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Abstract
The dispersionless Kadomtsev–Petviashvili (dKP) equation  u uu ut x x yy( )+ =  
is one of the simplest nonlinear wave equations describing two-dimensional 
shocks. To solve the dKP equation numerically  we use a coordinate 
transformation inspired by the method of characteristics for the one-
dimensional Hopf equation  u uu 0t x+ = . We show numerically that the 
solutions to the transformed equation stays regular for longer times than the 
solution of the dKP equation. This permits us to extend the dKP solution 
as the graph of a multivalued function beyond the critical time when the 
gradients blow up. This overturned solution is multivalued in a lip shape 
region in the (x, y) plane, where the solution of the dKP equation exists in 
a weak sense only, and a shock front develops. A local expansion reveals 
the universal scaling structure of the shock, which after a suitable change of 
coordinates corresponds to a generic cusp catastrophe. We provide a heuristic 
derivation of the shock front position near the critical point for the solution of 
the dKP equation, and study the solution of the dKP equation when a small 
amount of dissipation is added. Using multiple-scale analysis, we show that 
in the limit of small dissipation and near the critical point of the dKP solution, 
the solution of the dissipative dKP equation converges to a Pearcey integral. 
We test and illustrate our results by detailed comparisons with numerical 
simulations of both the regularized equation, the dKP equation, and the 
asymptotic description given in terms of the Pearcey integral.
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1. Introduction

Perhaps the best known example of a singularity in an evolution equation is the formation of 
jump discontinuities of the density and of the velocity field in the Euler equations of compress-
ible gas dynamics. As these discontinuities propagate, they are known as shock waves. In the 
case of a planar shock front, the problem can be reduced to a one-dimensional equation for 
the velocity alone [30] (a so-called simple wave). The resulting wave profile overturns to form 
an s-shaped curve, the point where the gradient first becomes infinite (known as the gradient 
catastrophe) corresponds to the formation of a shock. From the overturned solution the physical 
solution can be reconstructed by inserting a jump discontinuity (the shock). The shock solution 
is a weak solution of the equation, which satisfies additional conditions motivated by physical 
considerations [31]. This shock solution is also found by taking the limit of vanishing viscosity 
in the dissipative form of the equations, yielding a weak solution (see [6] for conservation laws 
in one space dimension and [19, 29] for hyperbolic equations in several space dimensions).

The existence of such gradient catastrophe points has been proved in [2, 33] for hyper-
bolic equations  in many space dimensions. However, to the best of our knowledge, if the 
initial condition depends on two or three spatial variables, little is known about the two or 
three-dimensional spatial structure of the shock near the blow-up points of the gradients. In 
particular, it would be interesting to know the self-similar structure of the solution both before 
and after shock formation [14]. A rare instance of where we have a more or less complete 
understanding of a higher dimensional singularity is the spatial structure of caustics of wave 
fronts in the approximation of geometrical optics [4, 41]. Two-dimensional wave breaking 
has also been studied in [43], using a simple kinematic equation, for which an exact implicit 
solution is available.

In this paper, we study the formation of two-dimensional shocks in a simple nonlinear wave 
equation known variously as the dispersionless Kadomtsev–Petviashvili (dKP) equation [22], 
or the Zabolotskaya–Khokhlov (ZK) equation [49]. The equation has the advantage that its 
one-dimensional form, the Hopf equation, has only one family of characteristics. The dKP 
equation can be seen as a long wavelength version of the original Kadomtsev–Petviashvili 
(KP) equation [22]:

( )+ + =±u uu u u ,t x xxx x yy (1.1)

but with the highest order dispersive term uxxx dropped, namely

u uu u .t x x yy( )+ =±

The subscript denotes the derivative with respect to the variable. With a  +  sign on the right 
hand side, (1.1) is known as the KPI equation, or as the KPII equation in the opposite case. 
However, in the case of the dKP equation the two signs are equivalent under the transformation 
u u→−  and x x→− , and for the remainder of this manuscript we will consider only the posi-
tive sign. Depending on context, the KP equation describes wave profiles for layers of inviscid 
fluid of finite depth, waves in plasmas, or the propagation of sound beams in nonlinear media.

While the Cauchy problem for the KP equation is globally well-posed in a suitable space 
[40], by dropping the dispersive term, the dKP equation becomes a nonlocal scalar conservation 
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law in two space variables. Even for smooth initial data, the solution remains smooth only for 
finite time. In [46] it is shown that the solution of the dKP equation is locally well posed in the 
Sobolev space Hs, s  >  2, so that for s 4⩾  one has classical solutions. Particular solutions of the 
dKP equations have been obtained with several techniques [13, 16, 17, 27, 45]. The Cauchy 
problem for the dKP equation and shock formation have been studied recently in [34, 35, 37, 
38], using the inverse scattering transformation, which relies on the integrability of the dKP 
inherited from the KP equation [47, 50].

To sketch a derivation of the dKP equation, we follow the original derivation of the KP 
equation [22]. We start from the Hopf equation

u uu 0t x+ = (1.2)

for a wave field u, with only a convective non-linearity. This is the simplest model equa-
tion describing wave steepening and shock formation. In a frame of reference moving at the 
sound speed c, a simple wave can be shown to be described by (1.2) [30]. Assuming a weak 
y-dependence, we add a small correction ψ on the right hand side of (1.2);

u uu .t x ψ+ = (1.3)

For a wave of small amplitude, the second term in the above equation  can be neglected. 

Assuming a dispersion relation kc k k cx y
2 2ω = = + , one obtains in a frame of reference 

moving along the x-axis with velocity c that ( )ω = − ≈kc k c ck k/ 2x y x
2 . For (1.3) to match this 

dispersion relation, we must have cu /2x yyψ ≈ . Taking the x-derivative on both sides of (1.3) 
we obtain

u uu
c

u
2

.t x x yy( )+ = −

Rescaling x x→− , u u→−  and y cy2/→ , one arrives at the equation

u uu u .t x x yy( )+ = (1.4)

Note that in spite of its name, the dKP equation (1.4) contains dispersion, and only the highest 
order dispersive term has been dropped relative to (1.1). Other contexts in which (1.4) is used 
are described in [8].

The Hopf equation (1.2) is solved by observing that the velocity is constant along charac-
teristic curves x t,( )ξ , given by [9]:

x t u t, .0( ) ( )ξ ξ ξ= + (1.5)

Thus for any initial condition u(x, 0)  =  u0(x), one finds an exact solution u x t u, 0( ) ( )ξ=  in 
implicit form. Wave breaking occurs when two characteristics cross, which always occurs 
when the initial condition has negative slope. A shock first forms along the characteristic 
originating from the point cξ  of greatest negative slope by absolute value, where the solution 
u(x, t) has a point of blow up of the gradient.

Thus if one expands the initial condition about cξ , one finds that the profile assumes a char-
acteristic s-shape [14]:

x u t t u u /6 0,c c
4 3( )″ ξ∆ −∆ ∆ + ∆ =′ (1.6)

where u u uc∆ = − , and x x x u t tc c c( )∆ = − − − . For t t t 0c∆ = − >  (after shock forma-
tion), the profile has become multivalued. Balancing the three terms in (1.6), one sees directly 
that u∆  must be of order t1/2∆ , and so x∆  of oder t3/2∆  [14, 43].

If one solves (1.4) with an initial condition which depends on y, the equation  can no 
longer be solved with the method of characteristics. The idea underlying this paper is that 
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the dependence on the y-coordinate is weak, so the structure of the solution is essentially 
the same as before, but the different stages of overturning are ‘unfolded’ in the y-direction 
[39]. This means that effectively the singularity time becomes a function of y. If we choose 
the origin such that a singularity occurs at y  =  0 first, and expand tc in a Taylor series near 
y  =  0, we obtain t y t ay O y0c c

2 3( ) ( ) ( )= + + , with a  >  0 a constant and t t0c c( )≡ . This means 
that t t t ay t ayc

2 2¯∆ = − − ≡ − , and the two-dimensional wave breaking is governed by the 
scalings

u t x t y t, , .1/2 3/2 1/2¯ ¯ ¯∆ ∼ ∆ ∼ ∆ ∼ (1.7)

In this paper we will show that the scalings (1.7) indeed describe the similarity structure of 
wave breaking in the dKP equation.

The estimates (1.7) imply that y x∆ ∆�  near the shock, consistent with our assumption of 
a slow variation in the y-direction. The central idea of our paper is to use this insight to gener-
alize the characteristic transformation (1.5) to allow for a slow y-dependence:

u x y t F y t
x tF y t

, , , ,
, ,

( ) ( )
( )

⎧
⎨
⎩

ξ
ξ ξ
=

= + (1.8)

Applying transformation (1.8)–(1.4) results in a PDE for F y t, ,( )ξ  which we will study in the 
next section (see equation (2.8)); the initial condition for F is given by

F x y u x y, , 0 , .0( ) ( )= (1.9)

Note that if the initial data u0(x, y) has no y-dependence, (1.8) yields the exact characteristic 
solution with F(x, y, t)  =  u0(x) as described before; in particular, F is y and time-independent. 
As in the method of characteristics, the solution u(x, y, t) of the dKP equation encounters a 
gradient catastrophe when the transformation x tF y t, ,( )ξ ξ= +  defining x y t, ,( )ξ ξ=  is not 
invertible, namely when tF y t, , 1 0( )ξ + =ξ . Our numerical results show that as a result of 
the unfolding (1.8), the function F y t, ,( )ξ  remains regular at the time tc of shock formation 
of the solution u(x, y, t) of the dKP equation. Moreover, our numerics indicate the derivatives 
of F remain bounded for times substantially beyond tc. However, since F satisfies a nonlinear 
equation (see (2.8) below), we believe that F will typically develop a singularity for some time 
t  >  tc; we give an example of such a singularity in a particular case.

Manakov and Santini [35, 38] have proposed a transformation for analysing the gradient 
catastrophe of dKP equation which is superficially similar to ours, which is motivated by the 
inverse scattering transform. Their transformation differs from ours by a factor of 2 in front 
of the unfolding term:

u x y t F y t

x tF y t

F y u y

, , , ,

2 , ,

, , 0 ,0

( ) ˜( )
˜( )

˜( ) ( )

⎧
⎨
⎪

⎩
⎪

ζ
ζ ζ

ζ ζ

=
= +

=
 (1.10)

as a result, the transformation does not unfold the overturned profile if there is no y-dependence. 
In fact, transformation of the Hopf equation leads to the same equation F FF 0t̃ ˜ ˜− =ζ  as before, 
but with propagation in the opposite direction, and with the same initial data F u, 0 0˜( ) ( )ζ ζ= . 
This means that for y-independent initial data localized in the x-direction, F t,˜( )ζ  will experi-
ence a gradient catastrophe before u(x, t) does, if the initial profile is steeper on the left than 
on the right. The same remains true for solutions of the full dKP equation with localized initial 
data: we checked numerically that for the initial data considered in this manuscript, i.e. the 
x-derivative of a Schwartz function, the function F y t, ,˜( )ζ  suffers a gradient catastrophe before 
a gradient catastrophe occurs in the original profile u(x, y, t).
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To further illustrate the difference between the two parameterizations, note that combining 
(1.8) and (1.10) one finds F in terms of F̃:

F y t F y t

tF y t

, , , ,

, , ,

( ) ˜( )
˜( )

⎧
⎨
⎩
ξ ζ

ξ ζ ζ
=

= +
 (1.11)

or F̃ in terms of F:

F y t F y t
tF y t

, , , ,
, , .

˜( ) ( )
( )

⎧
⎨
⎩
ζ ξ

ζ ξ ξ
=

= − +
 (1.12)

If we assume that F y t, ,˜( )ζ  has no singularities and that tF y t2 , , 1 0˜ ( )ζ + >ζ  in some time 
interval [ ]′t0,  for all real ζ yand  then it follows from (1.10) that the solution u(x, y, t) of the 
dKP equation is regular in the same time interval. But since we also have tF y t, , 1 0˜ ( )ζ + >ζ , 
it follows from (1.11) that F y t, ,( )ξ  is regular in [ ]′t0,  as well.

On the other hand, assuming that F y t, ,( )ξ  is regular and tF y t, , 1 0( )ξ + >ξ  in some time 
interval t0,[ ]′  for all real ξ and y it follows from (1.8) that once again u(x, y, t) is regular in t0,[ ]′  . 
However, this does not imply that F y t, ,˜( )ζ  is regular, since it may happen that tF y t, , 1 0( )ξ− + =ξ  
for some ( ]∈ ′t t0, , even though tF y t, , 1 0( )ξ + >ξ  for all [ ]∈ ′t t0,  . This argument shows that 
F y t, ,˜( )ζ , as defined by (1.10), might encounter singularities even before u(x, y, t) does.

Our formulation allows us to find spectrally accurate solutions to F F y t, ,( )ξ= , from which 
u(x, y, t) can easily be reconstructed. The alternative would be to use numerical methods for 
hyperbolic equations which remain stable even after the formation of shocks [32]. However, 
these methods introduce numerical dissipation near the shock, which renders the solution 
inaccurate. These sources of inaccuracy can be avoided using our transformation. The main 
results of this paper are the following:

 • In section  2 we describe the solution of the dKP equation  by using a transformation 
inspired by the method of characteristics and by [35]. This transformation reduces the 
Cauchy problem for the dKP equation to the Cauchy problem for the function F y t, ,( )ξ  
introduced in (1.8), which is regular beyond tc .

 • In section 3 we study the singularity formation in the solution to the dKP equation as done 
in [35, 38]. We then show that the local structure of the dKP solution near the point of 
gradient catastrophe, in a suitable system of coordinates, is equivalent to the unfolding of 
an A2 singularity. We derive the self-similar structure of the lip-shaped domain where the 
solution of the dKP equation becomes multivalued.

 • In section 4 we give a heuristic derivation of the shock front position near the critical point 
of the solution of the dKP equation, and study the solution of the dKP equation when dis-
sipation is added (called the dissipative dKP equation). Using multiple-scale analysis, we 
show that in the limit of small dissipation and near the critical point of the dKP solution, 
the solution of the dissipative dKP equation converges to a Pearcey integral.

 • In section 5 we compare our analysis with detailed numerical simulations. Solutions for 
initial data with and without symmetry with respect to y y−�  are studied. It is shown 
that our numerical approach allows to continue dKP solutions to a second gradient catas-
trophe, well after the first catastrophe has occurred. We find no indication for blow-up of 
the solution to the transformed dKP equation.

2. Solution by characteristic transformation

We consider the Cauchy problem for the dKPI equation

T Grava et alNonlinearity 29 (2016) 1384
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+ =

= = ∈ ∈ +R R
⎧
⎨
⎩

u uu u

u x y t u x y x y t

,

, , 0 , , , , .
t x x yy

0

( )
( ) ( ) (2.1)

Since we are interested mainly in local properties of the solution, we will assume that u0(x, y) 
is in the Schwartz class, namely it is smooth and decreases rapidly at infinity. Equation (2.1) 
can also be written in the evolutionary form

u uu u ,t x x yy
1+ = ∂− (2.2)

where f x f x xdx
x1 ( ) ( )∫∂ ≡ ′ ′−
−∞

. This has the form of a nonlocal conservation law

u
u

uf f e e0,
2

,t x x y y

2
1+∇ = = − ∂− (2.3)

with ex and ey unit vectors in the x and y directions. As a result,

u x y t x y u x y x y, , d d , d d .0
2 2

( ) ( )∫ ∫=R R
 (2.4)

Similarly,

u u u u u2 /3 2 0,t x y x x y y
2 3 1 2 1( ) [ ( ) ] ( )+ − ∂ + ∂ =− − (2.5)

and hence the L2 norm is also a conserved quantity:

M t u x y t x y u x y x y, , d d , d d .2
0
2

2 2
( ) ( ) ( )∫ ∫≡ =

R R
 (2.6)

Since the left hand side of (2.1) is a total derivative, solutions have to satisfy the constraint

( )∫ = > ∀ ∈R
R

u x y t x t y, , d 0, 0,yy

If the initial data do not satisfy such a constraint, the solution  has an algebraic decay at infinity for 
t  >  0 even for initial data in the Schwartz class. This is a manifestation of the infinite speed of prop-
agation in the dKP equation. For this reason we choose initial data in the Schwartz class such that

u x y x, d 00( )∫ =
R

 (2.7)

for all y, so that the dynamical constraint is satisfied also at t  =  0. After these preliminaries we 
transform the dKP equation using (1.8), to find an equation for F y t, ,( )ξ .

Proposition 2.1. The equations (1.8) give a solution to the dKP equation with smooth initial 
data u0(x, y) in implicit form, if the function F y t, ,( )ξ  satisfies the equation

F tF

tF
F

1
,

t y
yy

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+

+
=

ξ
ξ

 (2.8)

with initial data

F x y u x y, , 0 , .0( ) ( )= (2.9)

Proof. Differentiating the second equation in (1.8) with respect to x, t and y we find

F tF tF1
, ,x t

t
y

yξ ξ ξ=
∆

= −
+
∆

=
∆

 (2.10)
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where we have defined tF1∆ = + ξ. Thus the derivatives of u with respect to the variables are

u F F
F FF

,t t t
tξ= + =
−

∆
ξ

ξ
 (2.11)

and

u
F

u
F

, .x y
y=

∆
=
∆

ξ
 (2.12)

Now the Hopf equation becomes

u uu
F

0 ,t x
t= + =
∆

 (2.13)

which confirms that F is time-independent in this case. Differentiating (2.12) a second time, 
we find

u
F F tF

F
tF1

,yy
y

y

y y
yy

y
2⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥
⎥=

∆
−
∆ ∆

=
∆

−
∆ξ ξ

after some manipulations. But this means that if u(x, y, t) satisfies the dKP equation (2.1), 
F y t, ,( )ξ  satisfies (2.8) with initial condition (2.9). □

We rewrite the equation (2.8) in the evolutionary form

F F t F F Ft yy yy y
1 1 2( )= ∂ + ∂ −ξ ξ ξ
− −

where 1∂ξ
−  is the inverse of a derivation. We observe from the above equation that the nonlinear 

terms are multiplied by the time t and this show that for small times the nonlinear effects are 
damped. This observation qualitatively explains the fact that the function F y t, ,( )ξ  develops a 
singularity after u(x, y, t) becomes singular.

For the remainder of this paper we will focus on solutions to the transformed equation (2.8). 
We observe that (2.8) also conserves the integrals over F and F 2, which we will use to check 
our numerics. Namely for n integer one has

u x y F y F y
t

n
F y F yd d d d d d

1
d d d d .n n n n n1

2 2 2 2 2
( )∫ ∫ ∫ ∫ ∫ξ ξ ξ ξ= ∆ = +

+
=ξ

+

R R R R R

In particular, conservation of the L2 norm (2.6) gives the constraint

F y t y u x y x y, , d d , , 0 d d .2
0
2

2 2
( ) ( )

R R∫ ∫ξ ξ = (2.14)

The transformation (1.8) has been constructed so as to unfold the overturned profile onto 
the initial condition in the case of a y-independent initial condition. It is thus intuitive that if 
the overturning is modulated in the y-direction, it is unfolded onto a function F y t, ,( )ξ  which 
shows no overturning, and having a weak dependence on y and t only.

3. Overturning of the profile

For generic initial data the solution of the dKP equation encounters a gradient catastrophe at 
points where the transformation (1.8) is not invertible [35]

T Grava et alNonlinearity 29 (2016) 1384



1391

y t tF y t, , 1 , , 0,( ) ( )ξ ξ∆ ≡ + =ξ (3.1)

and consequently the gradients ux and uy go to infinity, see (2.12). This is illustrated in figure 1 
for generic initial data, based on the local description to be developed below. The singular time 
tc where the gradient catastrophe occurs first is the smallest t such that (3.1) holds. Since for 
t  <  tc the quantity y t, ,( )ξ∆  has a definite sign in the ξ and y plane, y t, , c( )ξ∆  must be a zero 
as well as an extremum: 0y∆ = ∆ = ∆ =ξ . Thus the two-dimensional gradient catastrophe 
is characterized by the equations:

tF y t

F

F

u x y t F y t
x tF y t

1 , , 0

0

0

, , , ,
, , .

y

( )

( ) ( )
( )

ξ

ξ
ξ ξ

+ =
=
=

=
= +

ξ

ξξ

ξ 

(3.2)

The first three equations of (3.2) determine the coordinates y,c cξ , and tc of the singularity in 
transformed variables, taken as the origin in figure 1. The x and u coordinates are recovered 
by substitution into the last two equations. One finds that tF u x y t F, ,y x y y( ) ( )∂ +∂ = <∞, hence 
there is no gradient catastrophe in the transversal direction characterized by the vector field

tF e e ,y x y+ (3.3)

see figure 1. For generic initial conditions, the second derivatives of ∆ will be nonzero at the 
gradient catastrophe:

F y t F y t F y t, , 0, , , 0 , , 0.c c c y c c c yy c c c( ) ( ) ( )ξ ξ ξ≠ ≠ ≠ξξξ ξξ ξ (3.4)

The conditions (3.2), (3.4) correspond to a cusp singularity in the notation of [1], and will be 
found to describe the generic singularity for the dKP solution. The condition that F remains 
smooth, and thus the right hand side Fyy of (2.8) is finite, results in the additional constraints

F t F F F t F F0, 0, 2 0,t
c

c y
c

t
c

ty
c

c yy
c

y
c2( )+ = = + =ξ (3.5)

where with a super-script we indicate the derivatives evaluated at the critical point.
We now give a local description of the two-dimensional wave front u(x, y, t), based on 

expanding F y t, ,( )ξ  near the gradient catastrophe described by (3.2). Our numerical simula-
tions confirm that F y t, ,( )ξ  remains smooth in the y,( )ξ  plane not only near the first singular-
ity, but well beyond. The region where the wave is multivalued has the typical lip shape also 
seen in the caustic surface of light waves near the cusp catastrophe [41]. We will show them 
to be self-similar with width t 3/2¯  in the horizontal direction and t 1/2¯  in the transversal direction 
where t t tc¯ = − , as done in [35]. The same scalings have been observed in [43] in the context 
of the 2-dimensional kinematic wave equation.

In order to illustrate the way in which (1.8) unfolds the singularity, it is instructive to con-
sider a family of exact solutions to (2.1) obtained in [36]:

u x y t
t

B x
y

t
ut, ,

1

4
2 ,

2

( )
⎛
⎝
⎜

⎞
⎠
⎟= − − (3.6)

where B is an arbitrary function of one variable. The validity of (3.6) can be checked explicitly 
by substitution. Clearly (3.6) can be re-parameterized in the form

u x y t
t

B
y

t
x t B

y

t
, ,

1

4
, 2

4
,

2 2

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟ζ ζ ζ= − = − + (3.7)
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which shows that F̃, as defined by (1.10), is

F y t
t

B
y

t
, ,

1

4
.

2
˜( ) ( )ζ ζ= −

A singularity in the dKP solution occurs when the second equation in (3.7) is no longer 
invertible; the first time this occurs is the critical time tc  >  0, determined by

t
B

min
1

2
.c

⎛

⎝
⎜

⎞

⎠
⎟= −

ζ ζ∈R

In order to write (3.6) in terms of our function F y t, ,( )ξ , we use the double re-parameterisation:

u x y t F y t x tF y t, , , , , , , ,( ) ( ) ( )ξ ξ ξ= = + (3.8)

F y t
t

B
y

t
t B

y

t
, ,

1

4
,

4
.

2 2

( ) ( ) ( )ξ ζ ξ ζ ζ= − = − + (3.9)

We observe that F y t, ,( )ξ  has a singularity when the second transformation in (3.9) is no lon-
ger invertible, namely at a critical time for the transformed equation (2.8)

t t4 .c
F

c
( ) =

It is also straightforward to check that at tc, F y t, ,( )ξ  satisfies the constraints (3.5). Indeed one 
calculates directly from (3.9) that

F
B

t

t B

t B

y B

t
t B

F
yB

t t B2

2 1

1
4

1

1
,

2 1

,t y3
2

2

5
2

3
2( )

= −
+
+

+
+

= −
+

′
′

′
′

′

′

so at the critical time one obtains the relations

F
y

t
F

y

t4
,

2
,t

c c

c
y
c c

c

2

3 2
= − =

Figure 1. A typical sequence of wave breaking, as described by (3.1), showing the 
lip-shaped domain inside which the wave overturns. The singularity first appears at 
the origin, then spreads rapidly in the direction (3.3). The scale of the lip is t̄ 3/2 in the 
x-direction, and t̄ 1/2 in the y-direction. Full lines are solutions of ∆ = 0 at ¯ =t 0.01, 0.1, 
and 0.4, while the dashed line is the shock front, which has to be inserted in accordance 
with the shock condition (4.5), to be discussed in section 4 below.

x

y
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which satisfy the first of the constraints in (3.5); the remaining constraints (3.5) are checked 
analogously.

3.1. Local analysis

In order to study the solution near the gradient catastrophe we expand the generalized charac-
teristic equation (1.8) in a Taylor series near tc, xc, yc, uc and cξ . Part of the analysis below is 
already contained in [35, 38]. Introducing variables relative to the singularity as

x x x t t t y y y: : , : , : ,c c c c¯ ¯ ¯ ξ̄ ξ ξ= − = − = − −

we have argued that x t 3/2¯ ¯∼  and y t 1/2¯ ¯∼ . Since u t 1/2¯∆ ∼ , it follows from the first equation of 
(1.8) that t 1/2¯ ¯ξ ∼ . Thus to be consistent, we include all terms up to O t 3/2(¯ ):

x t F t F ty F t F t F y F y F y

t
F

t
F y

t
F y F t o t y t y

1

2

1

6

6 2 2
, , , .

c
c t

c
y
c

c yt
c

c y
c

yy
c

yyy
c

c c c
y

c c
yy

c c

2 3

3 2 2 2 4 4 2 2

¯ ¯( ) ¯ ¯( ) ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ (¯ ¯ ¯ ¯( ¯ ¯ ))

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ξ ξ ξ ξ ξ

= + + + + + +

+ + + + + +ξξξ ξξ ξ ξ

 

(3.10)

This suggests introducing the shifted variables (using t F1/c
c= − ξ):

F
F

F
y

X
k

x t F t F ty F t F t F y F y F y

t
F

F
y t

F F

F
y F

F

F
yt

T
k

t
t

y
F

F
F

k
t F

1 1

2

1

6

1

3

1

2

1

2
,

6

c y
c

c

c
c t

c
y
c

c yt
c

c y
c

yy
c

yyy
c

c
y

c

c c
y

c
yy

c

c
c y

c

c

c y
c

c yy
c

c
c

2 3

3

2
3 3

2
2

2

4

¯ ¯

¯ ¯( ) ¯ ¯( ) ¯ ¯ ¯

( )
( )

¯ ¯ ¯¯

¯ ¯
( )

⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥
⎥

ζ ξ= +

= − + − + − + +

− + +

= + −

=

ξ
ξξ

ξξξ

ξξ

ξξξ

ξξ ξ

ξξξ
ξ
ξξ

ξξξ

ξξ

ξξξ
ξ

ξξξ

 

(3.11)

so that in the variable ζ, (3.10) takes the form

T X o t y t y, , , .3 2 4 4 2 2(¯ ¯ ¯ ¯( ¯ ¯ ))ζ ζ ξ ξ− + = + + (3.12)

Using the estimates y t 1/2¯ ¯ ¯ξ ∼ ∼  and x t 3/2¯ ¯∼  identified previously, the scaling

X X

t t

y y

,

2
3

1
3

1
3

→

¯ → ¯

¯ → ¯

→

λ

λ

λ

ζ λ ζ

 (3.13)

in the limit 0→λ  reduces (3.12) to the universal s-curve

T X3ζ ζ− + = (3.14)
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shown in figure 2. It is easy to confirm that the function X T,( )ζ  defined by (3.14) solves

0T Xζ ζζ+ = (3.15)

with initial condition X T X, 0
1
3( ) ( )ζ = = − , completing our task of reducing (2.1) locally to 

the Hopf equation. A gradient catastrophe is encountered for X  =  0, T  =  0, and 0ζ = .
Using the identities (3.5), we can now calculate the solution to the dKP equation (2.1), 

valid near the singularity. To leading order in the limit 0→λ , it is consistent to expand u(x, y, t)  
to linear order in y,¯ ¯ξ :

u x y t u F y t F F F y X T y, , , , , ,c
c c

y
c( ) ( ) ¯ ¯ ( ) ¯ ¯ξ ξ ζ β− = − + = +ξ� (3.16)

with

F
F F

F
.y

c
c

y
c

cβ̄ = − ξ ξξ

ξξξ
 (3.17)

Thus putting u u x y t u, , c¯ ( )≡ − , from (3.14) we find the local profile to be an s-curve, which 
has the universal similarity form:

u y T u y X.3( ¯ ¯ ¯) ( ¯ ¯ ¯)β β− − + − = (3.18)

This is the central result of our theoretical analysis; the formula (3.18) is the unfolding of an 
A2 singularity. It is a complete description of the self-similar behavior of the dKP solution 
near its singularity for generic initial data. In the y-independent case, (3.18) coincides with the 
usual result (1.6). We now derive the form of this multivalued valued region in the x, y-plane, 
shown previously in figure 1.

3.2. Multivalued region

As seen in figure 2, the function X T,( )ζ ζ= , described by the cubic equation (3.14), becomes 

multivalued for T  >  0. From 0X =
ζ
∂
∂

 it follows that

T T3 , or /3 ,2ζ ζ= =± (3.19)

so that for X in the interval

T X T
2

3 3

2

3 3
,3/2 3/2⩽ ⩽−

Figure 2. The universal s-curve described by (3.14); for T  >  0 the profile turns over to 
form a multivalued region.
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the function X T,( )ζ  is multivalued.
Reversing the coordinate transformations (3.11), we can write the first equation (3.19) in 

the form

t t y y
1

2
2 ,c

2 2¯ ( ¯ ¯ ¯ ¯ )α ξ β ξ γ= + + (3.20)

where we have introduced the constants

t F
F

F

F

F
, , .c

c y
c

c
yy

c

cα β γ= = =ξξξ
ξξ

ξξξ

ξ

ξξξ
 (3.21)

Alternatively, (3.20) could also have been derived from (3.1), and expanding F in a power 
series around the singular point.

The x̄-coordinate of the boundary of overturning can be found from (3.10), which using 
(3.20) can be simplified to yield

¯ ¯ ¯ ¯ ¯( ( ) )

¯ ¯( ) ¯ ¯ ¯

α ξ
β
ξ= − + + −

+ − + + +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

x y t F t F

ty F t F F t F y F y F y

1

3 2

2
1

2

1

6
.

c
c y

c

y
c

c yy
c

y
c

c y
c

yy
c

yyy
c

3 2 2 2

2 2 3
 (3.22)

Equations (3.20) and (3.22) describe a curve in the x y,( ¯ ¯) plane, parameterized by ξ̄ . An exam-
ple was shown previously in figure 1 for several values of t t tc¯ = − , showing its characteristic 
‘lip’ shape [3].

The overturned region starts from the singular point and then expands, as seen in figure 1. 
To understand the scaling of this expansion, we introduce the independent variables

X x t F t F t F y F y t

Y yt

1

2

.

c
c y

c
c y

c
yy
c

1
2 2 2 3/2

1
1/2

¯ ¯( ( ) ) ( ¯ ¯ ) ¯

¯¯

⎧
⎨
⎪

⎩⎪

⎡
⎣⎢

⎤
⎦⎥= − − − +

=

−

−
 (3.23)

Then the lip described by equations  (3.20) and (3.22) is reduced to the time-independent 
similarity form:

t s Y s Y

X s s Y Y Y

1

2
2 1

1

3

1

2 6
,

c
2

1 1
2

1
3 2

1 1 1
2

1
3

( )

⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

α β γ

α β δ
δ

+ + =

= − + + +
 (3.24)

with the additional constants

F t F F t F2 , .y
c

c yy
c

y
c

c yyy
c

1
2

2δ δ= − = (3.25)

This demonstrates that the gradient catastrophe in the dKP equation has a universal spa-
tial signature, parameterized by the constants , , , 1α β γ δ , and 2δ , all of which can be com-
puted in terms of the initial data and its derivatives at the point of gradient catastrophe 
x t y, ,c c c( ). The scalings introduced in (3.23) imply that the lip expands as t 3/2¯  in the propaga-

tion direction, and as t 1/2¯  in the transversal direction, as announced previously. A charac-
teristic feature is the cusp at the corner of the lip. This is seen most easily for initial data 
which is even in y, for which the description simplifies considerably. All odd derivatives in 
y vanish, and we obtain
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( )α γ

α

+ =

= −

⎧

⎨
⎪

⎩
⎪

t s Y

X s

1

2
1

3
,

c
2

1
2

1
3

 (3.26)

shown in figure 3. Analyzing the neighborhood of the point s  =  0, one finds directly that

( ¯ ) ( ¯ ) ¯α
α

=± − =X Y Y Y Y
t3

2 ,
2

,
c

1 1
3/2

1 1
3/2

1 (3.27)

which is a generic 3/2 cusp [15].

4. Dissipative dKP equation and shock solutions

The solution (3.18) constructed in the previous section is unphysical for t 0¯> , in that it does 
not assign a unique value of u to every point x, y in the plane. In principle, one can construct 
an infinity of single-valued solutions from it, by choosing different points at which to jump 
from one branch to the other. For conservation laws in many space dimensions, physically 
motivated constraints, known as generalized Rankine–Hugoniot jump conditions, have been 
introduced. As result, a weak solution of the equations (usually called the inviscid shock), is 
singled out uniquely [29, 33].

Another way to select a unique solution after the singularity, is to consider a dissipative 
version of (2.1) with a viscous term added to it, which keeps the solution regular at all times. 
In the limit of vanishing viscosity ε these regular solutions are expected to converge to (3.18), 
with a particular jump condition being selected. In this case the shock is called the viscous 
shock. In the field of hyperbolic equations the problem of showing that the inviscid shock is 
equal to the viscous shock has generated a huge literature. We only mention some important 
references in one dimension [6, 18], and many space dimensions [19]. Below we give an 
heuristic derivation of the equivalence of the inviscid and viscous shock for the dKP equation.

Figure 3. The symmetric lip according to (3.26), ending in a cusp.
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We consider the dissipative form of the dKP equation

u uu u cy u u x y t u x y, , , 0, , ,t x xx yy x yy 0( ( )) ( )) ( )+ − + = = =ε ε (4.1)

with c 0⩾ , which satisfies

t
u x y t x y u cu

1

2
, , d d 0.x y

2 2 2
2

( ) ( )∫
∂
∂

= − + <ε
R

 (4.2)

For given ε-independent initial data, the solution u x y t, , ,( )ε  of the dissipative equation (2.1) 
is expected to be approximated as 0→ε  and t  <  tc by the solution u(x, y, t) of the dKP 
equation (2.1).

4.1. Shock position

On the other hand, (2.4) is still satisfied at finite ε, so (smooth) solutions of (2.1) still conserve 
u in the limit 0→ε . From the condition that u be satisfied across a shock, we can use the gen-
eralized Rankine–Hugoniot jump conditions as in [33], which determines the shock position 
(see also [9]). Namely, if vn is the normal velocity of the shock, one obtains

v u u f n f n ,n 1 2 1 2( ) ( ) ( )− = ⋅ − ⋅ (4.3)

where n is the normal to the shock front, and indices 1 and 2 denote values in front and in 
the back of the shock, respectively. Assuming that the shock position is given by the curve 
x y t,s( ¯ ¯), and using the flux f from (2.3), this yields

x u u
u u x

y
u x˙

2
d ,s

s

x

x

y1 2
1
2

2
2

2

1

( ) ∫− =
−

+
∂
∂

 (4.4)

where x1/2 are x-values approaching the shock from the front and from behind, respectively.
Now the singular contribution to u across the shock can be written in the form

u u u u x x y t, ,s2 1 2( ) ( ¯ ( ¯ ¯))θ= + − −

where x( )θ  is the Heaviside function and u1,2 become functions only of y and t on the shock 
front x x y t,s¯ ( ¯ ¯)= . Hence

u u u u x x y t u u
x

y
x x y t, , ,y y y s

s
s2 1 2 1 2( ) ( ) ( ¯ ( ¯ ¯)) ( ) ( ¯ ( ¯ ¯))θ δ= + − − − −

∂
∂

−

and from (4.4) the jump condition at the shock finally becomes

x
u u x

y
˙

2
.s

s1 2
2⎛

⎝
⎜

⎞
⎠
⎟=

+
−
∂
∂

 (4.5)

Note that the shock speed in the x-direction is not only an average between u-values in front 
and in the back of the shock as for the Hopf equation, but on account of the right hand side of 
(2.1) an additional term arises.

Since we have mapped (2.1) locally to the Hopf equation (3.15), standard theory [9] tells 
us that the shock should be at X  =  0, according to (3.11) the equation for the front becomes

x y t t F t F ty F t F t F y F y F y

t
F

F
y t

F F

F
y F

F

F
yt

,
1

2

1

6

1

3

1

2
.

s
c

c t
c

y
c

c yt
c

c y
c

yy
c

yyy
c

c
y

c

c c
y

c
yy

c

c
c y

c

c

2 3

3

2
3 3

( ¯ ¯) ¯( ) ¯ ¯( ) ¯ ¯ ¯

( )
( )

¯ ¯ ¯¯

⎜ ⎟
⎛
⎝

⎞
⎠= + + + + + +

+ − −ξξ

ξξξ

ξξ ξ

ξξξ
ξ
ξξ

ξξξ
 

(4.6)
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This equation indeed satisfies (4.5) to leading order, since

x y t F t F yt F y˙ ,s
c

c t
c

c yt
c( ¯ ¯) ¯ ¯ ¯β= + + + (4.7)

and

x

y
t F F y O t t F t F y O t ,s
c y

c
yy
c

c t
c

c ty
c

2
2[ ( ¯) (¯)] ¯ (¯)

⎛
⎝
⎜

⎞
⎠
⎟

∂
∂

= + + = − − + (4.8)

having used (3.5). On the other hand, ζ =±± T  at X  =  0, and so according to (3.16)

u u
F y

2
.c1 2 ¯ ¯β+

= +

Combining the last three equations one can see that the approximate shock front (4.6) satisfies 
(4.5) to leading order. In figure 1 we have plotted (4.6) as the dashed line.

4.2. Shock structure

Having found the shock position, we now investigate the inner structure of the shock, in case 
a small amount of viscosity is present. This is achieved by mapping (2.1) onto Burgers’ equa-
tion [48], which in addition to (3.15) contains a dissipative contribution. We are looking for a 
solution u x y t, , ;( )ε  of the dissipative dKP equation near the gradient catastrophe x y t, ,c c c( ) of 
the (inviscid) dKP equation. To this end we use the ansatz

u x y t u h X T y, , ; , ; ,c( ) ( ) ¯β̄= + +ε ε (4.9)

with X and T defined in (3.11). Using the same scalings as before, and balancing u ut xx∝ ε , we 
are led to the multiscale expansion

h X T H O, ; , ; ,
1

3
,

1
3( ) ( ) ( )λ ε λ α= + >αε X T

X T y, , , ,
2
3

4
3

1
3¯λ λ λ ε λ= = = =εX T Y (4.10)

and find the following theorem:

Theorem 4.1. Let u x y t u h X T y, , ; , ;c( ) ( ) ¯β̄= + +ε ε  be a solution of the dissipative dKP 
equation (2.1) with X and T defined in (3.11). Suppose that for t tc| − | small the limit

H h, ; lim , ;
0

1
3 2/3

4
3( ) ( )

→
ε λ λ λ λ ε=

λ

−
X T X T

exists and the function H , ;( )εX T  satisfies the asymptotic conditions

H O, ;
3

,
1
3

1
3

5
3( ) ( ) →X T X

T
X X Xε = | | | | + | | | | ∞− −∓ ∓ (4.11)

for each fixed ∈T R. Then the function H , ;( )εX T  satisfies the Burgers equation

H HH H
k

c t F, 1 c y
c 2( ( ) )σ σ

ε
+ = = +T X XX (4.12)

with k defined in (3.11).
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Proof. Inserting (4.9) into the dissipative dKP equation one obtains

H HH
k

t F H H
X

t

X

y
F y F F

F

F

H
T

y

X

y
H

T

y
kH
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y
kH
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H
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y
t F

k
H
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y
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⎜

⎞
⎠
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⎞

⎠
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⎞
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⎛
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⎟⎟

ε
λ

λ λ λ ε

ε
λ λ λ λ
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∂
∂
−
∂
∂

+ + −

=
∂
∂
∂
∂
+

∂
∂

+
∂
∂
+

∂
∂
−

∂
∂

−

−
∂
∂
∂
∂
+

∂
∂

+
∂
∂
+

∂
∂

ξ
ξξ

ξξξ

−
T X XX X XX

TX TT T X XX

TX TT T X

X
 

(4.13)

Using (3.11), the constraints (3.5), and the substitution (4.10) one arrives at the relation

H HH
k

c t F H O1 ,c y
c 2

1
3( ( ( ) ) ) ( )ε
λ+ − + =T X XX X

which in the limit 0→λ  shows that the derivative of (4.12) is equal to zero. In order to fix the 
integration constant we use the asymptotic condition (4.11). □

A similar multi-scale analysis has been obtained in [51] for one-dimensional dispersive 
equations.

We remark that the asymptotic condition (4.11) implies that the local solution near the 
point of singularity formation, matches the outer solution given by (3.14) and (3.16). We 
conclude that near the gradient catastrophe, up to the constant term uc as well as a term linear 
in y, in a suitable co-ordinate system the solution to the dissipative dKP equation reduces to 
the solution of the one-dimensional Burgers equation. We will argue below that the particular 
solution to the Burgers equations relevant near the critical point, and described by the asymp-
totic form (4.11), also satisfies the equation

H H HH H6 4 .3 2σ σ= − + −X T X XX (4.14)

4.2.1. Burgers equation. To find the local solution near the shock, let us recall the solution 
to Burgers’ equation

v vv v ,t x xxν+ = (4.15)

with initial data v0(x), where ν is a positive constant. An exact solution is obtained via the 
Cole–Hopf transformation [20, 48] to give the formula:

v x t, , 2 log e d ,x

G x t, ,
2( )

( )

∫ν ν η= − ∂
η
ν

−∞

∞ −
 (4.16)

where

G x t v s s
x

t
, , d

2
.

0
0

2

( ) ( ) ( )
∫η

η
= +

−η
 (4.17)

For 0→ν  the leading contributions to the integral come from the neighborhood of the criti-
cal points of G, namely

( ) ( )η ξ
ξ

∂ | = −
−
=η η ξ=G x t v

x

t
, , 0.0 (4.18)
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Let us assume first that there is only one such critical point, which means that using the 
method of the steepest descent [48], the integral can be approximated as

G x t
e d

4

, ,
e ,

G x t G x t, ,
2

2

, ,
2

( )

( ) ( )

∫ η
πν
ξ

≈
∂

η
ν

ξ

ξ
ν

−∞

∞ − −

where x t,( )ξ ξ=  is a solution of (4.18). Direct evaluation of (4.16), using the characteristic 
condition (4.18), then yields the solution

( ) ( )
( )

( ( ) )
( )″

ν ξ ν
ξ

ξ
ν= +

+
+

′
v x t v

v t

v t
O, ,

1
,0

0

0
2

2 (4.19)

whose leading order contribution in the limit 0→ν  is the solution of the Hopf equation by 
characteristics. In addition, (4.19), contains a linear correction coming from the viscosity. 
Alternatively, the term linear in ν can also be obtained using perturbation theory.

The approximation (4.19) remains valid as long as the function G x t, ,( )η  has an isolated 
generic critical point, before the appearance of a gradient catastrophe. However, after the 
critical triple point x t,c c( ) of the Hopf equation, where v t 1 0c c0( )ξ + =′  and v 0c0 ( )″ ξ = , (4.18) 
has three solutions, as illustrated on the left of figure 5 below. Near this point G x t, ,( )η  can be 
expanded in a Taylor series as

G G x t G c t v
t

t

x v t

t
v x v t v t: , , , ,

4! 2
,c c c c

c

c

c
c c c0

4
2

2
2( ) ( ) ( ) ¯ ¯

¯
¯ ¯ ¯

( ¯ ¯) ¯″η ξ ξ
η

η η∆ = − − −
−

+ − +′�

where x x xc¯ = − , t t tc¯ = − , cη̄ η ξ= − , v vc c0( )ξ=  and ( )″ ξ >′v 0c0 . Thus near such critical 
point the solution of Burgers’ equation can in the limit 0→ν  be approximated by

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥
⎥

v x t v v t
t t

x v t, , 2 log exp
1

2 4! 2
d .c x c

c c
c0

4 2

2
( ) ( ) ¯ ¯ ¯ ¯ ( ¯ ¯) ¯∫ ″ν ν

ν
ξ
η η η

η− ∂ − − − −′
−∞

∞

�

 

(4.20)

Some rescaling leads to the following (see also [12])

Theorem 4.2 ([21]). Near a gradient catastrophe x t,c c( ) for the solution of the Hopf equa-
tion v vv 0t x+ = , the solution v x t, ,( )ν  of (4.15) admits the following expansion

v x t v U
x v t t

O, , , ,c
c

1/4

3 1/4 1/2
1/2( ) ¯ ¯

( )
¯

( )
( )⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟ν

ν
κ κν κν

ν= +
−

+ (4.21)

where v v x t,c c c( )= , t v /6c c
4

0 ( )″κ ξ= ′  and the function U  =  U(a, b) is defined by

U a b z, 2 log e d .a
z z b za1

8
2 44 2

( )
( )

∫= − ∂
−∞

+∞ − − +
 (4.22)

Remark 4.3. The function U(a, b) satisfies both the Burgers equation

U UU Ub a aa+ =

and the non-linear ODE in the a-variable, containing b as a parameter [5]

a Ub U UU U6 4 .a aa
3= − + − (4.23)
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The behavior of U(a, b) is illustrated in figure 4 for negative, positive, and vanishing values 
of reduced time b, performing the integral in (4.22) numerically. For large a| | and fixed b the 
integral (4.22) behaves as the root of the cubic equation (3.14) (see below).

U a b a
b

a O a a,
3

,
1
3

1
3

5
3( ) ( ) →= | | | | + | | | | ∞− −∓ ∓

The integral in (4.22) is related to the standard Pearcey function [11], which describes the 
diffraction pattern near a cusp caustic [41], by a complex rotation. The relation (4.23) is con-
venient in deducing the asymptotic properties of U(a, b); it follows from

z
z

d

d
e d 0.

z z b za1
8

2 44 2( )
∫ =
−∞

∞ − − +

In catastrophe theory [44] the potential

z z z b za2 44 2( )∆ = − + (4.24)

(the weight in the exponent of (4.22)) is the standard unfolding of the cusp catastrophe, which 
is a co-dimension 2 singularity. For b  <  0 (before the gradient catastrophe), there is only one 
critical point

z
z zb a0

d

d
4 4 4 ,3=

∆
= − + (4.25)

which is the case we considered before (see figure 5). Evaluating ∆ at the critical point (4.25) 
yields

z z b a z zb3 2 , .4 2 3∆ = − + = − + (4.26)

For b  <  0 this gives the single-valued curve shown on the right of figure 5, which leads to the 
solution (4.19).

If on the other hand b  >  0 (after the gradient catastrophe), in the range a b2 /3 3/2⩽ ( )  there 
are three critical points. Thus the integral (4.22) has three contributions, with different values 

Figure 4. The Pearcey function U(a, b), for three different values of b.
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of ∆ (see (4.26)), which lie on a swallowtail figure, as shown on the right of figure 5. The int-
egral is dominated by the smallest value of ∆, as long as the solutions are well separated. This 
means we must have b 1�  (see figure 5), or t / 11/2¯ �ε . Closer to gradient catastrophe, a more 
sophisticated asymptotics is needed, or one has to evaluate the integral numerically, as we will 
do below. However, outside of the region b 1� , the integral is dominated by either solution z1 
or z3. The changeover occurs for a  =  0, where z z1 3( ) ( )∆ = ∆ , namely on the line x v t 0.c¯ ¯− =  
This is exactly the shock front near the gradient catastrophe x t,c c( ).

4.2.2. Pearcey integral and dissipative dKP equation. Choosing 
3
4λ = ε  in theorem 4.1 we 

obtain that the solution to the dissipative dKP equation satisfies in the rescaled variables (4.10) 
the Burgers equation (4.12) with 1ε = . Furthermore for t  <  tc such solution is asymptotic to 
the Hopf solution (3.14). Combining these observations with theorem 4.2 and remark 4.3, we 
come up with the following conjecture.

Conjecture 1. Let us consider the double scaling limit 0→ε , x xc→ , y yc→  and t tc→  in 
such a way that the ratios

X T
, ,

3/4 1/2ε ε

remain bounded with X and T defined in (3.11). Then the solution u x y t, , ;( )ε  of the dissipative 
dKP equation near the first singularity for the solution of the dKP equation is described by 
the expansion

u x y t u U
X T

y O, , ; , ,c
1/4

3/4 1/2
1/2( ) ¯ ¯ ( )⎜ ⎟

⎛
⎝

⎞
⎠σ

σ σ
β+ + +�ε ε (4.27)

where

c t F

F t

6 1
,

c y
c

c
c

2

4

( ( ) )
σ =

+

ξξξ

ε

and the function U(a, b) is the Pearcey integral defined in (4.22).

Figure 5. The critical contributions to the integral (4.22) near a cusp catastrophe, at 
constant reduced time b. On the left, the critical points; there is a unique solution for 
b  <  0, and three solutions for ⩽ ( )a b2 /3 3/2 if b  >  0. On the right, the argument ∆ 
of the exponential; for b  <  0 there is a single contribution, for b  >  0 there are three 
contributions to a given value of a.
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For y-symmetric initial data the expression (4.27) reduces to the form

u x y t u U
x u t t F y

k

t t F y

k
O, , ;

/2
,

/2
,c

c c yy
c

c yy
c

1/4
2

3/4

2 2

1/2
1/2( )

¯ ¯ ¯ ¯ ¯
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟σ

σ σ
+

− − −
+ξ�ε ε

 

(4.28)

with k defined in (3.11). The center of the (smooth) shock front is located at X  =  0, as found 
previously in the inviscid limit.

5. Numerical solution

In this section we present numerical solutions of the transformed version (2.8) of the dKP 
equation, which remain smooth well beyond the gradient catastrophe of the original equa-
tion  (2.1), as we will demonstrate below. In addition, we treat the dissipative dKP equa-
tion  (2.1), whose solutions are also observed to remain smooth. We use a Fourier method 
for the spatial dependence, and an exponential time differencing (ETD) scheme for the time 
dependence, as previously for the dKP equation [25].

Both equations are written in evolutionary form

F F t F F F ,t yy yy y
1 1 2( )= ∂ + ∂ −ξ ξ ξ
− − (5.1)

and

u uu u u cu ,t x x yy xx yy
1 ( )+ = ∂ + +− ε (5.2)

with a small dissipation parameter ε. In Fourier space, the antiderivatives 1∂ξ
−  and x

1∂−  are rep-
resented as Fourier multipliers i k/− ξ and  −i/kx, respectively. Here kξ, kx, ky are the dual Fourier 
variables of ξ, x, y respectively, and the Fourier transform of a variable will be denoted by a 
hat. Thus (5.1) and (5.2) can be written in the form

u u u ,tˆ ˆ ( ˆ)= +L N (5.3)

where L is a linear, diagonal operator, which is ξik k/y
2  for (5.1), and ε−ik k k/y x x

2 2 for (5.2), and 

u( ˆ)N  is a nonlinear term. The idea of the ETD scheme to be used here is to treat the linear part 
of (5.3) exactly. We use the fourth order EDT method by Cox and Matthews [10], but other 
schemes offer a very similar performance [24].

To satisfy the constraint (2.7) on the initial condition, we choose initial data as the deriva-
tive of a function from the Schwarz space of rapidly decreasing smooth functions. This is 
well suited to a Fourier method, since a Schwarz function can be continued as a smooth 
periodic function to within our finite numerical precision. However, the nonlocality of (5.1) 
and (5.2) implies that solutions will develop tails with an algebraic decrease towards infinity. 
This follows already from the Green function of the linearized equations [26]. It was shown in 
[24, 26] that discontinuities at the boundaries of the computational domain can nevertheless 
be avoided by choosing a large enough domain, and one can achieve spectral accuracy (an 
exponential decrease of the numerical error with the number of Fourier modes) over the time 
scales considered.

The antiderivative in both (5.1) and (5.2) leads to Fourier multipliers which are singular 
in the limit of small wave numbers. These terms are regularized in Fourier space by adding a 
term of the order of the machine precision (∼10−16 here). In [26], the dKP equation (2.1) was 
solved for ux

1∂− , which is possible since solutions maintain the property of being the derivative 
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of a Schwarz function. Together with an exponential integrator treating the term ik k/y x
2  explic-

itly, this addressed all numerical problems stemming from this singular operator.
However, an explicit treatment of all singular terms is not possible for (5.1), since N  is sin-

gular as well, which leads to numerical problems for k 0→ξ . This can be addressed by applying 
a Krasny filter [28]: all Fourier coefficients with modulus smaller than some threshold (typi-
cally 10−10 ) will be put equal to 0. In all cases considered, our numerical algorithm could now 
be continued well beyond the first gradient catastrophe. For longer times, the above mentioned 
algebraic tails will lead to a slower decrease of the Fourier coefficients and thus to numerical 
problems once the numerical errors are of the order of the Krasny filter. For long time compu-
tations, which are beyond the scope of the current paper, one would have to use considerably 
larger domains and higher resolutions, or alternatively a spectral approach as in [7].

The accuracy of the numerical solution to (2.8) was monitored via the decrease of the 
Fourier coefficients, and checking the conservation of the L2 norm (see (2.6), (2.14)). To this 
end we compute

t
M t

M
1

0
,( ) ( )

( )
δ = − (5.4)

whose time dependence will be a measure of the numerical error. As shown in [23, 25], the 
maximum error in F may well be one to two orders of magnitude greater than δ, but within 
these limits δ is nevertheless a reliable indicator of the accuracy, if the Fourier coefficients 
decrease sufficiently rapidly.

5.1. Shock formation for symmetric initial data

We begin with the simplest case of initial data symmetric with respect to y y→− . We choose 
the same initial condition as [25],

u x y x y, 6 sech ,x0
2 2 2( )  = − ∂ + (5.5)

who solved the dKP equation (2.1) in its original form. Near the gradient catastrophe, (2.1) 
develops a discontinuity, and the numerical scheme employed in [25] breaks down. By con-
trast, using the transformed equation (2.8), we are able to reach the gradient catastrophe with 
much lower resolution (using serial instead of parallel computers), but are also able to con-
tinue the computation beyond the first and even secondary wave-breaking events. Beyond the 
gradient catastrophe, we identify the lines 0∆ =  along which the gradient of the solution 
blows up (see figure 1), and show that the solution of (2.8) yields the expected weak solution 
of dKP inside the lip region. We also show that the solution of (2.8) stays regular on time 
scales of order unity.

In [25], the first wave breaking event was observed at the critical time t 0.2216c = … , see 
table 1. Here we can identify tc directly from a solution of (2.8) by tracing the minimum of ∆ 
over space. The first time this quantity vanishes or becomes just negative will be taken as the 
time tc. We use N N 2x y

9= =  Fourier modes for x y, 5 , 5 2[ ]π π∈ −  and Nt  =  1000 time steps for 
t 0.23⩽ . The first negative value of ∆ is recorded for t 0.222= … , which is in agreement with 
[25] to within the accuracy of at least two digits. However, the present calculation requires 
much lower resolution to reach similar accuracy (N N 2x y

9= =  compared to N N 2x y
15= =  in 

[25]), and accuracy can easily be improved. For example, after determining the critical time to a 
certain accuracy, one uses the required resolution in time close to the previously determined tc.  
This allows to determine the critical time with the same precision as the solution to (2.8), i.e. 
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with the accuracy of the Krasny filter chosen here to be equal to 10−10. For our purposes an 
accuracy of the order of 10−3 will be sufficient.

The location of the critical point was identified in [25] as x 1.79c = … and yc  =  0. Here 
it is calculated for t  =  tc by first finding the minimum 1.227cξ = …, yc  =  0 of ∆, where 
F y t, , 2.543c c c( )ξ = …. Then, using (3.2), we find x t F y t, , 1.792c c c c c c( )ξ ξ= + = …, again in 
excellent agreement with our previous result [25], estimated to be correct to at least two digits.

However, the solution F of (2.8) stays perfectly regular well beyond the critical time tc of 
the dKP solution u(x, y, t), as seen in figure 6. On the left, we show that the maximum norms 
of the first derivatives of F remain bounded and smooth at tc, and even decay for long times (of 
course, the derivatives of the original variable u(x, y, t) diverge at a gradient catastrophe). On 
the right, for t  =  0.32 we demonstrate exponential decay of the Fourier coefficients to the level 
of the Krasny filter, as expected for a smooth function. The relative L2 norm t( )δ  (see (5.4)) is 
conserved to the order of 10−14. On account of the algebraic decay of the solution in Fourier 
space, the computation cannot be run for much longer than t  =  0.35 at the current resolution. 
To be able to do so using a Fourier method, larger domains and higher resolution would be 
needed. However, there is no indication that the solution of (2.8) itself develops a singularity.

Thus it is possible to continue the computation beyond the first wave breaking event, and 
to identify the second event, which occurs for negative x. This is of course not possible in 
the case of direct integration of (2.1) as in [25], where the numerical method fails at the first 
wave breaking. We use N 2x

9= , N 2y
11=  Fourier modes and Nt  =  5000 time steps for t 0.32⩽ . 

Proceeding as for the first break-up in tracing the minimum of y t, ,( )ξ∆ , we find t 0.300c̃ = … 
and x 2.033c˜ = − …, see table 1.

The corresponding profile u(x, y, t) can be seen in figure 7 on the left. It is obtained by plot-
ting F y t, ,( )ξ  (shown on the right) as a function of x tF y t, ,( )ξ ξ= + , as required by (1.8). For 
t  >  tc in a neighborhood of the blow-up point, one has that x tF y t, ,( )ξ ξ= +  is not invertible 
as a function of x y t, ,( )ξ . However we can still perform a parametric plot of u(x, y, t), which 
becomes a multivalued function in the region near the first critical point x t, 0,c c( ). This is even 
clearer from the cut along the y  =  0-axis shown on the bottom (recall that the critical points 
are all on the x-axis since the initial data are symmetric with respect to y y→− , and since the 
dKP equation preserves this symmetry). Thus as for the solution to the Hopf equation via the 
characteristic method, a nonphysical solution which has overturned is obtained in the shock 
region. It is clear from the corresponding cut through F y t, ,( )ξ  shown on the bottom left that 
F remains smooth and single valued.

We can now test to which extent the asymptotic description of the overturned region in 
section 3, which only becomes exact in the limit t tc∼ , can approximate our numerical results. 
Recall that the profile is described by (3.18), while the shape of the overturned region is given 
by (3.23), (3.24). In figure 8 we show a comparison between a numerical solution of the dKP 
equation, obtained through the transformation (1.8) (blue), with the local approximate solu-
tion (3.18) shown in green. At t  =  0.24, i.e. shortly after overturning at tc  =  0.222, there is 
good agreement in the description of the multivalued region. On the left, u(x, yt) is shown in 
a perspective plot, on the top right an s-curve is produced by a cut along the y  =  0 plane. If 

Table 1. Critical parameters for the first two wave breaking events, with symmetric 
initial data (5.5).

Breaking event Initial data tc xc yc uc ξc

First  − ∂ +x y6 sechx
2 2 2 0.222 1.79 0 2.543 1.227

Second  − ∂ +x y6 sechx
2 2 2 0.300 −2.033 0 −2.48 −1.289

T Grava et alNonlinearity 29 (2016) 1384



1406

Figure 6. Measures of the smoothness of the solution to (2.8) with initial data (5.5). 
On the left, the time dependence of the maximum norm of F, as well as of ξF  and Fy; all 
decay for long times. On the right, the Fourier coefficients of the solution for t  =  0.32.

Figure 7. Profiles obtained from a solution of the transformed equation  (2.8) at 
t  =  0.300, time of the second wave breaking event. On the left, the original solution 

( )ξF y t, ,  for initial data (5.5); on the right, the profile u(x, y, t) obtained using the 
transformation (1.8). The slices along the plane y  =  0 (bottom) make it clear that 
the profile u(x, y, t) has overturned near x  =  2 (first breaking), and is at the point of 
breaking near x  =  −2 (second breaking). The profile of ( )ξF y t, ,  remains smooth and 
single valued.
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corresponding cuts are considered for each value of y, a lip-shaped region is obtained inside 
which the profile has overturned (bottom right).

To test for the self-similar properties of the multivalued region, in figure 9 we show the 
numerical result as function of the rescaled coordinates X1, Y1, which are defined by (3.23) 
(red lines). Good agreement is seen with the asymptotic prediction (3.24) (blue lines), in part-
icular for small values of three time distance t̄  from the gradient catastrophe, as expected. The 
fact that the numerical results stay time independent to a good approximation demonstrates 
that the typical scales of the solution agree with the prediction (3.23): the width of the region 
scales like t 3/2¯ , its height like t 1/2¯ .

We now turn to the numerical solution of the dissipative dKP equation (2.1), and to the 
comparison with our asymptotic theory, which is given by (4.27) in the general case, and 
by (4.28) for symmetric initial data. To resolve the strong gradients in the solutions to the 
dissipative dKP equation (5.2) that occur for small ε, much higher resolution is needed than 
for the solution of (5.1) for the same initial data. For 0.01=ε  (with c  =  0) we use N 2x

14= , 
N 2y

10=  and Nt  =  5000 to find the solution of (5.2) with initial data (5.5) at t  =  0.32, shown 
in figure 10 on the left. At this value of ε, the total loss of the L2 norm (see (4.2)) is of the 
order of 2%. A comparison between the dKP solution and the Fourier coefficients, shown on 
the right, decay to below 10−10, as for the solutions to (5.1). To achieve higher resolutions, 
parallel computation would be needed.

In figure  11 (top left), we show a slice through the same dissipative solution at y  =  0 
(green line), together with the corresponding dKP solution, which has become multivalued, as 
t 0.1¯≈ . The dissipative solution exhibits a sharp front close to where the shock discontinuity 

Figure 8. On the left, the solution u(x, y, t) (blue lines) of the dKP equation  and 
its approximation (green lines) (3.18) for = > ≈t t0.24 0.222c . The regions of 
multivaluedness of the solutions are projected on the (x, y)-plane. On the right top: a 
cut through u(x, y, t) along y  =  0. On the right bottom: the corresponding multivalued 
regions of u(x, y) in the (x, y)-plane (blue line: numerical solution; green line: local 
approximation.)
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is expected to be. Both curves are to be compared to our asymptotic results, shown on the top 
right, with the s-curve (3.18) shown in blue, and the dissipative asymptotics (4.28) in green. 
The sharp front is seen to be localized around the theoretical shock position, shown as the ver-
tical dashed line. Since t̄  is only moderately small, there exists a 30% difference in the height 
of the s-curve, but otherwise the overturning of the dKP equation is well reproduced. Within 
these limitations, the shape and width of the shock front, as well as the front position within 
the s-curve, are very well reproduced.

In the bottom graph of figure 11, we report the multivalued regions, as well as the position 
of the shock front, as given by the numerical solution (blue curves, with the shock front as 

Figure 9. Multivalued region of the solution of the dKP equation  as found from 
( )ξ∆ =y t, , 0 for the initial data (5.5). Results are written in selfsimilar rescaled 

coordinates X1 and Y1 defined by (3.23) for several values of t̄  (red lines). The 
corresponding asymptotic boundary (3.24), shown in blue, is time-independent by 
construction.

Figure 10. Numerical solution to the dissipative dKP equation  (5.2) with c  =  0 and 
=ε 0.01 for initial data (5.5) at time t  =  0.32 on the left, and the corresponding Fourier 

coefficients on the right.
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the solid line), and our asymptotic theory (green curves, shock front solid). Once more, there 
is fair agreement in the shape and size of the lip-shaped multivalued regions (dashed lines), 
described by the dKP equation. The numerical shock position is estimated from the inflection 
point of the dKP solution, the theoretical prediction is the curve X  =  0.

In figure 12, we show the solution to the dissipative dKP equation (2.1) for 0.01=ε  and the 
asymptotic description (4.27) for the symmetric initial data (5.5) at the critical time in the vicin-
ity of the critical point. While the asymptotic formula provides the best local approximation 
being best near the critical point, it can be seen to also correctly reproduce the y-dependence.

The approximation is also valid for small, nonzero values of t̄  as can be seen in figure 13 
where the same situation as in figure 12 is shown on the slice y  =  0 for several values of t̄ .

5.2. Nonsymmetric initial data

In this section we consider two different initial profiles which are not symmetric with respect 
to y y→− . The first,

u x y x y, , 0 6 1 1 e ,x
x y2 2( ) {( )( ) }= ∂ + − − − (5.6)

Figure 11. Top left: numerical solutions to the dKP equation (blue) and to the dissipative 
dKP equation (5.2) (green), for c  =  0 and =ε 0.01, using symmetric initial data (5.5). 
Shown is a slice along the line y  =  0 at t  =  0.32  >  tc  =  0.222. Top right: the asymptotic 
approximations (3.16) and (4.27) to the same solutions; the dashed line marks the shock 
position X  =  0. Bottom: the dotted lines mark the multivalued regions for t  =  0.32, 
according to the numerical solution to the dKP equation (blue), and according to the 
asymptotic theory (3.26) (green). The green solid line is the asymptotic prediction for 
the shock front, as given by (4.6), and the blue solid line is a numerical estimate based 
on the inflection point of the dKP solution.
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still retains a radial symmetry for x y2 2 →+ ∞. As seen in table 2, we can follow the evolution 
through two successive gradient catastrophes. The second profile,

u x y, , 0 6 e ,x
x y xy5 32 2( ) = ∂ − − − (5.7)

does not possess radial symmetry for large x y2 2+ , and we are able to compute the first gradi-
ent catastrophe only, whose critical parameters are also given in table 2.

To solve the Cauchy problem with initial data (5.6) for the dKP equation  (2.8), we use 
N 2x

9=  and N 2y
11=  Fourier modes for x y, 5 , 5 2( ) [ ]π π∈ −  and Nt  =  5000 time steps for 

Figure 12. On the left, in blue the solution to the dissipative dKP equation (2.1) for 
=ε 0.01 and the symmetric initial data (5.5) at the critical time tc  =  0.222 and near the 

critical point, and in green the asymptotic solution (4.27) given by the Pearcey integral. 
On the right the same plot along the line y  =  0. The dashed blue line is the solution of 
dKP equation and the green dashed line is the solution of the approximation (3.16) to 
the dKP solution.

Figure 13. Solution to the dissipative dKP equation (2.1) for =ε 0.01 and the symmetric 
initial data (5.5) in blue, the Pearcey asymptotic solution (4.27) in green and the (weak) 
dKP solution dashed on the line y  =  0 for several values of t̄ .
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t 0.15⩽ . The first critical time is reached at t 0.083 23c = … , the second critical time is 
t 0.1070c̃ = … ; all other critical parameters are reported in table 2. The relative computed L2 
norm is conserved to the order of 10−14, and the Fourier coefficients decrease to the order of 
the Krasny filter as can be seen in figure 14 (left). As seen in the same figure on the left, the 
L∞ norm of the solution F and the norm of its gradient also appear to decrease for large t, so 

Table 2. Critical parameters for the first two wave breaking events, with weakly asymmetric initial  
data (5.6).

Breaking events Initial data tc xc yc uc ξc

First breaking {( )( ) }∂ + − − −x y6 1 1 ex
x y2 2

0.0832 −1.210 −0.368 −4.958 −0.798

Second breaking {( )( ) }∂ + − − −x y6 1 1 ex
x y2 2 0.1070 2.004 −0.368 4.4066 1.534

First Breaking ( )∂ − − −6 ex
x y xy5 32 2 0.086 0.088 −0.245 −1.477 0.215

Note: For the strongly asymmetric initial data (5.7) only the first breaking could be computed.

Figure 14. Same as figure 6, but with initial data (5.6) (left). The Fourier coefficients 
on the right are shown for t  =  0.15.

Figure 15. Left: boundary of the multivalued region found from a numerical solution 
to the dKP equation for the initial data (5.6), for several values of > = …t t 0.083 23c  
in the original (x, y) variables. Right: The red boundaries on the right are the same data 
represented in self-similar variables X1 and Y1 as defined in (3.23), predicted to be time-
independent by our asymptotic theory. The corresponding self-similar boundary, given 
by (3.24), is plotted in blue.
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again there is no indication of a blow-up of the solution. However, to be able to run the code 
for longer times, larger computational domains would have to be used.

On the left of figure 15, we trace the boundary of the multivalued regions of u(x, y, t) at 
four times shortly after the first gradient catastrophe; the times t̄  relative to the singularity 
are reported on the top of each graph. On the right of the same figure, the same multivalued 
regions are plotted as functions of the rescaled coordinates X1 and Y1 defined in (3.23). Once 
more, in the rescaled coordinates the shape of the multivalued region is almost constant, and 
agrees well with the theoretical prediction, shown in blue. Note the slight asymmetry of the 
lip shape with respect to the reflection symmetry y y→− .

For the initial data (5.7), the code is run with N N 2x y
11= =  Fourier modes on the same spa-

tial domain as before, using Nt  =  2000 time steps for t 0.15⩽ . The first gradient catastrophe 
is found at t 0.087c = … , see table 2 for the remaining critical parameters. The solution at the 
final time (see figure 16, left) is strongly asymmetric. This also implies an asymmetry of the 
tails of the solution and thus a stronger effect of the algebraic decay of the solution towards 
spatial infinity. The asymmetry of the tails of the solution also affects the Fourier coefficients. 
Despite a higher resolution than that of figure 14, there are small contributions to the high 
wave number Fourier coefficients along the ky axis above the Krasny filter, which eventually 
cause the numerical scheme to break down. As a result, we do not reach a second catastrophe 
in this example. At t  =  0.15, the relative computed L2 norm is still conserved with an accuracy 

Figure 16. Left: numerical solution to the dKP equation (2.1) for strongly asymmetric 
initial data (5.7) at t  =  0.15  >  tc  =  0.087. Right: The corresponding contour of the 
multivalued region ( )ξ∆ =y t, , 0 (red), compared to the asymptotic theory (3.24) 
(blue); the dashed line corresponds to X  =  0 as given by (4.6).

Figure 17. Left: numerical solution to the dissipative dKP equation (5.2) with =ε 0.04, 
c  =  1, for initial data (5.7), at t  =  0.15. Center: the corresponding Fourier coefficients. 
Right: a slice of the left plot along the line y  = − 0.4985 (green), together with the 
corresponding solution of the dKP equation (blue).
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in the order of 10−13. The L∞ norm of F and of its gradient do not indicate blow-up, but they 
are also not decreasing. If the solution exists for large t also, then the computation did not 
reach the asymptotic regime.

The asymmetry of the solution can also clearly be seen from the contour delimiting the 
multivalued region, seen as the red line in figure 16 (right). This is compared to the asymptotic 
theory at t 0.063¯ = , shown as the blue line. Theory correctly describes the strong asymmetry 
and the orientation of the lip shape, but there are some quantitative differences. This indicates 
that the size of the critical region is smaller in the case of strong asymmetry.

For the dissipative dKP equation for the initial data (5.7), we consider 0.04=ε  to obtain 
the solution shown in figure 17 on the left. The Fourier coefficients in the middle of the same 
figure are also rather asymmetric, but decrease to the order of the Krasny filter. Due to the 
higher value of ε, the loss of the L2 norm is of the order of 22.2%. On the right of figure 17, we 
compare the dissipative solution to the corresponding solution of the dKP equation. Although 
the width of the front is greater, owing to a higher value of ε, it is set inside the s-curve where 
the shock position is expected to be.

In figure 18 we show the dissipative dKP equation (2.1) for 0.01=ε  for initial data (5.7). 
While in the symmetric case F 0y

c = , here we have ≈−F 17.39y
c , consistent with a strongly 

asymmetric shock. Even in this case, the full two-dimensional structure of the step is well 
described by the asymptotic theory.

6. Conclusions

We have introduced a coordinate transformation, inspired by the method of characteristics, 
to investigate wave breaking in the dispersionless Kadomtsev–Petviashvili equation. As a 
result, the entire region where the profile is overturned is mapped onto a smooth and single 
valued function. The transformed equation  remains smooth near the gradient catastrophe. 
Moreover, our numerics show that solutions remain smooth even beyond secondary wave 
breaking events. This permits us to compute solutions up to the first gradient catastrophe with 
much reduced numerical effort, and then to continue into the overturned region, where direct 

Figure 18. In blue the solution of the dissipative dKP equation and in green the Pearcey 
asymptotic solution (4.27) for =ε 0.01 and the strongly asymmetric initial data (5.7) at 
the critical time tc and near the critical point of the dKP solution.
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numerical simulations of the dKP equation fail. From the overturned profile, one can recon-
struct the shock position, using the jump condition (4.5).

Using the fact that the transformed profile remains smooth at the gradient catastrophe, we 
have calculated the local similarity form of the profile. This allows us to calculate the lip shape 
of the overturned region analytically, and to find the position of shock. Both the shape and the 
scaling properties of this region agree well with numerical simulations.

We have also investigated the dissipative version of the dKP equation, which regularizes 
the gradient catastrophe. We performed direct numerical simulations of this equation for small 
dissipation, which we continued beyond the first gradient catastrophe. Results agree with 
expected shock solutions, except that the jump at the shock position is replaced by a smooth 
but rapidly varying profile. To investigate the shape of this profile, we use our characteristic 
transformation to map the dissipative KP equation  locally to Burgers’ equation, which we 
can solve to obtain a local similarity description of the profile in two dimensions. Asymptotic 
analysis leads to a description of the profile in terms of Pearcey’s function, which is in good 
agreement with numerics.

We believe that the methods developed in this paper are of interest to study shock for-
mation in a wider class of hyperbolic equations, including the compressible Euler equation. 
Here a significant complication lies in the fact that there are two families of characteristics 
in the corresp onding one-dimensional problem, and hence a transformation based on a single 
characteristic cannot be expected to lead to a solution which avoids overturning for all times. 
However, shocks are generically expected to form with respect to one of the two charac-
teristics only [30], so a transformation such as (1.8) will still be able to unfold the profile 
locally. However, the necessary transformation will depend on which of the characteristics is 
involved, and thus implicitly on initial conditions.
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