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ABSTRACT
We consider a confined sheared active polar liquid crystal with a uniform orientation and study the effect of variations in the magnitude of
polarization. Restricting our analysis to one-dimensional geometries, we demonstrate that with asymmetric boundary conditions, this system
is characterized, macroscopically, by a linear shear stress vs. shear strain relationship that does not pass through the origin: At a zero strain
rate, the fluid sustains a non-zero stress. Analytic solutions for the polarization, density, and velocity fields are derived for asymptotically large
or small systems and are shown by comparison with precise numerical solutions to be good approximations for finite-size systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080343

I. INTRODUCTION

Swarms of bacteria,1–4 mixtures of cytoskeletal filaments and
motor proteins,5–7 and self-propelled colloids8,9 are all examples
of active suspensions10–13 consisting of anisotropic self-driven par-
ticles dispersed in a passive liquid. Due to the orientable nature
of their constituents, active suspensions can exhibit a long-range
orientational order and are often referred to as active liquid crys-
tals (LCs).10–12,14 While active LCs can exist in ordered phases
typical of liquid crystals,15 they fundamentally differ from their
passive counterparts, because each active particle transduces free
energy into systematic movement, maintaining the system out of
equilibrium.

As active particles interact with each other and with their sur-
rounding environment, they are able to collectively generate motion
and mechanical stresses at scales much larger than their individual
size, endowing active materials with unusual mechanical properties.
An example is the reduction of the apparent viscosity of bacterial
suspensions under shear.16–21 Remarkably, upon increasing activity,
the apparent viscosity can decrease until a value of zero is achieved,
giving rise to superfluid-like behaviour.20,22 In the last decade, rhe-
ological measurements16–20 have shown qualitative agreement with
earlier theoretical predictions23–28 for the macroscopic mechani-
cal properties of active suspensions. Yet, a more thorough under-
standing of the underlying mechanisms driving these systems

requires a more quantitative comparison of theoretical models with
experiments.29 Such a comparison is becoming possible as more
detailed information, such as transient rheological behaviour20 and
velocity profiles,22 becomes accessible experimentally.

Many active materials, whether biological or synthetic, involve
head-tail asymmetric particles and can exist in a polar phase. For
such systems, the broken symmetry variable is the polarization vec-
tor which represents the local coarse-grained orientation of the par-
ticles. When an active polar LC is sheared, distortions in the orien-
tation of the polarization field induce active stresses which in turn
generate an extra flow (needed to maintain the stress balance). This
mechanism allows the apparent viscosity (defined as the macro-
scopic viscosity at the scale of the system, as would be measured
by using a rheometer) of active LCs to vanish or even become neg-
ative.29 While previous theoretical analyses29–31 have focused on
how gradients in the orientation can induce the active stresses that
lead to unconventional mechanical behaviour, here our focus is on
how variations in the magnitude of LC order affect the mechanical
properties of active LCs.

In this paper, we show that a gradient in the magnitude of
polarization of active LCs induces, even in the absence of varia-
tions in orientation, flows that give rise to anomalous mechanics.
Specifically, we examine the effect of a varying polarization mag-
nitude on a one-dimensional confined active polar LC subjected to
shear. We derive the analytical relationship between the stress and
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the macroscopic strain rate, which shows, in particular, that this sys-
tem experiences a non-zero shear stress at a zero shear strain rate
(and conversely, a non-zero strain rate is required to maintain a zero
stress).

With the assumption of a uniform orientation, the nonlinear
governing equations become decoupled, so it becomes possible to
obtain explicit solutions. We obtain exact analytical expressions for
the velocity and density fields as a function of the polarization field,
the latter being shown to be well approximated by asymptotic solu-
tions in the limit of large or small systems. This is interesting because
hydrodynamic equations for active LCs are highly nonlinear; hence,
analytical solutions beyond linearization approximations are rare
even in the simplest geometries. As a result, studies of sheared active
LCs tend to be numerical.29–35

II. MODEL
We consider an active LC with the possibility of polar orien-

tational order. At the continuum scale, its dynamics are described
by a set of long-wavelength, long-time scale equations forming the
now well-accepted hydrodynamic theory of active matter.11,14 The
relevant hydrodynamic variables are the polarization vector p, the
particle number density ρ (for simplicity ρ is normalized by its equi-
librium value), and the momentum is ρmu, where ρm is the fluid mass
density and u is the fluid velocity.

The passive contributions to the equations of motion are cus-
tomarily described as those arising from the nonequilibrium analog
of the free energy for a passive polar LC. This free energy is given
by11,30

F = ∫
r

(fn + fp) dr, (1)

fn =
a2

2
∣p∣2 +

a4

4
∣p∣4 +

K
2
∣∇p∣2 +

C
2
(ρ − 1)2, (2)

fp = B1(ρ − 1)∇ ⋅ p + B2∣p∣2∇ ⋅ p + B3∣p∣2p ⋅∇ρ. (3)

The contribution f n is the free energy density of a nematic LC. The
first two terms control the isotropic-polar transition: They favor a
polar phase (|p|2 = −a2/a4) when a2 < 0 and an isotropic phase (|p|2

= 0) when a2 > 0. The third term describes the energy cost of defor-
mation (K is the analog of the Frank constant for passive LCs), and
the last term penalizes density variations (C is the compression mod-
ulus). The contribution f p contains additional terms that break the
p→ −p symmetry and are allowed in a polar fluid.36

The polarization and density dynamics are governed by

Dtp = −βpp ⋅∇p + λE ⋅ p −Ω ⋅ p − Γpph − Γcpg (4)

and

Dtρ = ∇ ⋅ [−ρβcp + Γcph + Γccg], (5)

where Dt = ∂t + u ⋅∇, Eij = (∂iuj + ∂ jui)/2, Ωij = (∂iuj − ∂ jui)/2,
h = δF/δp, and g = ∇(δF/δρ). The flow is assumed incompressible
(∇ ⋅ u = 0), and the flow field satisfies

ρm(∂t + ui∂i)uj = ∂iσij. (6)

The stress tensor is given by

σij = 2ηEij + σrij + σaij, (7)

where the first term is the dissipative contribution (η is the fluid vis-
cosity), σrij is the reversible contribution (as in passive LCs), and σaij
is the active contribution. The reversible stress is given by

σrij = −Πδij +
λ
2
(pihj + pjhi) +

1
2
(pihj − pjhi), (8)

where Π is the pressure. The active stress is

σaij = αρpipj + βσρ(∂ipj + ∂jpi), (9)

where the lowest order term ∼α has nematic symmetry, while the
higher order term ∼βσ is present only in systems with polar symme-
try. In the above equations, βc ,p and βσΓpp have the dimension of
a velocity, and the associated terms arise in polar systems from the
self-advection of active elements along p.

Our geometry is similar to that used in prior work29,30 and
is depicted in Fig. 1: A two-dimensional thin film of active LC of
thickness L is sheared between two parallel walls moving in oppo-
site directions with velocity magnitude V. We allow gradients only
in the direction normal to the walls. Due to incompressibility and
wall impermeability, the flow must be parallel to the wall: u = (u(z),
0), and we use no-slip boundary conditions: u(L) = −u(0) = V.
The fluid is therefore subjected to a macroscopic shear strain rate
γ̇ = ∫

L
0 ∂zudz = 2 V/L.
To pick out the effects of variations in the amount of LC order

only, we further assume that the polarization field is parallel to the
walls, and only its (signed) magnitude is allowed to vary: p = (p(z),
0). Previous work has focused on the role of varying orientation with
fixed magnitude, here by contrast, we fix the orientation and focus
on the role of varying magnitude of p only. Our choice of orientation
is consistent with the expected boundary conditions on the walls. An
attractive feature of this approximation is that it makes the problem
tractable analytically due to the decoupling of the equations. Such
an aligned state is physically relevant to situations where strong par-
allel anchoring is prescribed at the walls, provided that the coupling
between the polarization orientation and the local shear is negligible,

FIG. 1. A thin film of active polar LC sheared between two moving no-slip walls.
The polarization field is uniformly aligned with the walls, and only its magnitude p
is allowed to vary.

J. Chem. Phys. 150, 104902 (2019); doi: 10.1063/1.5080343 150, 104902-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

that is, for systems which satisfy ΓppK ≫ UL (with U being a charac-
teristic velocity scale for the flow). The governing equations reduce
to

∂tp = −Γpp(a2 + a4p2
)p + ΓppK∂2

z p, (10)

∂tρ = ∂z[ − 2b2p∂zp + (d + b3p2
)∂zρ], (11)

ρm∂tu = ∂zσ, (12)

with

σ = η∂zu + (βσρ + mb2p2
)∂zp +

m
2
(b1 − b3p2

)p∂zρ, (13)

where σzx is now simply denoted σ and we have introduced d = ΓccC
− ΓcpB1, b1,2,3 = ΓcpB1,2,3, and m = (1 − λ)/Γcp. At the boundaries,
the flux of ρ across the walls must be zero, and we require that
the polarization vectors at the walls are antiparallel: p(L) = −p(0)
= peq =

√
−a2/a4 (here, we assume a2 < 0).

It is interesting to note that the coupling terms in the govern-
ing equations are those which break the p → −p symmetry. For a
nematic fluid (b1,2,3 = 0, βσ = 0), the equation for ρ reduces to a dif-
fusion equation, and the expression of the stress only contains the
viscous term. Therefore, in the simple configuration we consider
here, a nematic active fluid would behave as an isotropic passive
one.

III. RESULTS
Let us consider a continuous steady solution p(z) for the polar-

ization field. Then, the steady state solution to Eq. (11) is

ρ =
b2

b3
ln(d + b3p2

) + ρ0, (14)

where d + b3p2
> 0 is assumed37 and ρ0 is a constant determined

by the condition L−1
∫

L
0 ρ dz = 1. At steady state, the shear stress is

uniform across the gap (∂zσ = 0). One can then integrate Eq. (13)
for a constant (unknown) σ and obtain the velocity field

u =
σ
2η

(2z − L) − ξp +
√

d
b3
ξ arctan(

√
b3

d
p) −

βσ
η
pρ, (15)

with

ξ =
b2

ηb3
(mb1 + md − 2βσ). (16)

The (macroscopic) steady-state flow curve σ = f (γ̇), as would
be measured by using a rheometer, is then obtained from Eq. (15) by
satisfying the no-slip boundary conditions at the moving walls. One
finds

σ = ηγ̇ + σ0, (17)

with

σ0 =
2η
L

⎧⎪⎪
⎨
⎪⎪⎩

ξpeq −

√
d
b3
ξ arctan(

√
b3

d
peq)

+
βσ
η
peq[

b2

b3
ln(d + b3p2

eq) + ρ0]

⎫⎪⎪
⎬
⎪⎪⎭

. (18)

The slope dσ/dγ̇ is simply the fluid viscosity η, as for an isotropic
passive fluid; however, the stress at a zero strain rate, σ0, is not
zero: The active LC has a yield stress and effectively behaves, from a

FIG. 2. The effect of system size: (a) polarization magnitude field, (b) density
field, (c) velocity field, and (d) deviation from asymptotic results in the stress at
a zero strain rate (inset: stress). Analytical profiles and stress were obtained using
Eq. (19) for L ≫ 1 and Eq. (20) for L ≪ 1 (here, we set for simplicity −a2/K = 1).
The parameters are a2 = −1, a4 = 1, K = 1, η = 1, b1,2,3 = 0.1, m = −1, d = 1,
βσ = −1, and γ̇ = 0 (arbitrary units).
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rheological point of view, in a similar way to a Bingham fluid.38
Indeed, gradients in p induce reversible and active contributions to
the stress which exist independently of the applied strain rate. The
converse is also true: A non-zero macroscopic strain rate is required
in order to maintain a zero stress. Moreover, σ0 can be of either sign,
meaning that the apparent viscosity, defined as σ/γ̇, can be negative
(while passive contributions can only add to σ, active contributions
∼βσ can either add or subtract to σ).

There exist, as far as we know, two limiting cases where an
explicit steady state analytical solution to Eq. (10) can be written.
In the limit −a2L2/K ≫ 1, a good approximation for p is the solution
for an infinite system39

p = peq tanh[
√
−a2

2 K
(z − zi)], (19)

where zi is the (undetermined) location of the interface (whose
thickness decreases with increasing −a2/K) between two polar
phases pointing in opposite directions. This profile results in deple-
tion (or accumulation, depending on the sign of b2) of ρ local-
ized at the interface and in a non-uniform, non-monotonic velocity
profile.

In the opposite limit −a2L2/K ≪ 1, the solution for the polar-
ization magnitude can be approximated by a linear profile

p = −peq +
2peq

L
z. (20)

Note however that this latter limit may require that the width L be
comparable to the active particle size, for which the validity of the
hydrodynamic equations is in question and is mostly of interest here
as a bound.

In addition to these limiting cases, Eqs. (10), (11), and (13)
were also solved numerically. Our algorithm is based on second-
order implicit finite difference schemes (Crank-Nicolson scheme
for time integration and centered schemes for spatial discretization)
with adaptive time-stepping. Time-dependent equations were solved
to steady-state, starting from a linear profile for p and a uniform ρ.
A comparison between the asymptotic solutions and the numeri-
cal ones is shown in Fig. 2, together with additional results for an
intermediate value of −a2L2/K. The estimate of σ0 obtained from
asymptotic expressions is remarkably accurate (deviation not greater
than 1%) even for −a2L2/K = O(1).

IV. DISCUSSION AND CONCLUSIONS
We considered the minimal problem of a one-dimensional

sheared active LC under confinement, with a uniform orientation
of the polarization field, focusing on the effect of varying its signed
magnitude p. Our analysis thereby complements prior studies of the
same system which allowed gradients in the orientation field, while
keeping the magnitude of liquid crystalline order constant.29,30,40

As the dynamics of p is not coupled to that of the density or the
velocity, the uniform equilibrium solution is always stable and gra-
dients in p must be generated through boundary conditions. Here,
we imposed p to be of equal magnitude and of opposite signs at the
walls. Such asymmetric polarization at the boundaries could be real-
ized experimentally through manipulation of the surface chemistry
or architecture.41–45

The case of variable orientation leads to a rich phenomenol-
ogy, including a spontaneous transition to a flowing state in the
absence of external driving,40 and the existence of non-monotonic
stress vs. strain rate flow curves.29,30 By contrast, the case of variable
polarization studied here does not yield such unusual mechanical
properties: The relationship between the stress and the macroscopic
strain rate is linear and, for a nematic active LC, would not differ
from that for an isotropic fluid. For a polar active LC though, there
exist elastic and active contributions to the total stress in addition
to the viscous one, and the flow curve does not pass through the
origin. This indicates that macroscopic stresses are present in the
uniformly aligned polar active LC even in the absence of external
driving.

One of the advantages of the simple configuration consid-
ered here lies in the fact that analytical solutions can be explicitly
obtained. We hope that these solutions will provide insight into the
role played by the gradients of liquid crystalline order and could be
used as a starting point and benchmark reference for numerical work
on sheared active polar LCs, where both the magnitude and direction
of the LC order parameter vary.32–34
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