
Journal of Computational Physics 471 (2022) 111624
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

MARS: A method for the adaptive removal of stiffness in PDEs

Laurent Duchemin a,∗, Jens Eggers b

a Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005 Paris,
France
b School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 June 2022
Received in revised form 8 September 2022
Accepted 12 September 2022
Available online 24 September 2022

Keywords:
Stiff set of PDEs
Hele-Shaw
Birkhoff–Rott integral
Surface tension

The E(xplicit)I(implicit)N(null) method was developed recently to remove numerical
instability from PDEs, adding and subtracting an operator D of arbitrary structure, treating
the operator implicitly in one case, and explicitly in the other. Here we extend this
idea by devising an adaptive procedure to find an optimal approximation for D. We
propose a measure of the numerical error which detects numerical instabilities across
all wavelengths, and adjust each Fourier component of D to the smallest value such that
numerical instability is suppressed. We show that for a number of nonlinear and non-
local PDEs, in one and two dimensions, the spectrum of D adapts automatically and
dynamically to the theoretical result for marginal stability. The adaptive implicit part is
diagonal in Fourier space, so that our method has the same stability properties as a fully
implicit method, with minimal computational overhead coming only from performing the
fast Fourier transform.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Our ability to model many key physical processes is limited by the stability of the numerical schemes we use to simulate
the partial differential equations (PDEs) describing them. The reason is that the maximal stable time step of an explicit
numerical integration scheme is of the order of the shortest time-scale in the system. In a stable physical system these
are typically exponentially damped modes which relax back to equilibrium; the smaller the length scale, the faster the
relaxation. This makes it particularly hard to simulate systems at large values of the viscosity or of the surface tension.
For instance, surface tension driven flows in the open source fluid dynamics code Gerris [1] (followed by Basilisk: http://
basilisk.fr) require a time step proportional to �3/2 [2], where � is the grid spacing, which this program adapts dynamically
in order to ensure a sufficient spatial accuracy [3]. As a result, for small geometries � can be very small, resulting in time
steps which are prohibitively small. This constraint is more restrictive than the CFL constraint, related to advection, for which
the time step depends on a spatial scale like �. Another example is the numerical computation of solidification/fusion fronts,
which uses a non-linear heat equation [4]: the corresponding time step constraint is �2.

If for example relaxation toward equilibrium is controlled by a differential operator of order m (m = 2 for ordinary
diffusion, m = 3 for the Hele-Shaw flow to be described below), then the required maximum time step δt scales as δt =
Cδxm , where δx is the smallest grid spacing or the size of the smallest sub-division. In a well-resolved numerical simulation,
this should be considerably smaller than the smallest relevant physical feature. Rapid exponential decay implies that the
amplitude of perturbations on the grid scale is very small, and contributes negligible to the numerical solution. Thus one

* Corresponding author.
E-mail addresses: laurent.duchemin@espci.fr (L. Duchemin), Jens.Eggers@bristol.ac.uk (J. Eggers).
https://doi.org/10.1016/j.jcp.2022.111624
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111624
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111624&domain=pdf
http://basilisk.fr
http://basilisk.fr
mailto:laurent.duchemin@espci.fr
mailto:Jens.Eggers@bristol.ac.uk
https://doi.org/10.1016/j.jcp.2022.111624

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
arrives at the paradoxical situation that the stability of the numerical scheme is controlled by a part of the solution which
contributes negligibly, and which is actually the most stable from a physical perspective. This property is sometimes referred
to as the stiffness of the PDE [5], which becomes worse with increasing spatial order m of the operator.

To deal with this constraint on the time step, which often is so severe that it makes the exploration of important physical
parameter regimes impractical, one has to resort to implicit methods. This means that the right hand side of the equation
(or at least the stiffest parts of it) has to be evaluated at a future time step, making it necessary to solve an implicit equation
at each time step [6,7]. This makes the numerical code both complicated to write and time-consuming to solve. This is true
in particular if the operator is non-local (as is the case for example of integral operators, as they appear in boundary integral
type codes [8,9]). Indeed, in this particular case, when writing an implicit scheme, each element of the discretized solution
depends on all the others, requiring a large number of operations to solve the implicit equation.

To address this problem, it has long been realized that not the whole of the right hand side of an equation has to
be treated implicitly, as long as the “stiffest” part of the operator is dealt with implicitly. This gives rise to the so-called
“implicit-explicit methods” [10,11], which divide up the problem between explicit and implicit parts, such that hopefully the
implicit contribution is sufficiently simple to invert. If this is not clear, as is typically the case for an integral operator, the
problem can be solved by judiciously slicing off the stiffest part, which can be local [9]). However, this has to be done on a
case-by-case basis, and will not always be possible. Recently, we have presented a much more general method to stabilize
stiff equations, which makes use of the arbitrariness in which splitting between explicit and implicit parts can take place
[12,13]. We consider a partial differential equation of the form

∂u

∂t
= f (u, t), (1)

where u(x, t) is a function of space and time or a vector of functions of space and time, and f (u, t) generally is a non-linear
operator involving spatial derivatives of u(x, t). In the present article, after explaining the adaptive stabilization procedure
in section 2, we shall treat the following three examples:

• A non-linear operator with a fourth-order spatial derivative, related to the thin film flow equation (section 3):

f (u, t) = − ∂

∂x

(
u3 ∂3u

∂x3
+ 1

u

∂u

∂x

)
,

• A two-dimensional example with a fourth-order derivative (section 4):

f (u, t) = −N (u) − �u − ν�2u,

where u(x, y, t), N (u) is a non-linear operator, � the Laplacian, and ν a constant,
• A boundary integral equation (section 5):

f (u, t) =
∫

g(v)K (u, v)dv,

where u and v are two-dimensional vectors, g(v) is a function of v involving second-order derivatives in space, K (u, v)

is a singular kernel, and the integral is performed along a curve.

As explained in our previous article [13], in order to stabilize the stiff terms in f (u, t), we add two terms on the right-
hand-side of the discretized version of equation (1):

un+1
j − un

j

δt
= f j(un, tn) −D j[un] +D j[un+1], (2)

where n denotes the time variable (tn = nδt) and D is an arbitrary operator. The variable u as well as f are defined on a
spatial grid x j = jδx, where δx is the grid spacing. Clearly, the added terms are effectively zero apart from the first-order
error that comes from the fact that D is evaluated at different time levels, which motivates the name “Explicit-Implicit-Null”
method or “EIN”. If D is the same as the original operator f (u, t), this is a purely implicit method, if D = 0, it is explicit.
Similar ideas have been implemented to stabilize the motion of a surface in the diffuse interface and level-set methods
[14–16], and for the solution of PDEs on surfaces [17]. We also show that by a simple step-halving procedure [18], (2) can
always be turned into a scheme which is second order accurate in time [13].

When applying (2), we want D to be a reasonable approximation to the stiff part of f . If D were much larger, it would
stabilize the scheme, but would introduce an additional time truncation error. We thus want to choose D for optimal effec-
tiveness, in the sense that it adds the perfect amount of damping, without adding a supplementary error to the numerical
scheme.

This paper presents a numerical scheme to achieve this goal automatically, adjusting D to the threshold value. Restricting
ourselves to periodic boundary conditions, we choose D to be diagonal in Fourier space, which renders it both simple to
handle and sufficiently flexible. Indeed, the implicit step becomes almost trivial to perform:
2

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
ûn+1
k − ûn

k

δt
= f̂k(un, tn) + λ(k)ûn

k − λ(k)ûn+1
k , (3)

where ˆ denotes the Fourier transform and the damping spectrum λ(k) ≥ 0 is an arbitrary function. Adjustment of D is now
down to finding the scalar damping spectrum λ(k) for a discrete sequence of k’s.

The Fourier transform f̂k can be calculated effectively from the spatial discretization f j using the fast Fourier transform
(FFT) [19]. From (3), we find

ûn+1
k = ûn

k + f̂k(un, tn)

δt−1 + λ(k)
, (4)

so we obtain the desired solution u j
n+1 at the new time step from the inverse transform. The scheme (4) (as well as any

other first order scheme) can be turned into a second order scheme by Richardson extrapolation [18]. Namely, let u1,n+1 be
the solution for one step δt , u2,n+1 the solution for two half steps δt/2. Then

un+1 = 2u2,n+1 − u1,n+1 +O(δt3), (5)

is second order accurate in time, and

E = u1,n+1 − u2,n+1 (6)

can be used as an error estimator [20].
To analyze (3) further, we adopt a “frozen-coefficient” hypothesis, that the solution is essentially constant over the time

scale on which numerical instability is developing. Then assuming small perturbations δûn
k , the problem is turned into a

linear equation for δûn
k , with constant coefficients. At least on a small scale (i.e. in the large k limit), much smaller than

any externally imposed scale, f̂k(un, tn) is expected to be translationally invariant, making the operator diagonal in Fourier
space. Namely, let us assume a more general non-local operator

f (x) =
∞∫

−∞
D(x, y)u(y)dy.

Translational invariance implies that D(x, y) = D(x − y); taking the Fourier transform, we arrive at f̂ (k) = D̂(k)û(k). This
means in the large k limit we expect

f̂k(un + δu, tn) ∼ −e(k)δûn
k , (7)

where δu is a small perturbation around the solution at tn . Here we assume that the eigenvalues e(k) are real, as it is
typically the case for physical problems, where the dominant process on a small scale is dissipative.

We have shown in [13] that, as long as λ(k) > e(k)/2, the system (3) with the approximation (7) is unconditionally
stable. This is a generalization of a method first presented, for the case of the diffusion equation in two dimensions, in [21].
If (4) is turned into a second order scheme using (5), this condition is [22]:

λ(k) > λc(k) = 2

3
e(k), (8)

with λc(k) the theoretical stability limit. Thus for sufficiently large values of λ(k), there is always stability; however, λ(k)

also contributes to the time truncation error and thus should be kept as small as possible. According to [13], comparing our
second order scheme to an exact solution for a single mode, the error can be estimated as

δt3

6

(
e(k)3 − 3λ(k)e(k)2 + 3e(k)λ(k)2

)
.

Thus once λ(k) is substantially smaller than e(k), the error is dominated by the first term, and there is little gain in reducing
λ(k) further. There is a certain similarity here with the preconditioning of matrices, where a matrix is approximated by a
simple diagonal matrix [23,24].

We also showed in [13] that the explicit scheme (i.e. for which λ(k) = 0) is stable as long as:

e(k) <
2

δt
. (9)

Equation (9) defines a threshold value of wave numbers ke , below which the scheme is stable even without stabilization. As
a result, for k < ke , λ(k) can be chosen to vanish, without affecting stability.

In [13] we have tested the ideas underlying the EIN method, calculating the spectrum e(k) for a variety of opera-
tors, including nonlocal operators treated previously in [9]. We approximated λ(k) as a power law, derived from the low
3

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
wavenumber limit of the exact discrete spectrum. As predicted by the above analysis, we find the scheme (3) uncondition-
ally stable, and performing with the same accuracy as that proposed in [9]. Obviously, this still requires one to obtain a
good estimate for the spectrum.

In the present paper, we aim to remove this analytical step, and to make the calculation of λ(k) self-consistent. The idea
is to determine λ(k) iteratively, by detecting numerical instability. If, for a given wave number k, random perturbations due
to numerical instability of the time-stepping grow in time, then the damping is increased, while λ(k) can be reduced if the
code is stable. In the simplest version of our procedure, we focus on the high wave number limit, where most of the stiffness
is coming from, and approximate λ(k) by a power law, determined by one or two parameters, depending on whether the
exponent is to be prescribed. While we found this approach to work, it introduces arbitrary assumptions into the procedure,
and assumes a separation between a high and low wave number regimes. Instead, here we present the results of a scheme
which adjusts each Fourier mode individually, based on noise detected in the same Fourier mode. This models the original
operator in much greater detail, and leads to a spectrum λ(k) which corresponds closely to the theoretical stability limit.

In the next section we develop and describe our procedure for automatic stabilization. The following three sections are
each dedicated to a particular example, to illustrate how the method is implemented, and to demonstrate its effectiveness.
While we emphasize the generality of the method, and aim to treat a variety of problems in a unified manner, there are
significant restrictions. In particular, we only treat problems which are diffusive on the small scale, so that the largest
eigenvalues of the operator are real, and we restrict ourselves to periodic boundary conditions.

2. Adaptive stabilization

Our method is based on the formulation (3), which together with (5) is an unconditionally stable second order scheme,
as long as λ(k) is sufficiently large. We would like to find an adaptive procedure which refines λ(k) at each time step, so as
to keep it as small as possible, consistent with stability. To achieve this, we have to address two issues: (i) find a measure
ε(k) of the noise, or of numerical instability, for each Fourier mode k; (ii) specify the evolution of λ(k) for a given noise.

Finding a suitable measure of the error is the crucial question, to be discussed in more detail below. As for (ii), we aim
to adjust each Fourier component λ(k) individually, although we have also explored representing λ(k) by a finite number
of parameters. We adopt a simple approach, taking a local relation between ε(k) and λ(k), which is shown to be sufficient
for the examples to be presented below. For each Fourier mode, depending on whether ε(k) is larger or smaller than some
upper bound εu , we adjust λ(k) accordingly. We will discuss the choice of εu further below.

If ε(k) > εu , λ(k) is increased fairly rapidly, multiplying it by a factor of f g = 1.2 in order to avoid instability; f g is not
chosen even larger in order to avoid a sudden discontinuous change of parameters. If on the other hand ε(k) < εu , λ(k) is
decreased slowly by a factor of f s = 1/1.02 at each time step, in order to avoid a sudden onset of instability. To demonstrate
the robustness of our approach, we have used the same rates in all examples, although in principle they could be optimized
for each particular case. We have verified that changing f g − 1 or 1 − f s by 50% does not change the results substantially.

As to a measure of noise, a first guess might be to take ε(k) as the Fourier transform of the error estimator (6) Êk . We
tested this idea using the interface dynamics discussed in more detail in section 5, and illustrated in Fig. 7. Fig. 1 shows the
evolution of the Fourier transform Êk of this error estimator, for the first four time steps, without using the EIN method.
The time step is chosen to be δt = 3.125 × 10−5, the number of points N = 1024, and we use a purely explicit scheme (no
stabilization), so that the modes with the largest wavenumbers are unstable.

Indeed, as explained in the next sections, there exists a region k > ke in k-space which is stable with an explicit scheme
(on the left of the vertical dashed line), and an unstable region (on the right), where we would like to detect numerical
instability. As a result, the noise level grows very rapidly for the right-hand side of the spectrum, and for the first two
time steps there is little power in the k < ke modes. Thus Êk could be used to detect correctly the numerical instability for
large k.

However, the left part of the spectrum is soon invaded through non-linear mode-coupling, and there grows a consid-
erable component of the error at small k (corresponding to large scales), which would not be damped away if λ(k) was
increased. The problem is clear: in the proposed scheme, there is no clean distinction between noise resulting from numer-
ical instability, and the broad spectrum of unstable modes which is part of the physical solution. The crucial problem of
defining the numerical noise ε lies in this distinction.

A successful procedure came from the idea of spatial smoothing, taking the truncation error as the starting point. To
compute ε at the j’th gridpoint, we consider the error estimator E j , and compare it to a smoothed version Ē j at the same
point. The reasoning is that Ē j contains the full spectrum coming from the deterministic nonlinear dynamics, so E j − Ē j

only contains the random noise produced by numerical instability. There are many possible choices for the smoothed-out
error. We chose a polynomial approximation over 2n gridpoints, but excluding j itself, otherwise ε would be identically
zero. In other words,

Ē j = P
(

E j−n, . . . , E j−1, E j+1, . . . , E j+n
)
, (10)

where P is the (2n − 1) degree polynomial, passing through
(

E j−n, . . . , E j−1, E j+1, . . . , E j+n
)
. Taking the Fourier transform

of the difference between E j and Ē j , we define the noise measure ε(k) as
4

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
Fig. 1. The evolution of the error estimator Êk (black curve) for the Hele-Shaw flow (27), (28), discussed in more detail in Sect. 5. Initially the error is
uniformly small for a flat interface with a white noise. The vertical dashed line is the stability boundary k = ke .

Fig. 2. The effect of smoothing on the solution of the Hele-Shaw flow (27), (28) at t = 0.04, as shown in the third panel of Fig. 7 below. On the left, we
show the spectrum of the error estimator Êk , which is broad in the nonlinear regime. On the right, we show the noise measure ε(k) as defined by (11),
which is substantial only in a high wave number region where noise is detected. The vertical dashed line is k = ke . The horizontal red line is the threshold
εu used to adapt λ(k). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

ε(k) = Êk − ˆ̄Ek. (11)

The difference between the naive error measure Êk and ε(k) based on smoothing is illustrated in Fig. 2. We ran the same
computation as in Fig. 1, but using our adaptive procedure. Equation (11) is used as a measure of the noise (with n = 2) to
adapt λ(k) at each time step, with the threshold εu = 10−10; we will discuss the issue of setting a threshold below. The left
curve shows the Fourier transform Êk as a function of k: clearly, this error alone is ill-suited to detect instability, since it has
significant components for k < ke , where the explicit scheme is stable, i.e. where there is no instability even for λ(k) = 0.
The right curve shows the noise measure ε(k) given by (11) used to adapt λ(k) as a function of k: the instability is correctly
detected at large values of k and this error remains low for k < ke , i.e. does not require any damping, in the region where
an explicit scheme is stable.

In terms of the numerical overhead associated with our stabilization scheme, the step (4) in Fourier space is not more
expensive than a corresponding explicit step. Our approach requires two Fourier transforms, but which only comes at a
computational cost of the order of N ln(N), where N is the number of grid points. Finally, computing the error measure (11)
is also only of order N . Thus our stabilization scheme is not much more expensive than an explicit method. This is true in
particular for non-local operators like the Hele-Shaw flow treated as our last example below, for which computing the right
hand side of the equation requires an effort of N2 already.

3. Example: thin film flow with van der Waals forces

3.1. Equation of motion

As an example of a non-linear equation in one dimension, we first consider a thin liquid film on a horizontal solid
substrate. Assuming lubrication theory and taking into account van der Waals forces, which can destabilize the film, the 1D
evolution equation for the height of the film h(x, t) reads [25,26]:
5

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
∂h

∂t
= − ∂

∂x

(
h3

3η

∂

∂x

[
γ

∂2h

∂x2
− A

6πh3

])
, (12)

where η is the dynamic viscosity of the fluid, γ its surface tension coefficient and A the Hamaker constant. Using L =√
A/2πγ as the lengthscale and T = 3ηL/γ as the timescale, the dimensionless equation reads:

∂h

∂t
= − ∂

∂x

(
h3 ∂3h

∂x3
+ 1

h

∂h

∂x

)
. (13)

Considering the linear stability of (13), we study the growth of a small-amplitude single mode added to an initially flat
interface:

h(x, t) = h0 + εeikx+ωt, (14)

where x ∈ [0, 1]. Linearizing equation (13) for ε � 1 gives the dispersion relation:

ω = −h3
0k4 + k2

h0
. (15)

As the initial condition, we start from a flat film with a sinusoidal perturbation added to it, corresponding to the most
unstable (or Rayleigh) mode. In order to initiate an instability on the scale of the entire computational domain, we fix
k = 2π and set the initial height h0 that corresponds to the maximum growth rate:

dω

dk

∣∣∣∣
k=2π

= 0 ⇐⇒ h0 = 1

21/4(2π)1/2

 0.34

Using this initial thickness, we choose as the initial condition:

h(x,0) = h0 + A cos(2πx), (16)

where A = 0.01.
In order to compute the right-hand-side f j(hn, tn) of equation (13), we use second-order centered finite differences on a

regular grid x j = j/N , where j ∈ [0, N] and N = 128 is the number of grid points:

f j(h
n, tn) = −h3

j
h j−2 − 4h j−1 + 6h j − 4h j+1 + h j+2

δx4
− 3h2

j
h j+1 − h j−1

2δx

−h j−2 + 2h j−1 − 2h j+1 + h j+2

2δx3

− 1

h j

h j+1 − 2h j + h j−1

δx2
+ 1

h2
j

(
h j+1 − h j−1

2δx

)2

. (17)

Using the Fourier transform of (17) in (4), we obtain ĥn+1
k , from which the new points hn+1

j are obtained from the inverse
Fourier transform. The Richardson scheme (5), based on each grid point, then leads to a second-order accurate result for
hn+1

j .

3.2. Stabilization

Before proceeding to the automatic stabilization of the numerical scheme, we adopt a von Neumann stability analysis, in
order to predict the theoretical value of λ(k) for the scheme to be stable. For this purpose, we only need to consider the
fourth-order derivative in equation (13), which is the stiff term to be stabilized. Using a “frozen coefficient” hypothesis, we
look for perturbations to the mean profile h in the form of a single Fourier mode:

hn
j = h(j/N,nδt) + δĥn

k = h(j/N,nδt) + ξneikjδα, (18)

where ξ(δt, k) is the amplification factor [27], h̄ is assumed constant over the time step, δα = 2πδx = 2π/N , and k ∈
[0, N − 1]. Inserting this expression into (17), retaining only −h3hxxxx in the original equation, the linearization (7) of the
right-hand-side of (13) gives:

e(k) = 2
h

3

δx4 (cos(2kδα) − 4 cos(kδα) + 3) . (19)

The modified numerical scheme (4) will be stable as long as λ(k) meets the stability criterion (8) with e(k) given by (19).
Instead of this λ(k), for simplicity we initialize λ(k) with an expression of the form λ0k4, where λ0 must be chosen as the
maximum of 2e(k)/3k4 over all k, in order to satisfy the stability criterion everywhere. It is easily seen that this maximum
is attained in the limit k → 0, from which we obtain
6

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
Fig. 3. Scaling of the maximum value of the noise measure ε(k) for the three cases studied in this paper: TF is the thin film equation seen in Fig. 4, KS
the Kuramoto–Sivashinsky equation seen in Fig. 5, and HS the Hele-Shaw equation of Fig. 7. The noise measure, as given by (11), is calculated numerically,
analyzing the first time step starting from initial conditions. The scaling with δx (left) and δt (right) agrees well with ε ∝ δx2nδt2. The circled values are
those corresponding to the three simulations reported below.

λ0 ≥ 32

3
π4h

3
. (20)

Note that (20) depends on the local height h, which varies slightly for the initial condition; we choose it to correspond
to the maximum of the surface elevation, for which the stability requirement is most stringent. In addition, the condition
(9) defines a threshold value ke , below which the explicit time step is stable’:

2

δt
= e(k)
 h

3
(2πke)

4 ⇒ ke
 1

2π

(
2

δt h
3

)1/4

 4.25, (21)

where we have used h = h0 = 0.34 and δt = 10−4.
Using the procedure described in Sec. 2, for each Fourier mode ε(k) we adjust λ(k) depending on whether it is larger or

smaller than an upper bound εu = 10−8. The value of this bound is subject to some experimentation to make the scheme
work, but can be varied by several orders of magnitude without affecting the functioning of the scheme. However, εu must
be chosen in accordance with a typical value of ε(k), which depends strongly on both the time step δt and the grid spacing
δx.

First, the error (6) is proportional to δt2, which sets the scaling of ε(k). Second, the scaling with δx is set by the order
of the interpolation (10), which scales like δx2n . As a result, the noise measure (11) scales like O(δx2nδt2), which is well
confirmed in Fig. 3. For the thin film simulation this yields δx4δt2 = 3.78 × 10−17, which is about five orders of magnitude
smaller than the actual value 2.8 × 10−12 (see the blue circled square). Hence there is something to be discovered about the
prefactor. Clearly, the value of εu = 10−8 is still much larger than a typical value of the noise measure. A more systematic
method of finding an “optimal” value for the threshold is an issue still to be investigated.

Fig. 4 shows our adaptive scheme at work, as the interface (shown on the top row) deforms; the noise measure ε(k) is
defined as in (11) (see supplementary movie TF_movie.mpeg). We initialized λ(k) to the asymptotic power-law λ0k4, which
is seen as the red line in the lower panel of the first row (which shows the system after the first time step). The true
stability boundary, based on the full expression (19), is shown as the dotted line; for small k, it is slightly lower than the
more stringent power law approximation chosen as the initial condition. The noise measure ε(k) after the first time step is
very small as expected.

As seen in the second panel, after some time λ(k) has converged onto the theoretical stability limit (8) for small k, with
e(k) given by (19). Here we have assumed h ≈ h0 for the initial stages of the dynamics, an approximation that will no
longer be valid near the end of the computation (fourth row of Fig. 4), where h varies considerably in space, and (18) can
only be applied locally. However, adjustment of λ(k) toward the stability boundary only occurs for k > ke , since there is no
numerical instability below k = ke . As a result, for k < ke the stabilizing spectrum λ(k) is reduced at every time step, and in
the second panel has already fallen by orders of magnitude below the stability limit of the EIN scheme.

The only source for concern is seen in the 4th panel, when the film thickness has become very non-uniform. In that
case there is a region just above ke where λ(k) is quite elevated relative to the theoretical limit (but which is based on the
assumption of a uniform thickness), as well as noisy. This comes from the fact that the explicit stability boundary k = ke

given by (19) moves to the left when values of h in space become significantly higher than h0. The vertical orange line in
Fig. 4 corresponds to k = ke computed using the maximum height of the interface hmax instead of h0. As long as this value
does not reach the next smaller integer value of k, λ(k) is progressively decreased on the left of this boundary. As soon as
7

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
Fig. 4. A simulation of the thin film equation with van der Waals forces (13), with the interface shown on the top row. On the lower row, the corresponding
spectrum of ε(k) defined by equation (11) (green), as well as λ(k) (red). The dotted line is the stability limit λc(k) = 2e(k)/3, with e(k) given by (19) and
h ≈ h0, the top horizontal blue line the explicit stability boundary 2/δt; the bottom blue line is εu . The vertical dashed line is k = ke given by equation
(21), with h = h0, whereas the vertical orange line is k = ke computed for h = hmax .

ke crosses an integer value k′ , exponential growth is observed for k′ and λ(k′) cannot be adapted quickly enough, resulting
in increasing values of λ for the adjacent values of k. This problem could probably be solved by changing the way λ(k) is
adapted at each timestep, by testing the stability of each mode and rejecting the timestep in case of instability.

4. Example: 2D Kuramoto–Sivashinsky equation

4.1. Equation of motion

To demonstrate that our method works in higher dimensions, we consider the example of the 2D Kuramoto–Sivashinsky
equation [28], which is known to exhibit spatio-temporal chaos [28,29]:

∂u

∂t
= −N (u) − �u − ν�2u. (22)

The single Laplacian on the right has a minus sign in front of it, leading to instability on the smallest scale; this is stabilized
by the last term, which is of fourth order, making the problem very stiff. Nonlinearity is introduced through the term

N (u) = 1

2

⎛
⎝|∇u|2 − 1

4π2

2π∫
0

2π∫
0

|∇u|2dxdy

⎞
⎠ ; (23)

following [29], the spatially constant integral term has been introduced for convenience only, to make sure that u always
has zero spatial mean. The variable u(x, y, t) is defined on a two-dimensional square domain, which we can rescale to
ensure that (x, y) ∈ [0, 2π].

Equation (22) is discretized on a regular grid using centered finite differences in order to find f jx, j y (un, tn), whose two-

dimensional Fourier transform is f̂kx,ky (un, tn). We can then use the modified time step (4) to find ûn+1
kx,ky

and thus un+1
jx, j y

.
As usual, the scheme is then turned into a second order method using Richardson extrapolation (5). In [29], (22) is treated
implicitly using a Fourier pseudospectral method. The purpose of our treatment is to demonstrate the effectiveness of our
general scheme, which does not pay attention to the specifics of the operator, in spatial dimensions greater than one.

4.2. Stabilization

In order to study the numerical stability, we only consider the bi-Laplacian, which is the stiffest term to be stabilized.
Inserting the single Fourier mode
8

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
Fig. 5. A simulation of the Kuramoto–Sivashinsky equation (22) for ν = 0.2, with the interface shown on the top row. Nx = N y = 128 points are used to
discretize (22) in both directions, and the time step is δt = 0.01. On the lower row, the corresponding spectrum of ε(kx, 0) defined by equation (11) (green),
as well as λ(kx, 0) (red). The dotted line is the stability limit λc(kx, 0) = 2e(kx, 0)/3 (cf. (24)); the top horizontal blue line the explicit stability boundary
2/δt; the bottom blue line is εu . The vertical dashed line is k = ke given by 2/δt = es(kx, 0) (cf. (25)); λ(kx, ky) is initialized using 2es(kx, ky)/3. Half of the
spectrum in kx is shown, since it is symmetric around Nx/2 (the other half corresponding to negative wave-numbers kx ∈ [−Nx/2 + 1 : −1]).

un
jx, j y

= ξnei(kx jxδx+ky j yδy)

into the discretized version of equation (22), and retaining only the bi-Laplacian term, we obtain:

e(kx,ky) = ν

{
2 cos 2kxδx − 8 cos kxδx + 6

δx4
+ 2 cos 2kyδy − 8 cos kyδy + 6

δy4

+ 2
2 cos(kxδx + kyδy) − 4 cos kyδy + 2 cos(kxδx − kyδy) − 4 cos kxδx + 4

δx2δy2

}
. (24)

The modified numerical scheme (4) will be stable as long as λ(kx, ky) meets the stability criterion (8): λ(kx, ky) >
2e(kx, ky)/3, and the stability of the explicit scheme is given by (9): e(kx, ky) < 2/δt . For the explicit stability boundary, one
can take the small-k limit of (24):

es(kx,ky) ∼ ν
(

k2
x + k2

y

)2
. (25)

As in the previous example, this approximation overpredicts the true value of e(kx, ky) for large wavenumbers. For simplicity,
we will use this conservative approximation to set the initial value of λ(kx, ky). The adjustment of λ is based on an upper
bound εu = 10−5 for ε . This value is significantly higher than in the previous example, since the typical absolute error in
the present case is O(δx2δt2) ≈ 2 × 10−7, as seen on the green curve in the first panel of Fig. 5.

In the definition (6) of ε(kx, ky), we now have to interpolate the error estimator E(jx, j y) on a two-dimensional grid;
we find Ē(jx, j y) using a bilinear interpolation of the error estimator:

Ē(jx, j y) = 1

4

[
E(jx, j y − 1) + E(jx + 1, j y) + E(jx, j y + 1) + E(jx − 1, j y)

]
(26)

Our first attempt was to use E(jx + 1, j y − 1), E(jx + 1, j y + 1), E(jx − 1, j y + 1) and E(jx − 1, j y − 1) to interpolate E
in (jx, j y), but it turned out that the interpolation values for two adjacent nodes where decoupled, making the process of
estimating the error unstable. This issue is addressed by using the four neighbors E(jx, j y − 1), E(jx + 1, j y), E(jx, j y + 1),
and E(jx − 1, j y), as seen in Fig. 6. We have not treated equations in higher (e.g. three) dimensions, but we expect the
obvious extension of (26) to three dimensions,

Ē(jx, j y, jz) = 1

6

[
E(jx, j y, jz − 1) + E(jx, j y, jz + 1) + E(jx, j y − 1, jz) + E(jx, j y + 1, jz)

+ E(jx − 1, j y, jz) + E(jx + 1, j y, jz)
]
,

to work.
9

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
Fig. 6. Bilinear interpolation Ē(jx, j y) using the four neighboring points in red.

Fig. 5 shows a computation of the Kuramoto–Sivashinsky equation (22), for ν = 0.2, in the chaotic regime (see supple-
mentary movie KS_movie.mpeg). Thus the interface u(x, y) deforms in an irregular, unpredictable fashion on many scales.
On the lower row we show the corresponding spectrum of ε(kx, 0) (green), as well as λ(kx, 0) (red). For plotting purpose,
we chose to show only a slice of the spectrum (ky = 0), but the adaption procedure works for the whole 2D spectrum.

We have initialized λ(kx, ky) to 2es(kx, ky)/3 (see (25)). As in the previous example, the initial condition for λ (red line)
is slightly above the theoretical stability limit (dotted line) for k values corresponding to small scales. This is still true
after the first time step, while ε(kx, 0) is very small as expected. As seen in the second panel, λ(kx, 0) has converged onto
the theoretical stability limit λc(kx, 0) = 2e(kx, 0)/3, with e(kx, 0) given by (24), since the initial condition overpredicts the
stability boundary.

However, convergence only occurs for k > ke , since below k = ke no numerical instability occurs. As a result, for k < ke
the stabilizing spectrum λ(kx, 0) is reduced at every time step, and has already fallen by orders of magnitude below the
stability limit of the EIN scheme. Correspondingly, by adjusting λ(kx, 0) the error ε(kx, 0) is kept close to the threshold
εu = 10−5 for k > ke .

5. Example: Hele-Shaw flow

5.1. Equations of motion

As an example of a non-local, but stiff operator, we consider an interface in a vertical Hele-Shaw cell, separating two
viscous fluids with the same dynamic viscosity, with the heavier fluid on top [9]. As heavy fluid falls, small perturbations
on the interface grow exponentially: this is known as the Rayleigh-Taylor instability [30]. However, surface tension assures
regularity on small scales. For simplicity, we assume the flow to be periodic in the horizontal direction. We briefly recall
the dynamics of the interface here; for more details, see [9,13].

The interface is discretized using marker points labeled with α, which represents the motion of a fluid particle. They are
advected according to:

∂X(α)

∂t
= U n + T s. (27)

Here X(α) = (x, y) is the position vector, n = (−yα/sα, xα/sα) and s = (xα/sα, yα/sα) are the normal and tangential unit
vectors, respectively, and sα = (x2

α + y2
α)1/2. Hence U = (u, v) · n and T = (u, v) · s are the normal and tangential velocities,

respectively. The tangential velocity does not affect the motion, but is chosen so as to maintain a reasonably uniform
distribution of points [9,13]. If z(α, t) = x + iy is the complex position of the interface, which is assumed periodic with
period 1 (z(α + 2π) = z(α) + 1), the complex velocity becomes:

u(α) − iv(α) = 1

2i
P V

2π∫
0

γ (α′, t) cot
[
π(z(α, t) − z(α′, t))

]
dα′, (28)

where γ is the vortex sheet strength. For two fluids of equal viscosities [31],

γ = Sκα − R yα, (29)
10

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
where κ is the mean curvature of the interface:

κ(α) = xα yαα − yαxαα

s3
α

, recalling that sα = (x2
α + y2

α)1/2. (30)

Here S is the non-dimensional surface tension coefficient and R is the non-dimensional gravity force, chosen to be 0.1 and
50, respectively, in the following example. To compute the complex Lagrangian velocity of the interface (28), we use the
spectrally accurate alternate point discretization [32]:

u j − iv j
 −2π i

N

N−1∑
l=0

j+l odd

γl cot
[
π(z j − zl)

]
. (31)

Derivatives κα and yα are computed at each time step using second-order centered finite differences, and α is defined
by α(j) = 2π j/N , where j ∈ [0, N] and N = 1024 is the number of points describing the periodic surface. Note that the
numerical effort of evaluating (31) requires O(N2) operations, and thus will be the limiting factor of our algorithm.

5.2. Stabilization

Although the character of the non-local operator in this example is very different from previous equations, our numerical
stabilization works in a fashion that is remarkably similar. The modified scheme (4) now becomes

x̂n+1
k = x̂n

k + ûn
k

δt−1 + λ(k)
, ŷn+1

k = ŷn
k + v̂n

k

δt−1 + λ(k)
, (32)

where ûn
k and v̂n

k are calculated from the Fourier transform of (31). The new gridpoints xn+1
j , yn+1

j are obtained from the
inverse Fourier transform of x̂n+1

j , ŷn+1
j , and for each component (32) is turned into a second-order scheme using (5).

In [13], we performed a linear analysis (7) of the discrete modes of (31) about a flat interface. We found that

e(k) = S N3

L3

(
1 − cos

2πk

N

)
sin

2πk

N
≡ ẽ(x) = (1 − cos x) sin x, x = 2πk

N
, (33)

where L is the length of the interface, and N the number of gridpoints. As before, we use the long-wavelength approxima-
tion to e(k):

e(k) ≈ S

2L3
(2πk)3 ≡ es(x) = x3

2
, (34)

to find the explicit stability boundary (9) as

ke ≈ L

2π

(
4

Sδt

)1/3

. (35)

Using the same approximation (34), which overpredicts the critical value λ(k), one finds

λc(k) = S

3

(
2πk

L

)3

(36)

as a sufficient condition for stability. In [13], we used a fixed spectrum λ(k), slightly larger than (36), to stabilize the
Hele-Shaw dynamics.

We now use the same procedure as before, with the upper bound εu = 10−10 for ε(k). Fig. 7 shows our adaptive scheme
at work, as the interface (shown on the top row) deforms, and the length L of the interface increases (see supplementary
movie HS_movie.mpeg). The error ε(k) is defined as the maximum of (11) over the two components:

ε(k) = M A X(Êx
k − ˆ̄Ex

k, Ê y
k − ˆ̄E y

k). (37)

Initializing λ(k) to the approximation (36) (red line), we observe the same convergence toward the theoretical stability
boundary as before (dotted line). A new feature is that on account of the length L of the boundary increasing in time, the
explicit stability boundary ke (vertical dashed and orange lines) increases in time, and the theoretical stability boundary for
λ(k) (dotted line) comes down. As seen in the second panel of Fig. 7, our adaptive scheme for k > ke has converged toward
the theoretical prediction, and then continues to trace it as L increases. The region where no stabilization is required
increases as well, and λ(k) decreases to very low values on an increasingly large domain. The results described above are
not changed significantly as εu is varied over several orders of magnitude up or down from 10−10, but of course the value
must be significantly over the rounding error, and below the expected truncation error.
11

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
Fig. 7. A simulation of the Hele-Shaw problem (27), (28) shown on the top row. On the lower row, the corresponding spectrum of ε(k) defined by equation
(37) (green), as well as λ(k) (red). The dotted line is the stability limit λc(k) = 2e(k)/3, with e(k) given by (33), the top horizontal blue line the explicit
stability boundary 2/δt; the bottom blue line is εu . The vertical orange line is k = ke given by equation (35), and the vertical dashed line its initial position.

Fig. 8. A comparison of the interface as obtained from our current adaptive scheme (red curves) and our earlier EIN scheme (black curves) [13], which used
the theoretical stability boundary (36).

In our earlier EIN scheme [13], we used λ(k) based on the simplified stability boundary (36) to stabilize the Hele-Shaw
interface motion shown in Fig. 7. However, this overpredicts the necessary damping for large k. In addition, for k < ke , no
damping is necessary, and our adaptive scheme reflects that by decreasing λ(k) more and more. As a result, the damping
in the adaptive scheme is significantly smaller than in our previous EIN scheme. In Fig. 8 we show a comparison of the
numerical results to those of the earlier scheme, and find very good agreement. The major advance is of course that λ(k)

no longer needs to be prescribed, but is found self-consistently as part of the algorithm which ensures stability. Only in the
last panel is there a significant discrepancy between the two results. This occurs in places where two sides of the interface
have come in close proximity, comparable to the spacing between gridpoints. But this means our evaluation of the velocity
integral is no longer sufficiently accurate to be reliable.

6. Outlook and conclusions

We have demonstrated the feasibility of our method using three different model problems, highlighting different aspects
of physical problems containing a wide spectrum of time scales, making them stiff. Clearly, there are many ways in which
12

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
to extend and improve the present approach. Firstly, we estimated the damping spectrum by analyzing the current solution
in Fourier space, which is particularly easy for the periodic domain considered by us. While we have not explored this,
accurate Fourier representations can be constructed by extending the solution to a larger domain [33]. We thus believe that
an extension of our Fourier method can also be used for an equation on a finite domain, but care must be taken to deal
with the boundary conditions. Another possibility would be to formulate the entire method in real space, as done in some
cases described in [13], albeit for periodic boundary conditions only.

A second, more difficult issue is our assumption of the spectrum e(k) in (7) being real. This assumption is well founded,
since the ultimate physical damping process is dissipative, leading to real eigenvalues. However, as demonstrated by the
example of an inertial vortex sheet considered in [9], even problems lacking dissipation can display significant stiffness.
This case leads to a system of PDEs, with pairs of complex eigenvalues e(k) on the right-hand-side of (7), corresponding to
traveling waves. In that case the damping spectrum λ(k) would also have to be complex to ensure stability [13], a case we
have not yet considered.

Finally, a problem we still need to address is how to choose an initial condition for the damping spectrum λ(k). In the
present work we choose a power-law spectrum which can be inferred from a simple analysis of the continuum version of
the equations of motion, which then adapts to an optimal spectrum. It would be ideal if no input whatsoever was necessary,
choosing for example λ(k) = 0 initially. At present, this is not possible, as the quality of the numerical solution deteriorates
before λ(k) can adapt. We suspect that in order for such a scheme to be successful, one needs to implement a variable time
step, such that initial steps during which λ(k) is found are very small.

In conclusion, following our previous study on this subject, we propose a new method to remove the stiffness of PDEs
containing non-linear stiff terms, i.e. high spatial derivatives embedded into non-linear terms. This method allows for the
self-consistent estimation of a stabilizing term on the right-hand-side of the PDE, that ensures absolute stability for the
numerical scheme. Analyzing the spectrum of the solution at each time step, we adapt automatically the stabilizing term
such that each unstable Fourier mode is damped optimally.

CRediT authorship contribution statement

Laurent Duchemin: Conceptualization, Formal analysis, Methodology, Software, Validation, Writing – original draft. Jens
Eggers: Conceptualization, Formal analysis, Methodology, Software, Validation, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2022 .111624.

References

[1] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys. 228 (2009) 5838–5866.
[2] J. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.
[3] S. Popinet, Numerical models of surface tension, Annu. Rev. Fluid Mech. 50 (2018) 49–75.
[4] M. Ulvrová, S. Labrosse, N. Coltice, P. Raback, P. Tackley, Numerical modelling of convection interacting with a melting and solidification front: applica-

tion to the thermal evolution of the basal magma ocean, Phys. Earth Planet. Inter. 206–207 (2012) 51–66.
[5] A.-K. Kassam, L. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (2005) 1214–1233.
[6] A. Iserles, Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, 1996.
[7] W.F. Ames, Numerical Methods for Partial Differential Equations, Academic Press, 1992.
[8] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Flow, Cambridge University Press, Cambridge, 1992.
[9] T.Y. Hou, J.S. Lowengrub, M.J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys. 114 (1994) 312–338.

[10] U.M. Ascher, S.J. Ruuth, B.T.R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (1995) 797.
[11] D.R. Durran, P.N. Blossey, Implicit–explicit multistep methods for fast-wave–slow-wave problems, Mon. Weather Rev. 140 (2012) 1307.
[12] J. Eggers, J.R. Lister, H.A. Stone, Coalescence of liquid drops, J. Fluid Mech. 401 (1999) 293–310.
[13] L. Duchemin, J. Eggers, The explicit-implicit-null method: removing the numerical instability of PDEs, J. Comput. Phys. 263 (2014) 37.
[14] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, J. Sci. Comput. 19 (2002) 439–456.
[15] K. Glasner, A diffuse interface approach to Hele-Shaw flow, Nonlinearity 16 (2003) 49–66.
[16] D. Salac, W. Lu, A local semi-implicit level-set method for interface motion, J. Sci. Comput. 35 (2008) 330–349.
[17] C.B. Macdonald, S.J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces, SIAM J. Sci.

Comput. 31 (2009) 4330–4350.
[18] B.P. Ayati, T.F. Dupont, Convergence of a step-doubling Galerkin method for parabolic problems, Math. Comput. 74 (2004) 1053–1065.
13

https://doi.org/10.1016/j.jcp.2022.111624
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibAA2C2363CF95BB49DD334FAF45F53A44s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib135903FFFC5D4572831A944BC4E6EB03s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib48CC9E432F2D88F97F04D6C8B31ED59Cs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib2155380972A59440F0458DD8E13C177Ds1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib2155380972A59440F0458DD8E13C177Ds1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibC8EDC4130A4DF6F9AF21AEC1F4C67E91s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib5F687DA6D97B7898FBCA90CEB7B4913Es1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib4528DEE11A73F8D5C0A1F7FB1ACAC8F0s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibB21B8CB5D8D5175EF05E6AF418DA8221s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibDBAA34BCACE18D8B176A2230066CC5DDs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibCF4D8D71232319F73822507830EB1D09s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibCA561AA71E0172E127EE29FBD1B64E0Es1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibD5B2E2D4B045EE4FF331BD8417CC11D3s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib2D18CFDBD90FF1AB6235285F7CA18434s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib8729A3D6B7C1FB68B94BD933BE1D5F39s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib3C783F64756B621684B3EC2EDC7584F9s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibC0F03AF8DAAFDFF1D0310907E17879BFs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibCF621971D8B8A23D4F70CEC57F839895s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibCF621971D8B8A23D4F70CEC57F839895s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibF93499825687072B2FB4C7DB37889AC4s1

L. Duchemin and J. Eggers Journal of Computational Physics 471 (2022) 111624
[19] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proc. IEEE 93 (2005) 216–231, Special issue on “Program Generation, Optimization,
and Platform Adaptation”.

[20] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, vol. 8, Springer Science & Business Media, 2008.
[21] J. Douglas Jr., T.F. Dupont, Alternating-direction Galerkin methods on rectangles, in: B. Hubbard (Ed.), Numerical Solution of Partial Differential Equa-

tions II, Academic Press, 1971, pp. 133–214.
[22] P. Concus, G.H. Golub, Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations, SIAM J. Numer. Anal. 10 (1973)

1103–1120.
[23] A. Wathen, D. Silvester, Fast iterative solution of stabilised stokes systems. Part I: using simple diagonal preconditioners, SIAM J. Numer. Anal. 30 (1993)

630–649.
[24] H.C. Elman, D.J. Silvester, A.J. Wathan, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Hydrodynamics, Oxford University

Press, 2005.
[25] M.B. Williams, S.H. Davis, Nonlinear theory of film rupture, J. Colloid Interface Sci. 90 (1982) 220–228.
[26] W.W. Zhang, J.R. Lister, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids 11 (1999) 2454–2462.
[27] W. Press, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, New York, 2007.
[28] M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993) 851–1112.
[29] A. Kalogirou, E.E. Keaveny, D.T. Papageorgiou, An in-depth numerical study of the two-dimensional Kuramoto–Sivashinsky equation, Proc. R. Soc. A,

Math. Phys. Eng. Sci. 471 (2015) 20140932.
[30] P.G. Drazin, W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 1981.
[31] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.
[32] M. Shelley, A study of singularity formation in vortex sheet motion by a spectrally accurate vortex method, J. Fluid Mech. 244 (1992) 493.
[33] D. Huybrechs, On the Fourier extension of nonperiodic functions, SIAM J. Numer. Anal. 47 (2010) 4326–4355.
14

http://refhub.elsevier.com/S0021-9991(22)00687-8/bib982F6086C6FB5FA30F8A9DB9D6D02359s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib982F6086C6FB5FA30F8A9DB9D6D02359s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib2932AFC9A8E9A583A6F1BF7D3813049Ds1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibCAF05DF508311FC529C9F8DE13C205BBs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibCAF05DF508311FC529C9F8DE13C205BBs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibB04262A69C892986E4C27B922E3391BDs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibB04262A69C892986E4C27B922E3391BDs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib714ACDD1B87D1D3904BA7742AA6F2E20s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib714ACDD1B87D1D3904BA7742AA6F2E20s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib593E95364958B0FEFBE278915E9EAC67s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib593E95364958B0FEFBE278915E9EAC67s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibD6A281366BE667A312F4560C62EF33DEs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib9F2F3C0CB51FF1C2AE93593922037AF6s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibCA8D58913D01D5523DE671066B32365Bs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib2F245D57FDDD73A42718F89D43CA38BFs1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib747BF7CA8EB990E1CCDAEF80D653B5F2s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib747BF7CA8EB990E1CCDAEF80D653B5F2s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib731B160A52B71B047783BEEAF34A2D3As1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib22730C16A33668B2651218005B2F45C9s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bib2BBAF2DCF5C23B200AE8B82CC0D797E2s1
http://refhub.elsevier.com/S0021-9991(22)00687-8/bibA4B6A87A3991211E4F3F48A62D895021s1

	MARS: A method for the adaptive removal of stiffness in PDEs
	1 Introduction
	2 Adaptive stabilization
	3 Example: thin film flow with van der Waals forces
	3.1 Equation of motion
	3.2 Stabilization

	4 Example: 2D Kuramoto--Sivashinsky equation
	4.1 Equation of motion
	4.2 Stabilization

	5 Example: Hele-Shaw flow
	5.1 Equations of motion
	5.2 Stabilization

	6 Outlook and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary material
	References

