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Abstract

The merging of two fluid drops is one of the fundamental topologi-

cal transitions occurring in free surface flow. Its description has many

applications, for example in the chemical industry (emulsions, sprays

etc.), in natural flows driving our climate, and for the sintering of mate-

rials. After reconnection of two drops, strongly localized surface tension

forces drive a singular flow, characterized by a connecting liquid bridge

that grows according to scaling laws. We review theory, experiment,

and simulation of the coalescence of two spherical drops for different

parameters, and in the presence of an outer fluid. We then general-

ize to other geometries, such as drops spreading on a substrate and in

Hele-Shaw flow, and discuss other types of mass transport, apart from

viscous flow. Our focus is on times immediately after reconnection,

and on the limit of initially undeformed drops at rest relative to one

another.
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1. Introduction and historical perspective

The coalescence of liquid drops, or other volumes of liquid, is the other fundamental process,

complementary to breakup, that takes place in free surface flow (Eggers 1997, Tryggvason

et al. 2011, Anthony et al. 2023, Popinet 2018). It is near such singularities where new

structures, such as drops, are born, and where rapid motion takes place, which imprints its

characteristics on the dynamics. The neighborhood of the places of topological transitions

is therefore of special physical and technological interest, and is often characterized by a

simplifying self-similar structure. This makes those transitions amenable to analytical math-

ematical treatment, unusual for highly complex and non-linear free surface flows. Clearly,

coalescence processes are of fundamental importance in industrial applications (Kamp et al.

2017), for example in the physics of emulsions (Chesters 1991), for oil recovery (Kavehpour

20015), for inkjet printing (Lohse 2022), for the collision rates in flows containing fluid par-

ticles (Liao & Lucas 2010), or for the sintering process (Rahaman 2010), in which a uniform

material is created through the merging of individual particles. Models for coalescence have

also been applied in biology, rationalizing the merging of cell nucleoli as well as clumps of

cells (Pokluda et al. 1997, Flenner et al. 2012, Grosser et al. 2021, Caragine et al. 2018).

Curiously, the driver in both breakup and coalescence is surface tension. In breakup,

a sufficiently extended fluid column releases surface energy by reducing its radial extent,

which then goes to zero in finite time (Eggers & Villermaux 2008, Eggers & Fontelos 2015,

Anthony et al. 2023), but merging of spheres also leads to a reduction of surface area. Once

two drops are reconnected by a very small liquid bridge, surface tension will thus induce a

very rapid coalescence motion.

The breakup process involves vanishing length and time scales, well separated from those

describing smooth motion, leading to universal scaling exponents and self-similar surface

profiles, independent of initial conditions and even fluid parameters; thus in breakup the

geometry is generated self-consistently and the singularity is encountered during the final

stages of breakup. By contrast, in coalescence the motion starts in the singular regime and

the geometry is imposed by the initial condition. Figure 1 provides an overview of typical

coalescence geometries: in contrast to breakup, the resulting coalescence dynamics is not

universal, but strongly depends on the imposed geometry e.g. by confinement of the drops

(Ryu et al. 2023). Additional complexity comes form the fact that the outer (dispersed)

phase also plays a major role in coalescence, even if its viscosity is very small. The reason

is that since the outer fluid is confined to a very small gap between the two drops, and

lubrication effects come into play.

Coalescence has until recently been considered on a large-scale and qualitative level

only (Kamp et al. 2017), the earliest papers being directed toward the conditions under

which coalescence takes place in the first instance, for example by Reynolds (1881). The

earliest systematic efforts to understand the dynamics of coalescence quantitatively, from an

experimental (Kuczynski 1949), theoretical (Frenkel 1945, Kuczynski 1949, Hopper 1991),

and numerical (Nichols & Mullins 1965) perspective, are related to the (viscous) sintering

problem. Other surface-tension-driven transport mechanisms, which dominate at temper-

atures at which the “drops” are solid, have also been considered widely (Rahaman 2010).

The reason for the relative neglect of the initial coalescence process is the tremendous speed

of its motion, making experimental (Thoroddsen et al. 2008) and numerical (Sprittles &

Shikhmurzaev 2014b, Anthony et al. 2023) approaches very demanding. The very small

width of the gap between two spherical drops, in addition, obscures imaging of the liquid

bridge, and requires very high numerical resolution.
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Spherical or cylindrical (2D) coalescence 

ii. Bubblesi. Drops

Geometrically similar coalescence

iii. Conical drops iv. Drops on a substrate v. Liquid lenses

Other geometries or transport mechanisms

vi. Hele-Shaw vii. Viscoelastic coalescence viii. Di�usive coalescence

Figure 1: The dynamics of coalescence is highly dependent on the geometry of the drops

at the moment of contact. Spherical coalescence involves drops (i) or bubbles (ii) that are

spherical upon the moment of contact. The spherical geometry imposes a hierarchy of scales:

drop radiusR, bridge radius r0, bridge width w = r20/R, and meniscus curvature ∆ = r30/R
2.

Geometrically similar coalescence refers to geometrically similar initial conditions, where

different directions are related by an angle. Examples are conical drops (iii), drops on a

substrate (iv) and liquid lenses (v). The review further covers other geometries and non-

Newtonian transport mechanisms, such as drops in a Hele-Shaw cell (vi), viscoelastic drops

(vii) and coalescence by diffusive transport (viii).

A complete picture of coalescence would require full understanding of all stages of the

process that leads to the complete merging of drops:

1. Approach. Two drops first need to be brought together, which in general will be

at finite velocity and impact parameter. For example, in a head-on collision of two

spherical drops of radius R, travelling at relative speed U , the hypothetical geomet-

rical overlap between the two spheres yields a bridge radius of r0 =
√
URt, which

competes with the singular motion engendered by surface tension, and indicates a

non-universal dependence of coalescence dynamics on the impact speed. At small

distances, draining of the thin film between the two drops will become important

(Davis et al. 1989, Chan et al. 2011, Kamp et al. 2017). As a result, drops will in

general be deformed by lubrication forces, in which rarefied gas effects become crucial
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(Li 2016, Sprittles 2024).

2. Reconnection. Microscopic interactions, through long-ranged intermolecular forces or

charge effects, lead to a joining of the two interfaces. This can lead to a “jump to

contact”, i.e. reconnection before the equilibrium shapes of drops overlap (Beaty &

Lister 2023, 2022, Chireux et al. 2018, Quinn et al. 2013, Deblais et al. 2024); the

effect of thermal noise may also play a role (Perumanath et al. 2019).

3. Coalescence. This is the initial surface-tension-driven merging of two fluid volumes,

which is the focus of this review. During this phase the dynamics are confined to a

rapid motion of a small liquid bridge connecting the two drops, the size of which is

small compared to the drops. As we shall see, in these earliest of stages the centers

of mass of the drops move little, since the amount of fluid set in motion by the

moving meniscus is small. On account of the locality of the motion, the dynamics is

characterized by scaling laws, but with significant exceptions: there can be logarithmic

corrections, and profiles do not necessarily exhibit self-similar shapes.

4. Merging. The actual merging of the drops, during which the bulk of the original drops

interpenetrate to form a larger drop (Ashgriz & Poo 1990, Verdier 2001), and where

most of the mass transfer takes place.

This review is dedicated to the Coalescence regime that describes the early dynamics after

two drops have been joined at a point. Experimentally and numerically, this requires a

careful preparation of the initial conditions and very high spatial and temporal resolution.

We focus on Newtonian flow of liquid drops and bubbles for the geometries indicated in

Fig. 1(i-vi); yet, we will also discuss other transport mechanisms that are relevant e.g. for

sintering, as sketched in Fig. 1(vii-viii).

1.1. Time and length scales of Newtonian drop coalescence

Drops of honey merge very slowly, the surface energy driving the motion being eaten up

by viscous friction, while during the rapid coalescence dynamics of water, surface tension

is opposed only by inertia, the drops being nearly perfectly inviscid. Using the relevant

material parameters for Newtonian drops (surface tension γ, dynamic viscosity η, density

ρ), a unique intrinsic length scale ℓν , and a time scale tν can be constructed (Peregrine

et al. 1990, Eggers 1993), at which surface tension, viscosity, and inertia are balanced (see

margin note). The size of ℓν relative to the characteristic lengths of the problem determines

which regime one is in.

For water ℓν ≈ 14 nanometer, while for liquid honey ℓν reaches up to several meters.

This large variability in ℓν explains why such vastly different dynamics can be observed for

millimeter-sized drops. Indeed, introducing the drop size R as an extrinsic length scale,

the dimensionless ratio ℓν/R ≡ Oh2 involves the Ohnesorge number, which quantifies the

relative importance of viscosity to inertia on the global scale of the drop. The Ohnesorge

number can also be written as a ratio of timescales Oh = τv/τi, using the viscous time

τv and inertial time τi (see the margin note). These represent the typical times for the

complete merging of two drops in the viscous and inertial regimes, respectively.

ℓν = η2/(γρ):
intrinsic length scale

tν = η3/(γ2ρ):
intrinsic time scale

Oh = η/
√
ρRγ:

Ohnesorge number,
measures the

relative importance
of viscous to inertial

effects.

τv = ηR/γ: viscous
timescale based on

the size of the drop.

τi =
√

ρR3/γ:
inertial timescale

based on the size of
the drop.

In this review we concentrate on the initial stages of coalescence, for which the minimum

bridge radius of the fluid neck connecting the two drops r0(t) ≪ R (see Fig. 1). In such

an asymptotic limit, and barring logarithmic corrections, one expects the dynamics to have

power law form (Eggers & Fontelos 2015), so the asymptotic regimes for the viscous and
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inertial bridge dynamics are described by

r0
R

∼
(

t

τv

)α

,
r0
R

∼
(

t

τi

)β

. 1.

The exponents α, β are not universal but depend on the coalescence geometry, as we will

review in detail (cf. Tables 1 and 2). Special attention will be given to the crossover between

viscous and inertial coalescence.

2. Scaling laws: Influence of drop geometry

2.1. Local versus global energy balance

The coalescence of drops is driven by the tendency to reduce surface energy: two drops have

a greater surface area than a single merged drop. Refining this argument, Frenkel (1945)

put forward the influential idea, both in engineering (Pokluda et al. 1997, Rahaman 2010)

and biology (Flenner et al. 2012, Grosser et al. 2021, Caragine et al. 2018), that the rate

of coalescence be determined by a balance of the local rate of energy Ėγ freed, with the

viscous dissipation inside the drop. The dissipative power can be estimated by Pη ∼ ηϵ̇2V,
where ϵ̇ is the typical rate of deformation and V the characteristic volume that is sheared.

Focusing on the early stages of coalescence, Frenkel (1945) balances Ėγ =
d

dt
(πγr20) with

dissipation taking place over the entire drop, i.e. V ∼ R3. This gives the incorrect prediction

r0 ∼
√

γRt/η for spherical drops: in reality the initial motion and thus dissipation is

concentrated in a small neck region, with the coalescing drops remaining static.

Yet, in the spirit of Frenkel’s calculation, we will use energy balance as a unifying

approach to understand the initial coalescence dynamics in a broad class of coalescence

geometries (Figure 1), by choosing an appropriate local form of the control volume V. In

the viscous regime, all the capillary power (surface energy γA released per unit time; γL
for a 2D object) is dissipated instantaneously by the viscous flow inside the bridge, with ϵ̇2

and V to be identified. In the inertial regime, viscous dissipation is subdominant and all

the released capillary energy is assumed to be converted into kinetic energy of the moving

fluid. Therefore, it natural to invoke the energy balance Eγ = Ekin ∼ ρv2V (rather than

a power balance), where v is the typical velocity inside the bridge. Different coalescence

geometries lead to different expressions for Eγ , Ekin, Pη, and the resulting bridge dynamics

r0(t) is not at all universal – as discussed in detail below (cf. Tables 1 and 2).

Equivalence of
coalescence in two
and three
dimensions: Since
the width of the gap
w = r20/R ≪ r0 for

small r0, the

meniscus of
coalescing spheres is

“almost straight” on

the scale of w, and
thus corresponds to

the straight menisci

of coalescing
cylinders.

2.2. Spheres

2.2.1. Drops. Assuming a bridge radius r0, the characteristic width w of the bridge is much

smaller and scales as w = r20/R (Figure 1(i)). For a typical millimeter-sized drop, a bridge

radius of a micron implies the width to be as small as a nanometer. From the energetic point

of view, the width of the bridge can be neglected when computing the released capillary

energy, Eγ ∼ γr20. The kinetic energy can be estimated using the velocity v ∼ ṙ0, which

is reached inside the bridge over a volume V ∼ r20w ∼ r40/R. The balance of surface and

kinetic energies Eγ = ρv2V then gives the inertial scaling r0 ∼ (γR/ρ)1/4 t1/2. The viscous

scaling is more subtle. The dissipated power can be estimated using the rate of deformation

ϵ̇ ∼ ṙ0/r0. However, owing to the non-local nature of viscous flow, the region over which

dissipation occurs extends in all directions, but is cut off at the scale of the two opposing

menisci to give V ∼ r30. The balance Ėγ = ηϵ̇2V then gives r0 ∼ ηt/γ. This scaling argument
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Table 1: Scaling laws in the viscous regime: Ėγ = Pη. Cases for which the drop curvature

matters invoke w = r20/R as the bridge width, and τv = ηR/γ as the viscous timescale.

Capillary power Viscous dissipation Bridge scaling Exponent

d
dt
(γA) ηϵ̇2V r0(t) α

Spherical drops d
dt
(γr20) η

(
ṙ0
r0

)2
r30

γt
η

ln(R/r) 1 (log corr.)

Spherical bubbles d
dt
(γr20) η

(
ṙ0
r0

)2
r20w

(
t
τv

)1/2
R 1/2

Hele-Shaw (D ≪ r0)
d
dt
(γDr0) η

(
ṙ0
D

)2
r0Dw

(
t
τv

)1/4 √
RD 1/4

Sessile drops

(side view, 2D) d
dt
(γL) ηϵ̇2A h0(t) α

Substrate (θ ≪ 1) d
dt
(γh0θ) η

(
ḣ0/θ
h0

)2 h2
0
θ

γt
η
θ4 1

Liquid pool (θ ≪ 1) d
dt
(γh0θ) η

(
ḣ0
h0

)2 h2
0
θ

γt
η
θ2 1

Table 2: Scaling laws in the inertial regime: Eγ = Ekin. Cases for which the drop curvature

matters invoke w = r20/R as the bridge width, and τi =
√

ρR3/γ as the inertial timescale.

Capillary energy Kinetic energy Bridge scaling Exponent

γ∆A ρv2V r0(t) β

Spherical drops γr20 ρṙ20 r20w
(

t
τi

)1/2
R 1/2

Spherical bubbles γr20 ρṙ20 r20w
(

t
τi

)1/2
R 1/2

Conical drops γr20 ρṙ20r
3
0

(
γt2

ρ

)1/3
2/3

Sessile drops

(side view, 2D) γ∆L ρv2A h0(t) β

Substrate (θ < 90◦) γh0 ρḣ2
0h

2
0

(
γt2

ρ

)1/3
2/3

Substrate (θ = 90◦) γh0 ρḣ2
0h0w

(
t
τi

)1/2
R 1/2

Liquid pool (θ ≪ 1) γh0θ ρ
(

ḣ0
θ

)2 h2
0
θ

(
γt2θ4

ρ

)1/3
2/3

does not capture logarithmic corrections of the actual viscous coalescence dynamics, which

goes like r0 ∼ t ln t. Such corrections call for a more detailed approach beyond the simplified

scaling analysis (Sec. 3.1).

λ = η/ηo: viscosity
ratio relative to

outer atmosphere

ρo/ρ: density ratio,

neglected

throughout for
droplet coalescence

2.2.2. Experiments. The first experiments to study the asymptotics of drop coalescence

found reasonable agreement with the expected scaling in the low viscosity (Menchaca-Rocha

et al. 2001, Wu et al. 2004, Aarts et al. 2005) and high viscosity (Yao et al. 2005) limits.

Even if the temporal resolution is high, the main obstacle is the ability to look into the

gap of width w between the drops. As a result, the optical method is typically limited to

measuring w down to a few microns, which typically involves r0 down to 50µm, and thus

r0/R ≳ 0.05, making it difficult to access the asymptotic behavior as r0 → 0.

To improve on this, an electrical method was developed (Case & Nagel 2008, Paulsen

2013), which relies on measuring the impedance of the entire coalescence cell, comparing it

to an electrostatic calculation based on two hemispheres joined by a neck of radius r0. The
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optical
Oh=0.0035 (1mPa s, optical)
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Oh=0.01
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Eq. 2
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t=tc

Oh> 1

z=R

r=R
Oh : 1

r0=rc

Figure 2: Scaling plot of available data for spherical drop coalescence, comparing experi-

mental data (symbols) and numerical calculations replotted from Sprittles & Shikhmurzaev

(2014b) (solid lines), taking ηair =0.018 mPa s (corresponding to λ = 2.2 · 104Oh for

the water-glyercol mixtures considered here). Data are scaled using the crossover scales

rc = ROh and tc = τvOh, which dictate the crossover from viscous (t ≪ tc) to inertial

dynamics (t ≫ tc). All data are for water-glycerol drops in the presence of air. Cir-

cles/triangle are from Paulsen (2013) for electrical/optical and squares are from Thoroddsen

et al. (2005b). These data sets were chosen as they use electrical triggers to define accu-

rately the initial contact time. Data from Paulsen (2013) was chosen either (i) as optical

and electrical data was available or (ii) to fill in empty regions of the plot. Dashed line repre-

sents the empirical crossover function (2) that interpolates between the viscous and inertial

regimes. The spread in the experimental data for r0 is up to a factor of 3. Inset: Experi-

mentally recorded neck shapes (symbols) for two different viscosities in air at Oh = 370 and

Oh = 0.62 from Paulsen (2013), compared to numerical simulations at Oh = ∞ (Stokes)

and Oh = 1, respectively. The numerical profiles from Sprittles & Shikhmurzaev (2014b)

have been selected for the minimum radius to match at the earliest instance.

resulting values of r0 were found to be insensitive to the modelling of the neck, and agreed

very well with optical measurements in the region of overlap. The electrical method allows

to track r0 down to time scales of 100 ns, so that r0 is measured down to a radius of 1µm,

an improvement of two orders of magnitude.

Following Paulsen et al. (2011), Paulsen (2013), Xia et al. (2019), in Figure 2 experimen-

tal data (symbols) have been rescaled using the crossover radius rc = ROh and crossover

time tc = τvOh, which provides a useful collapse of experimental data over a wide range of

Oh. The experiments agree with numerical data obtained from solving the Navier-Stokes

equations, including the effect of the surrounding air (red and green solid lines). As will be

discussed in more detail in Section 3.1.1 below, these numerical data confirm the presence

of logarithmic corrections in the viscous regime, and fall within the experimental scatter,

which is up to a factor of 3. Finally, the profiles observed in numerical simulations are in
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excellent agreement with those obtained experimentally in the optically accessible range

(Figure 2, inset). We thus conclude that simulations, accounting for the influence of the

outer air, give a consistent description of the available experimental data.

2.2.3. Crossover. Dimensional analysis shows that the minimum bridge radius can be writ-

ten in the form r0 = Rf̄(t/τv,Oh, λ), where λ = η/ηo is the viscosity ratio; a small outer

density is found to have a vanishing effect on the dynamics. However, we will see in Sec. 3.3

below, that even a small outer viscosity (large λ) changes the structure of the narrow gap

between the spheres significantly. Figure 2 shows (dashed line) that the dependence on the

remaining parameters τv and Oh can be collapsed in a crossover function of a single variable

(Paulsen et al. 2011)

r0
rc

= f(ξ) =

[
1

Cvξ
+

1

Ci

√
ξ

]−1

, with ξ = t/tc, 2.

that interpolates between the viscous scaling r0/R = Cvt/τv and the inertial scaling r0/R =

Ci

√
t/τi. In the plot we used the empirical values Cv = 1 and Ci = 1.5. Even though

the rescaling of data is very good, we emphasize that the collapse in Figure 2 must be

considered approximate: a universal crossover function does not exist even for λ = ∞,

owing to logarithmic corrections to the viscous regime (Section 3.1).

2.2.4. Bubbles. The geometry of bubble coalescence superficially resembles that of spherical

drops, but the liquid is now confined to a thin sheet on the exterior of the spheres. This

sheet is the only portion of the liquid to be set in motion, as the liquid film retracts under

the influence of surface tension; the Ohnesorge number Oho below now refers to the viscosity

ηo of the outer fluid alone. Perhaps surprisingly, the bridge radius now scales as r0 ∼ t1/2

for both the viscous and inertial regimes (Paulsen et al. 2014, Munro et al. 2015). The

resulting dynamics can therefore be captured by the form

r

R
= C(Oho)

(
t

τi

)1/2

, 3.

where C(Oho) is a dimensionless prefactor that accounts for the slowing down upon in-

creasing viscosity. Experimental data (Paulsen et al. 2014) for the prefactor is plotted on

Figure 3(a), together with model predictions obtained from direct simulations and from a

similarity analysis based on a thin film approximation (Munro et al. 2015).

The retraction of the film separating the bubbles comes with a release of capillary energy

Eγ ∼ γr20. At low viscosity, this retraction results in the sheet fluid of volume ∼ r20w ∼ r40/R

being collected into a growing annular rim of volume V ∼ r40/R. The scaling laws for both

Eγ and Ekin therefore turn out identical to that of drop coalescence, and the same scaling

r0 ∼ t1/2 ensues in the inertial regime. In the specific case of Oho = 0, the original

arguments of Taylor (1959) and Culick (1960) can be turned into an exact result, invoking

momentum conservation (Keller 1983). During coalescence, the fluid up to a certain radius

r0 is collected inside a rim, which from the shape z = r2/(2R) of the unperturbed sheet gives

a volume Vrim = πr40/(2R). Since the force on the rim exerted by the surface tension per

unit length is 2γ, Newton’s equation now reads 4πγr0 = d (Vrimṙ0) /dt, the solution of which

yields 3. with C = (32/3)1/4 ≈ 1.81. The same numerical value was found solving similarity

equations based on this thin sheet approximation (Munro et al. 2015). The experimental

value for the prefactor is slightly lower: C ≈ 1.4 (Paulsen et al. 2014). The mismatch has

8 Eggers, Sprittles & Snoeijer



Numerical methods

Until relatively recently, numerical methods have been unable to confirm many of the theoretical predictions

for coalescence. This is because they have either (i) captured the global shape of the droplets, without

resolving small scales of bridge growth (i.e. neglecting r0/R ≪ 1), or (ii) have focused, or ‘zoomed in’, on

the early growth, often in specific flow regimes, without being able to simulate the entire drop’s motion (i.e.

considering only r0/R ≪ 1).

For (i), numerical simulations are able to reproduce coalescing drop shapes and can often recover inviscid

(Menchaca-Rocha et al. 2001, Baroudi et al. 2014) and viscous (Baroudi et al. 2016) scalings – these are often

based on interface capturing schemes (marker-and-cell, volume of fluid, lattice Boltzmann, etc). For (ii)

boundary integral methods have been deployed to compute both inviscid and viscous limits near the bridge

front. Here, in the inviscid case, the absence of an outer fluid causes the free surface to overturn and entraps

toroidal bubbles (Oguz & Prosperetti 1989, Duchemin et al. 2003). However, whilst some experimental

evidence for entrapment has been given (Aryafar & Kavehpour 2008, Fezzaa & Wang 2008) simulations

suggest that tiny amounts of outer fluid can prevent the formation of bubbles Sprittles & Shikhmurzaev

(2014b) and lead instead to the formation of pockets of gas (also often referred to as ‘bubbles’), in front of

the evolving neck, as also seen in the viscous case (Eggers et al. 1999).

Considering first a drop in a vacuum, in the viscous regime the smallest length scale is the bridge’s radius

of curvature ∼ r30/R
2. Then, for a mm-sized drop, when r0 ∼ µm the ratio of minimum length scale to drop

size ∼ (r0/R)3 is ∼ 10−9. Then, for example, to capture this scale with ten volume of fluid (VoF) cells one

needs to reach ‘level’ 30 (as 1/230 ≈ 10−10), well beyond current capabilities. Consequently, most of the

simulations probing the earliest stages of coalescence have been performed by interface tracking methods,

specifically arbitrary Lagrangian Eulerian finite element (ALE-FEM) codes, that can be tailored to resolve

singular dynamics, see the review in Anthony et al. (2023).

For ALE-FEM, one has to initiate the simulation with initial conditions on the velocity profile with a

drop shape that creates a finite sized bridge r0,IC. The work with ALE-FEM codes began in a series of

articles (Sprittles & Shikhmurzaev 2012, 2014b,a), initially focused on forming interfaces, where the effect

of the outer fluid is also accounted for. More recently, in Anthony et al. (2020), even smaller scales have

been reached in the single-fluid problem. To test both theories proposed in the literature, as well as to

compare to experiments, typically one needs r0,IC/R = 10−4 to give a few decades of reliable comparison

(to satisfy r0 > 10r0,IC and r0/R ≪ 1). For drop-in-gas, the smallest scale is at most the bridge width,

alleviating somewhat the requirements on the grid - for the example above we would now ‘only’ need level 23!

These articles (Sprittles & Shikhmurzaev 2014b, Anthony et al. 2020) established that the initial conditions

used in the computation can have a profound influence on the scalings observed, with either under-resolved

computation or an offset in the initial conditions potentially leading to different (incorrect) scalings.

been attributed to the (optical) experiment not being able to access the asymptotic regime

(Anthony et al. 2017); this is consistent with the absence of a visible rim in experiments

(Oratis et al. 2023).

In the viscous regime, bubble coalescence is very different from drop coalescence, since

now the flow is confined to the liquid film between the spheres. The relevant volume for

dissipation occurs is V ∼ r40/R (rather than r30 for drops), yielding bridge dynamics r0 ∼ t1/2

(rather than t ln t for drops). Similarity analysis for the full range of Oho is possible, which

in the viscous regime reduces to C = 0.8909/
√
Oho (Munro et al. 2015), in line with the
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Figure 3: Two examples of viscous to inertial crossover. (a) For spherical bubbles, the

bridge dynamics follows r0 ∼ t1/2 in both the viscous and inertial regime. The crossover

shows up in the prefactor C(Oho) as defined by 3., which is plotted as a function of Oho.

Experimental measurements (symbols, Paulsen et al. (2014)), numerical simulations (green

line), similarity solutions (black line), viscous asymptote (yellow) (Munro et al. 2015),

inertial asymptote (red) (Keller 1983). (b) Liquid lenses present a case of geometrically

similar coalescence: the side view bridge height h0 crosses over as time evolves, from h0 ∼ t

(viscous) to h0 ∼ t2/3 (inertial). Experiments (symbols), crossover function 4. (solid line),

viscous asymptote (dash-dotted line, Kv = 0.552), inertial asymptote (dashed line, Ki =

0.781) (Hack et al. 2020).

experimental trend.

2.3. Geometrically similar initial conditions

Coalescence exponents are not universal, but depend on the fluid geometry upon contact.

However, some degree of universality is recovered in the special case of geometrically similar

initial conditions. This refers to geometries that are invariant under an isotropic rescaling of

all spatial coordinates. Prototypical examples are wedges (Miksis & Vanden-Broeck 1999,

Keller et al. 2000, Billingham & King 2005) and cones (Bartlett et al. 2015), for which scales

in orthogonal directions are related by an angle. For geometrically similar coalescence, the

only relevant scale is the local size of the bridge, and the global drop size R plays no role

during the initial stages. Inspecting 1., the independence of R implies an exponent α = 1

for viscous coalescence and β = 2/3 for inertial dynamics. Below we report experiments

that fall into this class of geometrically similar coalescence.

Geometrically similar
coalescence:
Coalescence with

geometrically similar
initial conditions

exhibits a bridge

growth that is
independent of
global drop size. It

involves r0 ∼ t
(viscous flow) and

r0 ∼ t2/3 (inertial

flow).

2.3.1. Spherical drops with conical tips. Charged drops in a strong electric field can lose

their rounded shapes and develop conical tips, similar to Taylor cones (de la Mora 2007).

When two charged drops are in close vicinity, the geometry prior to coalescence is thus not

necessarily given by a rounded interface, but can consist of cones with a well-defined cone

angle θ (Figure 1(iii)). An interesting feature is that conical drops only merge for angles

10 Eggers, Sprittles & Snoeijer



above a critical value θc (Bird et al. 2009). For smaller cone angles, a connecting bridge

would actually pinch rather than merge. Assuming inviscid dynamics, the critical angle

θc = 65.3◦ was determined from similarity solutions (Bartlett et al. 2015), consistent with

experiment.

Once coalescence occurs in the inertial regime, the minimum bridge radius evolves ac-

cording to r0 ∼ (γ/ρ)1/3t2/3, independently of the global size of the drop R (Bird et al.

2009). The independence of the drop size is due to the geometrically similar conical shape:

the height and the width of the bridge are both proportional to r0, the two scales being

related by the cone angle. The exponent 2/3 follows on dimensional grounds. Likewise, if

viscosity is dominant, dimensional analysis without invoking R yields r ∼ γt/η.

2.3.2. Sessile drops. In many circumstances drops are in contact with a substrate (con-

densation, rain on a windshield, spraying, printing, etc.), giving rise to slowly spreading or

stationary sessile drops. The geometry of such drops consists of a spherical cap (or of a

puddle, in case gravity is important (de Gennes et al. 2003)), which makes a well-defined

contact angle θ with the substrate, see Fig. 1(iv). Another case of sessile drops are droplets

that are floating on a liquid pool, see Fig. 1(v) (de Gennes et al. 2003, Burton & Taborek

2007). A prototypical example of these so-called liquid lenses are the fatty drops floating

in a bowl of soup. The geometry of a liquid lens resembles that of a drop on a substrate,

but now consists of two spherical caps: one cap above and one cap below the surface of the

liquid pool.

In contrast to spherical drops, the geometry of sessile drops does not exhibit axisym-

metry. Despite the intricate geometry, when viewed from the side the problem resembles

that of two wedges of fluid, of angle θ, which are gently brought into contact (cf. inset of

Fig. 3(b), also for the definition of the bridge height h0). As for conical drops, such wedges

fall in the class of geometrically similar coalescence, for which the drop size has no effect

on the initial dynamics of the bridge height. Hence, the bridge height h0 ∼ t in the viscous

regime (Narhe et al. 2008, Hernandez-Sanchez et al. 2012, Kaneelil et al. 2022, Hack et al.

2020, Klopp & Eremin 2020, Klopp et al. 2020, Scheel et al. 2023), while the inertial limit

gives h0 ∼ t2/3 (Eddi et al. 2013, Sui et al. 2013, Hack et al. 2020), both for sessile drops and

for liquid lenses. Figure 3(b) shows experimental data for liquid lenses, crossing over from

the viscous to the inertial asymptotes. The data is accurately described by an empirical

crossover function (Hack et al. 2020)

h0

ℓν
= f(ξ) =

[
1

Kvξ
+

1

Kiξ2/3

]−1

, with ξ = θ2t/tν , 4.

with prefactors Kv = 0.552 and Ki = 0.781, computed from similarity analysis of the thin

sheet equations. The crossover only involves intrinsic scales ℓν and tν , reflecting the absence

of any external scale for geometrically similar coalescence (in constrast to 2.). Importantly,

the dependence of h0(t) on the contact angle θ is different for drops on a substrate and

drops on a pool, owing to the different boundary condition. The scalings in Tables 1 and

2 are obtained by a refined version of the analysis presented in Section 4, where we do full

justice to the three-dimensional aspects of sessile drop coalescence.
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2.4. Other cases

2.4.1. Drops in Hele-Shaw flow. A Hele-Shaw flow consists of a viscous fluid confined be-

tween two closely spaced parallel plates (spacing D, cf. Fig. 1(vi)). During drop coales-

cence in a Hele-Shaw cell, there is a short initial regime where the bridge radius r0 ≪ D,

in which case the confinement does not affect the viscous (linear) bridge scaling. However,

quickly one approaches a new regime in which r0 ≫ D, so that the flow becomes quasi-

two-dimensional (Yokota & Okumura 2011). In this regime, the released capillary energy

becomes Eγ ∼ γDr0. The shear rate between the plates ϵ̇ ∼ ṙ0/D, while the relevant

volume V ∼ r0Dw. The power balance then gives r0 ∼ t1/4, as observed experimentally.

2.4.2. Non-Newtonian fluids. As illustrated in Fig. 1(vii), the Laplace pressure jump is

enhanced in polymeric drops due to strong polymer stretching inside the bridge, where

deformation rates are large compared to the polymer relaxation time. As a result, coalescing

water-based polymeric drops exhibit bridge curvatures that are much larger than those of

pure water drops (Dekker et al. 2022, Bouillant et al. 2022). Yet, the bridge dynamic r0(t)

was found to be identical to that of pure water drops (Dekker et al. 2022) and bubbles

(Oratis et al. 2023): polymer stretching remains initially confined to a small sub-region of

the bridge, which, even at relatively high polymer concentration, makes their effect too weak

to alter the inertial scaling r0(t) ∼ t1/2. A polymer-induced slowing down is observed only

at slightly later times, with a smaller effective exponent reported for a variety of polymer

solutions (Varma et al. 2020). For sessile drops at high concentrations (beyond the dilute

regime), such slowing down was observed already for early times (Varma et al. 2021, 2022,

Dekker et al. 2022). Other studies involving complex fluids considered how yield stress leads

to arrested drop merging (Kern et al. 2022), the effect of shear-thinning on the tip-structure

for bubbles coalescence (Kamat et al. 2020), or coalescence of thin liquid crystal domains

(Delabre & Cazabat 2010, Klopp et al. 2024). Shear-thinning sessile drops (Chen et al.

2022) are discussed below.

2.5. Different transport mechanisms: A general scaling law for coalescence

Early on, Herring (1950) had proposed a unifying framework to understand sintering by

various mechanisms for (non-inertial) material transport, depending on the material and

on temperature. For example, at lower temperatures the bulk material becomes solid, and

atoms can no longer move in it. Instead, transport is dominated by loosely bound atoms

moving around the surface, driven by surface tension (cf. Fig. 1(viii)). As a result, the

timescale and coalescence exponents are very different from those for viscous flow. Without

going into the detailed physics of various possible transport mechanisms, the coalescence

dynamics can be deduced from dimensional analysis. For example, in the case of viscous

flow, transport is driven by surface tension γ and damped by viscosity η, thus involving

a characteristic velocity γ/η and a timescale τv = Rη/γ. As another example, in mean

curvature flow (covered below) the normal velocity ∼ Aκ, where κ is the mean curvature of

the interface; such flows thus involve a transport coefficient [A]=m2/s, and the associated

timescale becomes τ = R2/A. Generalizing to different modes of (overdamped) transport,

the dynamics involves a transport coefficient [A]=mn/s, that naturally gives a timescale

τn = Rn/A. Power-law fluids driven by surface tension also fall in this class, with n = 1/nf .

nf : Flow index of a
power-law fluid

(Newtonian: nf = 1,

shear-thinning:
nf < 1).
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Figure 4: Coalescence beyond viscous transport. (a) The gap of width w = r20/R between

two spheres is filled with matter at flux j ∼ w1−n. Different kinds of transport mechanisms

exhibit a different exponent n. (b,c) Mean curvature flow: the flux is proportional to the

curvature, j ∼ 1/w (n = 2). (b) Snapshot during the merging of two 3He crystals, which

evolves according to mean curvature flow (Ishiguro et al. 2004). (c) Cube r30 of the bridge

radius (normalized by the mean curvature κ0 of the initial drops), versus time for different

temperatures above (red, blue, yellow) and below (green) the minimum of the melting curve.

The linear trend implies r0 ∼ t1/3, in line with 6. (Ishiguro et al. 2004). Panel (b) adapted

with permission from Ishiguro et al. (2004), copyright 2004 American Physical Society.

Applied to coalescence, scaling laws for the initial stages are of the form

r0
R

∼
(

t

τn

)α

, with τn =
Rn

A
. 5.

To find α, we assume the filling of the narrow gap between two spheres is controlled by

the single length scale w = r20/R (Herring 1950) (cf. Figure 4(a)). Appealing to the

asymptotic equivalence between two-and three dimensional coalescence, the volume flux of

material j, which per unit length of the meniscus has dimensions [j]=m/s, will be of the form

j ∼ Aw1−n. The gap between the spheres has a (two dimensional) volume V ∼ r0w ∼ r30/R,

which is thus filled according to V̇ ∼ jw ∼ Aw2−n. Solving for r0(t), one finds the exponent

α =
1

2n− 1
. 6.

This new scaling law reproduces the usually accepted exponents for coalescence Kuczynski

(1949), Kingery (1960), Eggers et al. (1999). Note that in the viscous case n = 1 the

coalescence exponent α = 1 is often reported wrongly as 1/2, which can be traced back to

the incorrect argument of Frenkel (1945), alluded to in Sec. 2.1.

2.5.1. Mean curvature flow (n = 2). Mean curvature flow can be realized by the surface of

He3 crystals close to Tmin = 0.32 K, where the latent heat vanishes, and melting and freezing

is controlled by small differences in chemical potential (Maris 2003, Ishiguro et al. 2004). As

a result, the normal velocity is proportional to the mean curvature. Figures 4(b,c) provide

an example of merging of He3 crystals (Ishiguro et al. 2004), which follows r0 ∼ t1/3, in line

with 6. for n = 2. The prefactor can be determined analytically from a detailed calculation

of the meniscus shape (Maris 2003).

2.5.2. Sintering by volumetric (n = 3) or surface diffusion (n = 4). The sintering of

metal spheres can be driven by volumetric diffusion of atoms across the bulk, or by the
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diffusion of atoms along the surface (Kuczynski 1949, Mullins 1959, Eggers 1998). The

former involves a transport coefficient with n = 3, while the latter has n = 4. According

to 6., this gives r0 ∼ t1/5 and r0 ∼ t1/7, respectively, both of which have been observed

experimentally Kuczynski (1949). A closer analysis of merging by surface diffusion, however,

reveals that a more subtle argument is needed to derive the growth law (Eggers 1998). The

underlying dynamical equation gives rise to surface oscillations: the two sides of the gap

between the spheres touches to enclose a void, at which point the dynamics of r0 restarts.

The mechanism of void formation has been used to produce empty structures in silicon

(Mizushima et al. 2000).

2.5.3. Other initial conditions. For geometrically similar initial conditions (merging cones)

the coalescence dynamics cannot depend on R, which readily implies α = 1/n, as is also

observed for the blunting of conical tips (Ishiguro et al. 2007, Lamstaes & Eggers 2013).

Sessile drop coalescence of power-law fluids is indeed reported to give α = 1/n = nf (Chen

et al. 2022). Another curious case is encountered for the merging of viscous blisters confined

between a solid and an elastic sheet; the ratio of bending modulus and viscosity leads to

transport with n = 3 (Sæter et al. 2024). Unlike cones or spheres, the initial gap between

the blisters is very wide and the dynamics is not governed by a single scale; the growth of

the bridge between the blisters is not algebraic, but exponential Sæter et al. (2024).

3. Spherical drops

By far the most detailed studies of coalescence have been devoted to the idealized situation

of two spherical drops of Newtonian fluid, starting to coalesce at a point of negligible size.

The dynamics is controlled by Oh as a single parameter. We consider the limits of vanishing

inertia Oh = ∞, and of inviscid flow Oh = 0, and assess the effect of an outer fluid.

3.1. Very viscous drops, Oh = ∞
Let us assume that the shape of the meniscus is described by a similarity solution (Paulsen

2013, Eggers & Fontelos 2015), whose height is set by r0, and whose width is set by the

width w = r20/R of the spacing between two spheres at that scale:

r = r0R̄ (ξ) with ξ =
zR

r20
. 7.

Here R̄(ξ) is a similarity function to be determined below, which depends on the details of

the viscous flow. To make 7. consistent with the shape r ≈
√
2Rz of two spherical drops

which away from the bridge region have not yet been deformed, we have to require that

R̄ ≈
√
2ξ for large ξ. Even without knowing R̄ explicitly, we can conclude that the inverse

curvature at the tip, and therefore its smallest length scale ∆, is r−1
zz = r30/(R

2R̄′′) ∼ r30/R
2

(Eggers et al. 1999).

To find the time dependence of r0 (Eggers et al. 1999), one can argue that the flow is

driven by surface tension forces, which are concentrated in the highly curved neck region,

which forms an azimuthal ring of radius r0, and which produces a force of strength 2γer

per unit length. On a scale smaller than r0, the curvature of the ring can be neglected,

and the motion is equivalent to the two-dimensional dynamics of two merging cylinders,

driven by two opposite point forces of strength 2γ. This confirms that the leading order
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asymptotics of two and three dimensional coalescence are equivalent, as has been confirmed

by numerical simulation (Sprittles & Shikhmurzaev 2014b).

The forcing is opposed by viscous forces, which at a distance r0 from a two-dimensional

point force F = 2γ (known as a Stokeslet (Pozrikidis 1992)) produces a velocity

F ln r0/(4πη). The forcing is spread out over the local scale ∆ ∼ r30/R
2 of the tip, and

cut off over the scale r0 of the ring, with the opposite side pulling in the opposite direction.

This produces a radial velocity of the meniscus ṙ0 ≈ vη/(2π) ln(r0/∆), where vη = γ/η is

the capillary velocity. Integrating this velocity, one finds to logarithmically leading order

ṙ0 ≈ (vη/π) ln(R/r0), r0(t) ≈ −vηt

π
ln (vηt/R) . 8.

vη = γ/η: capillary
velocity, obtained

from the balance of
surface tension and

viscosity

Given the asymptotic equivalence (for early times) of two- and three-dimensional coa-

lescence, an alternative approach is to analyse the exact solution (Hopper 1990, Richardson

1992) of two merging cylinders in Stokes flow. Hopper (1990) found a complex mapping be-

tween the cylinders’ cross section and the unit disk in terms of a rational function with time-

dependent coefficients, describing the entire evolution from reconnection to a single merged

circle. Analysis of this mapping yields the minimum radius r0/R =
√
2(1 − a2)/

√
1 + a4,

where the parameter a is shown to vary with time as

t

τv
=

π√
2

∫ 1

a2

dp

p
√

1 + p2K(p)
, 9.

and where K(p) is the complete elliptic integral of the first kind (Gradshteyn & Ryzhik

2014). This result matches with 8. at early times, to logarithmically leading order, and

agrees very well numerical simulations of merging spheres and cylinders in the Stokes limit in

absence of an outer atmosphere (Sprittles & Shikhmurzaev 2014b), as is shown in Fig. 5(a).

Expanding the entire mapping for a ≈ 1, one finds the similarity profile corresponding to

the similarity solution 7. to be (Paulsen 2013)

R̄(ξ) =

√
1

2
+

√
4ξ2 +

1

4
, 10.

consistent with R̄ ≈
√
2ξ for large arguments (see also Howison et al. (1997) and Gillow

(1998) for a derivation using the slenderness of the cusp). Remarkably, 10. is identical to

the similarity solutions describing Moore’s instability of vortex sheets (de la Hoz et al. 2008,

Eggers & Fontelos 2015), and other non-local transport equations (Eggers & Fontelos 2019).

3.1.1. Inertial corrections. Initial experimental and numerical results for r0(t) led Paulsen

et al. (2012) to hypothesise the existence of a new “inertially limited viscous” (ILV) regime,

in which inertia would intervene to make r0(t) linear at early times, regardless of the drop

viscosity. Theoretically, this was motivated by the fact that inertialess coalescence (i.e.

Oh = ∞) described by Hopper’s solution (Hopper 1990), drives a uniform translation of

both drops by a distance r20/(4R) = w/4. This effect is illustrated in Fig. 5(b), showing

a horizontal shift of the similarity solution 10. (black dashed line), relative to the original

drop position (red dotted line). Estimating drop inertia at finite Oh, it follows that at early

times surface tension is not sufficiently strong to move an entire drop by a distance w/4;

thus, outside the viscous bridge region, the drop remains at its original position, marked

by the red dotted line.
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Figure 5: (a) Bridge radius r0(t) for three-dimensional spherical drop coalescence at Oh = 1

and Oh = ∞ at early times, compared to 9. (Hopper 1990). (b) Without inertia (Stokes

flow) the drop profile near the meniscus collapses for early times onto the similarity solution

10. (black dashed line). For Oh = 1 and early times, collapse is on a different similarity

solution, which asymptotes to spheres still at their original position (red dotted line). Fig-

ures replotted from simulation data presented in Sprittles & Shikhmurzaev (2014b).

But as seen in Fig. 5(a), in reality r0 remains virtually unaffected by drop translation

at early times, in agreement with all recent numerical data (Sprittles & Shikhmurzaev

2014b, Anthony et al. 2023); as a result, r0 agrees with Hopper’s solution, which includes

logarithmic corrections (Eggers et al. 1999). In other words the arguments leading to 8. still

hold at early times, even at finite Oh: the bridge region remains purely viscous, and there

is no ILV regime for r0(t). However, a closer inspection of the self-similar meniscus region

(Fig. 5(b)) shows that a finite Oh-value does change the similarity function R̄(ξ) (cf. 10.),

now shown as the green dashed line. Numerical solutions for Oh = 1 collapse onto this new

similarity profile, which now has to fit onto the un-shifted drop (red dotted line), and thus

differs from its Oh = ∞ version 10..

3.2. Inviscid drops, Oh = 0

In the viscously dominated case, the dynamics were taking place over a wide range of scales,

between r30/R
2 and r0. In the inviscid case, by contrast, the dynamics are local; the only

available length scale is the neck width w = r20/R. Invoking this length in the energy

balance gives the inviscid scaling (Section 2.2),

r0 = Ci

(
γR

ρ

)1/4

t1/2. 11.

This result has been obtained by a variety of essentially equivalent arguments (Eggers et al.

1999, Duchemin et al. 2003, Biance et al. 2004), and has been proven robust in many

experiments (Wu et al. 2004, Case & Nagel 2008, Paulsen 2013, Chireux et al. 2021) and

simulations (Sprittles & Shikhmurzaev 2014a,b). The constant is found to be close to

Ci ≈ 1.5 in experiment (see Fig. 2) and simulations (Sprittles & Shikhmurzaev 2014a),

with a slightly higher value of Ci ≈ 1.62 given in (Paulsen 2013). Once again, the local

dynamics are controlled by the large curvature near the tip, much larger than the azimuthal

curvature of the liquid bridge connecting the drops (Eggers et al. 1999). Thus coalescence

in two and three dimensions lead to the same bridge dynamics in the limit of small r0.
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Practical Challenges, First Contact, & Microscopic Effects

Optical imaging of the initial stages of coalescence is challenging, due to the cusp-like gap into which

the experimentalist must search for the first signs that merging has occurred. Furthermore, even when

electrical methods are used to signify contact, e.g. in Thoroddsen et al. (2005a) and Paulsen et al. (2011),

the mechanism by which contact is established, and thus the initial shapes of the two drops, is unclear.

Throughout the literature, it has been speculated that the intervening air could provide a lubricating

cushion that can deform the drops and even prevent contact at the centre. To analyse this effect, experiments

in Paulsen (2013) vary U over seven orders of magnitude, going as low as 17 nm/s, and show that for

approach speeds < 3 × 10−4 m/s, the crossover between viscous and inertial regimes remains unchanged.

Recent simulations, based on the framework in Sprittles (2024), that includes both gas kinetic effects and

van der Waals (vdW) forces between the approaching interfaces, support this result, see Deblais et al.

(2024). In particular, simulations show a vdW-driven ‘jump to contact’ that initiates merging of mm-

sized drops at a distance dmin of 10’s of nanometres, in agreement with experiment (Chireux et al. 2018).

The much larger value of dmin ∼ 160 nm suggested in Paulsen (2013) is likely due to the strong electric

field used there. Clearly, the relation between the approach stage and subsequent coalescence is worthy of

further experimental and theoretical analysis; the dynamics of the jump-to-contact has been investigated

theoretically in more detail by Beaty & Lister (2022, 2023).

On top of these effects, one has thermal fluctuations that for typical fluids drive nanoscale interfacial

waves that deform the spherical shape of the drops. For larger drops these can act as initial perturbations

that initiate the ‘jump to contact’ instability whilst for smaller ‘nanodrops’ they can drive off-centre contacts,

see Perumanath et al. (2019), introducing stochasticity into the coalescence process.

A first correction to 11. can be derived by including the azimuthal curvature (Sprittles

& Shikhmurzaev 2014a, Xia et al. 2019), which significantly improves the agreement with

numerical simulations for r0/R ≳ 0.1.

To analytically determine the prefactor Ci of the inviscid scaling, one might be tempted

to resort to a similarity analysis as for the viscous case. Experimental profiles indeed exhibit

a reasonable collapse (Dekker et al. 2022) when scaling radial and axial scales with r0 and

w, respectively, in line with 7.. However, such a local similarity description only applies in

an approximate sense. In Duchemin et al. (2003) inviscid coalescence was analyzed theoret-

ically assuming potential flow, and ignoring the effect of the outer atmosphere. However,

the bridge dynamics lead to capillary waves fed by a growing bulbous end, and eventually

reconnection (Duchemin et al. 2003, Billingham & King 2005), after a time τ0
√

ρw3/γ, the

meniscus having traveled a distance ∆0w; the dimensionless constants τ0 = 10 and ∆0 = 7.6

were determined numerically. Averaging over many reconnection events (Eggers 1998), one

obtains Ci =
√

2∆0/τ0 ≈
√

20/7.6 ≈ 1.62. At the discrete reconnection events, the profile

is described approximately by 7.; however, this is not an example of discrete self-similarity

(Eggers & Fontelos 2015), since reconnection times do not scale geometrically. The recon-

nections can be suppressed by including the outer fluid into the description (Sprittles &

Shikhmurzaev 2014b). As is discussed below, the presence of an outer fluid also introduces

a new length scale in the problem, breaking the similarity form 7..

www.annualreviews.org • Coalescence Dynamics 17



0

0.01

0.02

0 1 2 3
#10!4

10!2 10!1

r0=R0.5

1

1.5

2
_r0=v2

bridge speed scaling

6 = 106

6 = 104

Eq. 12
Eq. 8

r=R

z=R = 0:07(r0=R)3=2
z=R

Viscous bubbles

Drops or bubbles
(inertial, ρe" )

Viscous drops
(air pocket)

Viscous drops

a) b)

Figure 6: (a) Growth of an air bubble (Oh = ∞, λ = 104) consistent with all outer fluid

accumulating at the meniscus; the inset shows the bridge velocity for λ = 104 and 106

according to 12. (including the effect of the outer fluid), and 8. (neglecting the outer fluid).

This is replotted from simulation data presented in Sprittles & Shikhmurzaev (2014b). (b)

Phase map for spherical coalescence in an outer fluid. We defined effective Ohnesorge

for the inner and outer fluids, using the effective density ρeff = ρ + ρo. Hence, Ohi/o,eff =

ηi/o/
√
γRρeff . The transition in the grey zone is not universal (here sketched for Ohi,eff = 1).

3.3. An outer fluid

Unavoidably, physical systems involve the presence of an outer fluid, most often a gas

atmosphere. This introduces the density ratio ρ/ρo, and most importantly the viscosity

ratio λ = η/ηo between the inner and outer fluids as additional parameters. Even the

smallest external viscosity will lead to a significant change in behavior (Eggers et al. 1999),

as the external fluid is trapped inside a very narrow channel between the two drops, from

which it cannot escape. As a result, the outer fluid accumulates inside the meniscus region,

forming a toroidal bubble, see Fig. 6(a), as has been observed experimentally for drop

coalescence in oil (Aryafar & Kavehpour 2008), in air (Deblais et al. 2024), and in numerical

simulations (Sprittles & Shikhmurzaev 2014b). The volume of the toroidal bubble follows

from integrating over the width of the gap z = r2/R from 0 to r0, which gives Vb =

πr40/(2R). This leads to a toroidal bubble of radius rb ∼ r
3/2
0 /R1/2, as confirmed in Fig. 6(a).

3.3.1. Viscous drops. For drops of high viscosity (large Oh) without outer fluid, the dynam-

ics involved the meniscus curvature ∆ ∼ r30/R
2 as the smallest scale. Due to the presence

of the toroidal bubble, the smallest scale is replaced by the bubble size rb ∼ r
3/2
0 /R1/2,

changing the dynamics to (Eggers et al. 1999),

ṙ0 ≈ vη
2π

ln(r0/rb) ≈
vη
4π

ln(R/r0), r0(t) ≈ −vηt

4π
ln (vηt/R) . 12.

Comparing to 8., this induces a slower dynamics, by a factor 4, compared to viscous coa-

lescence without an outer fluid. The scaling 12. is confirmed numerically (Fig. 6(a), inset),

which shows the speed of retraction ṙ0 as a function of r0. Even for a very large viscosity
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ratio λ (small external velocity), 12. is observed at early times. The dynamics crosses over

to 8. at the later stages, during which the outer fluid escapes and the toroidal bubble disap-

pears. The range of r0-values for which a toroidal bubble is sustained has been estimated

as r0/R ≲ λ−2/3, by comparing the the pressure inside the drop to the lubrication pressure

due to the emptying of the bubble inside the drop (Eggers et al. 1999). An analysis of

numerical data in Sprittles & Shikhmurzaev (2014b) indicates r0/R ≲ λ−1/3; the origin of

this discrepancy is not known.

The above pertains to small external viscosity (λ ≫ 1). The regime where the outer

fluid has comparable or large viscosity (λ ≲ 1) has been investigated by Paulsen et al.

(2014), for which the toroidal bubble gives way to a smoothened profile (Eggers et al. 1999,

Munro et al. 2015). Using the results in Table 1 for the idealized cases λ = ∞ (drops) and

λ = 0 (bubbles), we estimate the relative importance of dissipation in the outer/inner fluid,

Po/Pi ∼ λ−1 r0/R. Hence, crossover between dominance of viscous effects of the inner fluid

and dominance of the outer fluid takes place at r0/R ∼ λ = η/ηo (Paulsen et al. 2014).

3.3.2. Inviscid drops. Turning to the case of inertially dominated drops (small Oh), for

small r0/R the lubrication pressure in the air pocket strongly inhibits the reconnection of

the two sides of the drops. In addition, even if the drop viscosity is small, the resisting

factor is now the fluid inertia, which has to be accelerated by the stress exerted by the

gas. One can theoretically exploit the presence of the toroidal bubble, as the configuration

is identical to the film retraction encountered during inviscid bubble coalescence described

in Section 2.2.4, the only difference being the effective mass αρVb in the exterior of the

toroidal bubble; α is an added mass coefficient (Batchelor 1967), which is unity in the

case of a circular bubble in two dimensions. The modified result from Keller (1983) then

reads Ci = (32/(3α))1/4 ≈ 1.8, with the inertial timescale τi based on the density of the

drop. In the two-fluid case, the total mass set into motion reads ρeffV, with effective density

ρeff ≈ ρ+ρo. We therefore propose r0/R ∼ (t/τi,eff)
1/2 as a good approximation for inviscid

two-fluid coalescence, with an effective inertial time τi,eff based on ρeff .

3.3.3. Regime map. The relative roles of inner/outer fluids are summarized in a regime map

(Fig. 6(b), modified from Paulsen et al. (2014)). Since the effect of inertia is captured by ρeff ,

we define effective Ohnesorge numbers for the inner/outer fluid as Ohi/o,eff = ηi/o/
√
γRρeff .

The vertical axis depends on material properties, while the horizontal axis involves the size

of the bridge r0, which grows in time. Irrespective of Oho,eff , the asymptotics for r0 → 0

is always viscous with r0 ∼ t ln t. Initially, the outer fluid collects in an air pocket and the

dynamics follows 12.. At small outer viscosity (Oho,eff ≲ 1), the air escapes over time and

the dynamics gives way to the Hopper solution 8. (Fig. 6(a)), before crossing over into the

inertial regime with r0 ∼ t1/2. At large outer viscosity (Oho,eff ≳ 1), the outer fluid never

escapes the pocket and the inertial regime is not reached. Instead, one crosses directly from

12. to the viscous bubble regime r0 ∼ t1/2.

4. Sessile drops

Sessile drops on a solid substrate or floating on another liquid take the shape of spherical

caps. On a (super)hydrophobic surface, the droplet contact angle θ > 90◦, and the initial

contact occurs at a finite height above the substrate; the initial dynamics of the small liquid

bridge are not influenced by the substrate and follow that of spherical drops (Keij et al.
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Front view

Side view

Top viewa) b)
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3

Figure 7: Three-dimensional coalescence of drops on a substrate. Upper panels: schematics

representing (a) Top view defining bridge width y0. (b) Side view defining bridge height h0

and the contact angle θ; front view, showing the cross-section of the liquid bridge with the

bridge angle θb and bridge radius of curvature a. Lower panels show experimental profiles

of the bridge region during the coalescence of viscous silicone oil drops on a glass substrate

(Kaneelil et al. 2022). (c) Collapse of bridge profiles according to the similarity form 14.,

with constant a. (d) Collapse of data for profiles taken at three different y locations and at

multiple times, compared to the theoretical prediction H(1) (solid line) obtained from 15..

Panelc (c,d) adapted with permission from Kaneelil et al. (2022), copyright 2022 American

Physical Society.

2013), and the released kinetic energy can even lead to droplet jumping (Thoroddsen &

Takehara 2000, Boreyko & Chen 2009). Here we are interested in cases with θ ≤ 90◦, such

that the drop coalescence starts at the substrate. The bridge takes the form of a saddle,

described by a function h(x, y, t) (Figure 7). The bridge height h0(t) and bridge width y0(t)

are defined respectively from the side view and top view perspectives.

As argued in Section 2.3, the bridge height h0(t) falls in the class of geometrically

similar coalescence, which comes with universal exponents α = 1 (viscous) and α = 2/3

(inertial). However, the geometric relation between top view and side view coalescence

of spherical cap-shaped drops is not universal. Following the classification of singularities

proposed in Dallaston et al. (2021), we characterize various cases of sessile drop coalescence

as “point-like” (y0 ∼ h0), or as “quasi-one-dimensional” (y0 ≫ h0).
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4.1. Viscous drops with small contact angles: θ ≪ 1

4.1.1. Viscous drops on a substrate. Figure 7(c) shows experimental profiles of the three-

dimensional shape of the bridge for two highly viscous silicone oil drops merging on a glass

substrate (Kaneelil et al. 2022). At t = 0, coalescence starts at the plane of symmetry

y = 0, according to a linear growth h(x = 0, y = 0, t) ≡ h0(t) = vt. Away from the

centerline (y ̸= 0), the coalescence starts slightly later, at a time t0(y). Since the bridge

is shallow, the cross-section in the (yz)-plane is assumed parabolic (Figure 7(c)), so that

vt0 = y2/2a. Here a is the radius of curvature of the bridge, which relates to the bridge

width as y0 = (2ah0)
1/2. In experiments for viscous drops, a was found constant in time

and set by the global drop size (Kaneelil et al. 2022). Hence, the bridge width y0 ∼ t1/2

(Ristenpart et al. 2006, Narhe et al. 2008), which during the initial stages of coalescence is

much larger than the height h0 ∼ t. As such, viscous sessile drop coalescence falls in the

class of quasi-one-dimensional singularities.

The evolution of h(x, y, t) can be described by two similarity variables: ξ = xθ/vt in

the plane of symmetry, and ζ = y/
√
avt in the transversal direction. Figure 7c shows that

this rescaling, combined with h/vt, indeed offers a collapse of experimental profiles taken at

different times. With this scaling, a solution of the thin film equation (Eggers & Fontelos

2015)
∂h

∂t
+

γ

3η
∇ ·

(
h3∇∇2h

)
= 0, 13.

can be written as (Kaneelil et al. 2022)

h(x, y, t) = vtH(ξ, ζ) ≡ vt

(
1− 1

2
ζ2
)
H(1)

(
ξ

1− 1
2
ζ2

)
. 14.

This indeed has the form of a quasi-one-dimensional singularity (Dallaston et al. 2021),

where H(1) is a solution of the one-dimensional similarity equation (Hernandez-Sanchez

et al. 2012, Kaneelil et al. 2022):

H − ξH ′ +
1

A

(
H3H ′′′)′ = 0. 15.

The delay time of coalescence in the transverse direction (ζ ̸= 0) is accounted for by the

factors 1− 1
2
ζ2. To mimic the experimental scaling in Figure 7, the similarity function was

normalized as H(1)(0) = 1. This comes at the expense of a constant A ≡ 3v/(vηθ
4) in 15.,

which could in fact be scaled out. Its value A = 0.819 is determined from the boundary

conditions H ′(∞) = 1 and H ′′(∞) = 0 to guarantee matching to the initial drop shape.

The solution thus gives the coalescence velocity v = 0.273vηθ
4 (Hernandez-Sanchez et al.

2012), while the shape H(1) is in Fig. 7(d) seen to agree very well with experimental data

for various cuts at constant y, rescaled according to 14..

4.1.2. Viscous lenses. Coalescence of drops floating on a liquid pool has been studied using

top and side view experiments (Burton & Taborek 2007, Hack et al. 2020), and via lattice

Boltzmann simulations (Scheel et al. 2023). Another experimental realization consists of

viscous lenses confined in very thin free-standing liquid crystal films (Klopp & Eremin

2020, Klopp et al. 2020), which allows for imaging of the droplet profiles by interference

(cf. inset Fig. 8(a)). In the viscous regime, all studies consistently find that h0 ∼ y0 ∼ t.

The linear scaling of h0 in the viscous regime was discussed in Fig. 3(b). The fact that

y0 also grows linearly implies that the bridge angle θb ≈ h0/y0 remains approximately
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constant during coalescence, as shown from the experimental data in Fig. 8(a) (Klopp et al.

2020). Viscous lens coalescence therefore corresponds to a two-dimensional singularity of

the “point-like” type (Dallaston et al. 2021), for which the bridge grows with the same

scaling in all directions. This is an important difference with respect to coalescence of

viscous drop on a substrate. Another difference seen in the growth velocity for the bridge

height: v = 0.55vηθ
2 for liquid lenses (Hack et al. 2020), instead of v = 0.273vηθ

4 for drops

on a substrate (Hernandez-Sanchez et al. 2012).

4.2. Contact line motion

4.2.1. Top view versus side view. The transverse motion during coalescence of viscous drops

on a solid substrate involves rapidly advancing contact lines. At x = 0, according to 14. the

contact line position is y0(t) ≈ (2avt)1/2 (with constant bridge curvature a): the contact

line advances at a speed which is formally diverging for t → 0. At the same time, the

apparent bridge contact angle θb, defined in Fig. 7(c), is θb ≈
√

2vt/a, which goes to zero

at initial time t = 0. This is a remarkable feature, given that contact lines rapidly advancing

over solid surfaces usually lead to an enhancement of the apparent contact angle (compared

to the equilibrium angle θ).

We have already seen for viscous drops that the relation between top view and side

view is not universal (constant a on a substrate versus constant θb for lenses). The inertial

regime probed by water drops on a substrate (θ ≈ 70◦) show both h0 and y0 to scale with

the inertial exponent 2/3, with θb ≈ θ (Eddi et al. 2013); yet corresponding numerical

simulations report an exponent 1/2 for y0 (Sui et al. 2013). Likewise, experiments (Burton

& Taborek 2007) and numerics (Scheel et al. 2023) for inertial lenses report y0 ∼ t1/2 (while

we recall h0 ∼ t2/3). In general, it is not understood when sessile drop coalescence exhibits

y0 ∼ h0 (point-like singularity) or y0 ≫ h0 (quasi-one-dimensional singularity).

4.2.2. Hemispherical drops: θ = 90◦. A special case arises when θ = 90◦, for which the

droplets form perfect hemispheres. Figure 8(b) shows experimental results for water drops

(inertial regime) showing h0(t) ∼ t1/2 (Eddi et al. 2013). Within experimental uncertainty,

the data are indistinguishable from r0(t) obtained for spherical coalescence for which no

substrate is present. Hence, the substrate has no measurable effect on the bridge growth.

We recall that water drops on a substrate that meet with θ < 90◦ exhibit an initial dynamics

h0 ∼ t2/3. For angles close to (but smaller than) θ = 90◦, the 2/3 scaling is observed only

over a very short time, quickly crossing over to the 1/2 regime (Sui et al. 2013).

4.2.3. The spreading-coalescence analogy. When a droplet is deposited very gently on a

substrate, with negligible impact velocity, a very rapid contact line motion ensues (Figure 8).

Interestingly, the dynamics of the contact radius for the initial spreading of water drops

follow r0 ∼ t1/2 (Biance et al. 2004, Carlson et al. 2011, Winkels et al. 2012, Stapelbroek

et al. 2014), and an analogy with inertial coalescence was already suggested by Biance et al.

(2004). Figure 8(b) compares directly the liquid bridge dynamics r0(t) for initial spreading

and for coalescence of water drops: the datasets nearly fall on top of one another, the best

fits giving prefactors Ci = 1.5 (coalescence) and Ci = 1.2 (spreading). Once again, the

presence of a moving contact line has little effect on the initial dynamics of the bridge,

even upon changing the wettability (from θ = 0◦ to 115◦) or various types of substrate

inhomogeneities (Winkels et al. 2012, Stapelbroek et al. 2014). The spreading-coalescence
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Figure 8: (a) Height-to-width ratio h0/y0 during coalescence for viscous lenses, as mea-

sured in a free-standing smectic film (Klopp et al. 2020). The ratio remains approximately

constant, suggesting a constant bridge angle θb. Top left inset courtesy of Christoph Klopp

and Ralf Stannarius. (b) Three cases of water drops with identical dynamics for r0(t): coa-

lescence of hemi-spherical sessile drops (θ = 90◦, green, Eddi et al. (2013)), spreading drops

(blue, Winkels et al. (2012)), spherical coalescence (red, Paulsen et al. (2012)). Dashed line

represents r0/R = 1.2(t/τi)
1/2.

analogy is also observed for water drops with (voltage-induced) conical tips: both spreading

and coalescence exhibit r0 ∼ t2/3 (Courbin et al. 2009).

FUTURE ISSUES

1. The hydrodynamics of just two drops colliding at finite speed is quite complicated,

and many aspects remain unexplored (Ashgriz & Poo 1990, Planchette et al. 2012).

2. The numerical data of Fig. 5 suggests the existence of a second similarity solu-

tion describing viscous coalescence, but at finite Oh. It remains to discover the

mechanism by which inertia comes into play.

3. The observation or prediction of entrapped toroidal bubbles during the coalescence

of low viscosity drops remains an intriguing possibility. Whilst conventional lubri-

cation in the gas prevents their formation, it is possible that in narrow gaps kinetic

effects reduce the apparent viscosity of the gas and conspire with van der Waals

forces, as considered in Sprittles (2024), to entrap a trail of bubbles.

4. How the outer fluid combines with microscopic effects to provide an initial condition

for coalescence has only been touched upon (Deblais et al. 2024) and deserves further

attention. How are the approach, reconnection and coalescence phases related?

5. For the coalescence of sessile drops, the relation between the bridge height and of

the bridge width is not universal, and not understood.

6. What is the effect of contact line motion on coalescence on a substrate? Why does

the contact line hardly influence the initial stages of spreading?
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