moving up in the
direction of buoyancy.

The asymptotic law (67) agrees very well with numerical simulations, as seen in Fig. 13.
One can also see that t∗, as given by (66), is a good predictor of the time beyond which (67)
applies. Clearly, the speed goes to zero very quickly, so that the distance traveled in infinite
time is finite. Taking as this distance the mean motion of the bubble having started at t∗, we
obtain:

xd ≈ −A2D/3D η�c

ρRg

t∗−1 − t−1

√
(Rc − R)/�c

. (68)

Coming back to the surprising observation that according to (67) the bubble appears to
move down rather than up, we now show that in an earlier phase of its evolution, the tip of the
bubble may in fact be moving up or down, depending on initial condition, at least within the
approximate dynamics described by (28). In Fig. 14 we show the velocity Utip as estimated
from the flux (27) calculated at the tip of the bubble, using two different initial conditions.
The first initial condition (corresponding to the dashed line in Fig. 14) is produced in the
same way as Fig. 6, obtained by taking a bubble rising under gravity for R > Rc, and then
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Fig. 14 The velocityUtip at the tip of the bubble as it moves in a tube of radius R = 0.6/�c , for two different
initial conditions. The initial condition corresponding to the solid line is the profile of a bubble being pushed
through a tube in the absence of gravity [1], with a film thickness b/�c = 0.01. The dashed line is produced
from a rising bubble as in Fig. 6, but scaled down by a factor of a = 0.682. The inset is a zoomed-in version
of the same plot, showing the change of sign in the solid line. The vertical dashed lines show the estimated
time t∗/τ = 670 for the onset of pinching

rescaling the profile to make it fit into a tube of smaller radius. The second initial condition
(corresponding to the full line) is obtained in a more physical way: we start from the profile
of a bubble obtained by pushing fluid through the tube (which is the first of the problems
considered by Bretherton [1]), which can be achieved simply by opening the tube, so that
fluid can pass through it.

Firstly, we see that before the beginning of the pinching process at t = t∗, typical veloc-
ities are much greater than after the profile starts to pinch down. Secondly, the early time
dynamics is non-universal, and even the sign of the motion depends entirely on the initial
condition.While the dynamics following the second initial condition conformswith our naive
expectation that the bubble should move up (U > 0), the dynamics following the first initial
condition shows the opposite trend: the bubble moves down (U < 0). The reason is that in
each case, the tip of the bubble relaxes toward its equilibrium shape, which is a semicircle.
In the second case, the initial condition is such that its volume is greater than the static outer
solution for the top of the bubble. As a result, there is a negative flux to fill this space, corre-
sponding to the bubble moving up. In the case of the first initial condition, the initial bubble
shape has a smaller volume than a static bubble, and the bubble moves down. Later in the
evolution of the bubble, beyond t∗, the tip velocities for the two initial conditions converge
toward one another, as expected for the universal dynamics close to the pinch point.

5 Discussion

The generalized thin film equation (cf. Fig. 15)

∂h

∂t
+ [

hnhxxx
]
x = 0, (69)
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Fig. 15 Equation (69) in the late
Leo Kadanoff’s handwriting

which has been employed to describe many different physical situations [2–4,7,15,17], plays
a central role in our analysis. In the present case of thin film flow over a solid substrate we
have n = 3; the case n = 1 is a model equation for a Hele–Shaw cell [3]. Additional terms
may come from gravity, usually subdominant in the pinch region, or from the presence of
surface forces. A remarkable property of (69) is that, even for a fixed value of n, it allows
for a whole family of different similarity solutions [4], depending on how the equation is
driven at the boundaries, or on the initial conditions. As a result, switching between different
types of singularities is observed, even after the local dynamics has followed one behavior
for many decades [18].

This is in marked contrast to many singularities observed in other systems [8], for example
the pinch-off of a fluid jet. Jet pinch-off shows a high degree of universality, in that the
similarity exponents and the similarity profile are independent of initial conditions or of
the effects of gravity. This difference in behavior can be understood in terms of the physics
the respective equations describe. In the case of a three-dimensional jet, surface tension
provides an intrinsic mechanism for breakup, as a thinner jet has less surface energy. In the
case of a film, no such mechanism exists, if one disregards the effect of “attractive” van der
Waals forces [19], which favor thin films, but only come into play for films of about 10 nm
thickness and below. For macroscopic films, the energy is independent of the film thickness,
and singularities can only be provoked by some external forcing, provided by gravity in the
present problem. As a result, it is intuitive that many different types of pinch-off are possible,
depending on the details of the forcing provided.

A particular type of singularity revealed in [4] is described by the current Eq. (32), which
also lies at the heart of the present analysis. As a further reflection of the intrinsic lack of
universality of solutions of (69), the similarity solution in the pinch region has the curious
property that the scaling exponentsα andβ, which describe the shrinking of the film thickness
as well as the spatial extent of the pinch region, are not determined by the equation itself.
The same holds true of the free constants in front of the asymptotic behaviors (34) and (33).

In [7], Jones andWilson investigate a solid spherewhich falls toward the interface between
two viscous fluids. As the top fluid is squeezed out, the thickness of the film of top fluid goes
to zero in a region which connects a central region underneath the sphere, and an outer region
dominated by surface tension and gravity. A similar solution applies to the merging of two
drops under gravity [17]. In both cases, the scaling exponents for the current equation, in the
notation of (30), are α = −1/2 and β = −1/4. In [4], infinite time singularities of (69) were
analyzed for general n, with the result α = 1/(1− n) and β = 1/(2(1− n)), consistent with
earlier results for n = 3.

How can the difference between these earlier results and our result of α = −4/5, β =
−2/5 be explained? Firstly, all exponents obey the scaling relation α = 2β, which comes
from the matching to a parabolic outer solution with time-independent curvature on one side
of the pinch region. The second exponent is fixed through matching to a “central”region to
the other side of the pinch region. Since the scale of the central region is large to that of the
pinch region asymptotically, we can expand the profile to linear order about the pinch point
x0.
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In the case of (69) considered in [4], the central solution is of the form

h(x, t) = tγ f (x) ∝ tγ (x − x0),

and the total flux out of the central region can be written as the time derivative of the total
volume, which gives j ∝ tγ−1. This has to be equated with the flux through the pinch region,
which is

j ∝ hnhxxx ∝ t (n+1)α−3β ∝ t (2n−1)β ,

and so γ − 1 = (2n − 1)β. Finally matching between the linear regions of the central
and pinch regions requires γ = α − β. Combining these scaling relations gives the result
β = 1/(2(1 − n)) cited previously.

The crucial difference between previous calculations and the present result is that gravity
comes into the balance in the thin film region, which replaces the central region. Since gravity,
surface tension, and viscous forces all come in at leading order, exponents in the thin film
region are fixed to α1 = −3/5, β1 = −1/5 on dimensional grounds. Matching in the linear
crossover region, this yields the requirement −2/5 = α1 − β1 = α − β = β, consistent
with (56). Note that the flux, taken in a fixed frame of reference, is now no longer the same
between the two similarity solutions.

As wementioned earlier, on small scales van derWaals interactions come into play. If they
are attractive, thin films are energetically favored, leading to finite time thin film pinch-off
even above the critical tube radius calculated by Bretherton [20]. As a result, there exists a
critical capillary number below which pinching occurs. If on the other hand van der Waals
interactions are attractive, pinch-off is inhibited, and the pinch solutions described here are
no longer expected to be valid below a thickness of 10 nm.

We expect that in the long-time limit, a new type of traveling-wave solution will be
established, the bubble leaving behind a very thin film of uniform thickness. Surprisingly,
this thickness is not set simply by the van der Waals length a = A/(6πγ ), where A is the
Hamaker constant [19]. Instead, a more detailed calculation, incorporating the van der Waals
repulsion into Bretherton’s original calculation [21], shows that the speed is now

U = γ

η

a2

3R
√
2(Rc − R)�c

, (70)

while the film thickness is

b = a2/3�1/2c√
2(Rc − R)1/6

. (71)

Owing to the quadratic dependence of the speed on a, which is typically one Angstrom, the
expected speeds are unfortunately very slow, and observed speeds might well be controlled
by other mechanisms, such as roughness.

Finally, we believe the system studied here to be a fertile ground for experiment. The only
previous experimental test of the transition between moving and stuck bubbles we are aware
of is a qualitative observation of Bretherton himself [1]. As he notes, the verification of (25)
might prove difficult, as the transition could be obscured by effects of contamination. By
contrast, the pinch phenomenon we discuss in this paper is much more robust, since it is not
tied to being close to the transition. We believe this to be an ideal setup to study the pinch-off
singularity of a thin film, which to our knowledge has not been reported before.

In order to set up a well-defined initial condition from which the pinching process starts,
we propose the following procedure. Prepare a capillary whose radius is below the critical
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value, so that the bubble is stuck if the tube is closed. However, by holding the tube vertically
and opening the upper or lower end slightly, the bubble will rise at a slow rate, which can be
controlled by the size of the opening. From the observed speed of rise U one can calculate
the film thickness b using Bretherton’s first problem for the motion of a bubble in the absence
of gravity [1]

b = 0.643R

(
3ηU

γ

)2/3

. (72)

Once the opening is closed, the pinch-off process begins, with an initial film thickness given
by (72). The minimum thickness should then evolve according to (65).

In conclusion, Leo Kadanoff left a wonderful and lasting legacy with his contributions to
the study of singularities. A great many important problems remain, which will be a source
of pleasure and fascination for generations of scientists to come.
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Appendix:1 Asymptotics for F as η → 0

Wewould like to find the most general solution of (42) consistent with the linear asymptotics
(43). To find the structure of the solution in this limit, we put F = Bη + δ, where δ is a small
correction. Then the leading-order contribution to (42), coming from the first two terms on
the left, is linear in η, while (F3)η is subdominant as η → 0. Linearizing the remaining term
(F3Fηηη)η in δ, (42) yields:

− 2Bη

5
+ B3

3

(
η3δ′′′)′ = 0. (73)

Here and in the remainder of this appendix, primes denote the derivative with respect to the
argument. Integrating (73) we find the general solution

δ = − 9

20B2 η2 + 3η2

10B2 ln(|η|) + δ1 ln(|η|) + δ2 + δ3η + δ4η
2, (74)

where δ1, . . . , δ4 are constants of integration. The coefficients δ1 and δ2 must vanish, since
they would dominate (43), contradicting our assumption, while δ3 can be included in the
constant B. Thus the leading behavior of F as η → 0 is

F = Bη − 9

20B2 η2 + 3η2

10B2 ln(|η|) + Pη2,

with a single free constant P .
The general form of the expansion must contain higher powers of ln η as well, since

powers of ln η are generated by the term F3. A closer inspection shows that the most general
expansion which balances the number of free coefficients with the number of equations is

F(η) =
∞∑

j=1

max( j−2,1)∑

i=0

a jiη
j (log |η|)i , (75)

where a10 = B, a11 = 0, a20 = P − 9/(20B2) and a21 = 3/(10B2) as shown above. The
coefficients a ji are now found recursively as follows. Substituting (75) into (42), at each
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order j ≥ 3 we obtain terms of the form

η j (log |η|)i , i = 0, . . . , j − 1,

whose coefficients must equal zero, and which constitute a linear system of equations for
a j+1,0, . . . , a j+1, j−1. Starting with i = j − 1, this system can be solved recursively for
a j+1, j−1, proceeding down to i = 0, which is an equation for a j+1,0. Implementing this
scheme in MAPLE, we find

a30 = − 4P

15B3 + 19

75B5
+ 1

6
, a31 = − 2

25B5
,

a40 = P2

8B4 − 1

80B3 − 131P

800B6 + 1507

32000B8 ,

a41 = 3

8000

200B2P − 131

B8 , a42 = 9

800B8 , . . . . (76)

Appendix: 2 Asymptotics for F as η → −∞
Here we seek a description of solutions of (42) consistent with the asymptotics (47) as
η → −∞, so we put

F = √−η + δ

into (42) and linearize in δ. Contributions coming from surface tension are subdominant at
this order, and we obtain to leading order

2

5
δ + 6

5
ηδ′ = 1

8η2
, (77)

where the right-hand side comes from gravity. This has the general solution

δ = Q

(−η)1/3
− 1

16η2
, (78)

where Q is a constant of integration.
This suggests a general solution of the form

F =
∞∑

i=0

ci |η|1/2−5i/6, (79)

where all coefficients ci can be determined uniquely, and contributions from surface tension
come in at higher orders. The first few are,

c1 = 1, c2 = Q, c3 = −Q2/6, c4 = −1/16, . . . , (80)

determined by a single free constant Q.
Next we wish to find all solutions F to (11), which asymptote to F̄ as η → −∞, by

performing a linear stability analysis around F̄ , using the ansatz:

F = F̄ + δ(η). (81)

We are interested in all possible δ(η), which grow exponentially as η → −∞. Inserting (81)
into (42) and linearizing, we find

− 3

5
δ + 1

5
ηδ′ + (

F̄2δ F̄ ′′′)′ + 1

3

(
F̄3δ′′′)′ − (F̄2δ)′ = 0. (82)
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Since the coefficients depend on η, we use the WKB ansatz δ(η) = eλ(−η)n . For n > 0, the
leading order balance as η → −∞ is

− 6

5
(−η)δ′ + 1

3
(−η)3/2δ′′′′ ≈ 0, (83)

which requires n = 5/6 for the powers to balance, and we obtain the 4th order eigenvalue
equation:

λ

[
1 + 1

3

(5
6

)4
λ3

]
= 0. (84)

We are interested in roots with positive real part only, since negative roots decay expo-
nentially as we integrate toward −∞ and λ = 0 corresponds to the solution itself. There are
two such eigenvectors with positive roots that solve (84):

λ3,4 = 3

25
4501/3 ± i

3
√
3

25
4501/3, (85)

leading to unstable solutions of the form

F = F̄ + exp
(Aη5/6

) [
ε1 sin

(√
3Aη5/6

)
+ ε2 cos

(√
3Aη5/6

)]
, (86)

where A = 3
25450

1/3.
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