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A Fourier-Weierstrass decomposition of the velocity field is introduced. The admitted number 
of real amplitudes is 572 or 836. They are determined numerically from the Navier-Stokes 
equation including viscosity, driven by constant energy input stirring the largest eddies only. In 
another calculation, the energy input is provided by an external shear. The Reynolds number 
Re is about lo’, the inertial range comprises about 2 decades, and there are 11 levels of 
successively decaying eddies. The hierarchical mode ansatz thus allows for a state of high 
turbulence, which usually is inaccessible numerically. Deterministic chaos is found on all 
scales. The mean values of the amplitudes scale with the eddy size ras rj with 5 very near l/3. 
Expected deviations 66 = f - l/3, as one typical signature of intermittency, are very small 
only, well compatible with none at all. So, despite stochasticity (chaos) in the Fourier- 
Weierstrass decomposition with a tractably restricted set of plane waves, intermittency in the 
velocity scaling cannot be found. This changes if, in addition to temporal chaos, a spatial 
branching of the eddy decay process is also admitted. 

I. INTRODUCTION 
The Eulerian velocity field u,(x,t) in high Reynolds 

number flow is irregular both as a function of time t at fixed 
position and as a function of position x at given time. It is 
generally believed that this apparent stochasticity is due to 
the nonlinear character of the Navier-Stokes equation even 
without explicitly coupled external noise, although most 
theories do couple Gaussian noise. 

Despite the deterministic chaos of probably high dimen- 
sion, the flow field shows self-similarity of the mean eddy 
energy distribution 

((lu(x + r,t) - u(x,t)l’)) = bZ’3r2’3. (1) 
Here, (( **-)) denotes the averages on c or on x or on the 
statistical ensemble; I is the varying eddy size, 
E = ( (ai uj di uj ) > the mean energy dissipation rate per unit 
mass; the numerical factor is b = 8.4 empirically (see, e.g., 
Refs. 1 and 2). Equation ( 1) is the prediction of the classical 
scaling theories by Kolmogorov,s Obukhov,4 von Weiz- 
sacker,’ Heisenberg,6 and Onsager’ and holds in the inertial 
subrange (ISR) 9~ 5 r 5 L, with ‘17 = (g/e) 1’4 as the Kol- 
mogorov viscous scale and L the external scale. 

The present state of the art of measuring (see, for exam- 
ple, Refs. 8 and 1) confirms ( 1) or the corresponding wave- 
number spectrum 

E(k) = CZ’jk - s’3. (2) 
The numerical factor C corresponding to b is (cf. Ref. 1) 

C= 5[9r(f)] --lb= 1.74. (3) 
But in particular, the scaling exponents c(m) of the 

higher-order structure functions defined by 

D,(r) = ((IuCx + r,t) - u(x,f)t”)> a (r/L)l(m) (4) 
seem to have significant departure@ from 

!&‘,I = m/3, (5) 
as found in the classical theory.3-7 One line of reasoning 

(originating from Landau’ ) attributes these deviations to 
fluctuations in the local energy dissipation rate 

E(X,f) = (V/2) [djE4,(X,f) - diuj(x,q2, (6) 
whose mean is E. The highly spotty or “intermittent” charac- 
ter of f(x,t) in space and time (e.g., Ref. 10) leads to a 
scaling dependence of the moments ofe( x,t) on the scale rof 
observation, for example, 

(([E(x,t) - El [6(:(x + r,t) - ~71)) a E2(r/L) --c. (7) 
This spottiness also shows up in the intricate structures 

formed by the vorticity field. Numerical simulations” give a 
vivid idea of this spatial intermittency. 

Still another signature of intermittency is the Reynolds 
number dependence of scale-independent moments, ’ l-l3 
such as the skewness 

s= (((4 u, 13)> 
(((a,u, )yaReT 

or the kurtosis 

xc (((44 1”)) aRek4” 
(((4u, I”}>” A ’ 

The E exponent ,u can be tied to f(m) by various reason- 
ings. For example, the log-normal theoryI says 
5(m) = m/3 - m(m - 3)/l& Other theories are the 0 
mode1’5*‘4 or the statistical B model,” leading to slightly 
different relations between /-I and c(m). According to the 
data, p ranges from 0.20-0.50 depending not only on the 
specific measurement but also on the type of correlation 
functionconsidered [either (7) or ((E(x,~)E(x + r,t)))]. 

Analytical theories of turbulence,2*‘8*‘9 (and many 
more references therein) seem to describe many properties 
of turbulent flow quite accurately. In particular, the variable 
range decomposition* allows to evaluate the structure func- 
tion D(r) in all ranges, inertial (ISR) as well as viscous 
(VSR), without any free parameter and without divergen- 
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ties, in agreement with data to within about 20%. There are, 
as always, some basic assumptions about the statistical prop- 
erties of the Navier-Stokes solutions: isotropy, homogene- 
ity, and a mean-field-like decoupling of the sub-r- and super- 
r-scales. 

turbulence by choosing the viscosity Y and the rate of dissi- 
pation E. A compilation of all relevant quantities of the flow 
fields considered is documented in Table I. 

An accepted theory of intermittency, based on the Na- 
vier-Stokes equation, is still missing. There are models (as 
quoted above) but no convincing analytical proof of the exis- 
tence of intermittency and of its mechanism. While analysis 
of data seems to confirm it, as just mentioned and as also 
found in a recent wavelet analysis of a long turbulent flow 
signal, 2o the perturbation theory by Belinicher and L’vovzl 
seems to prove the nonexistence of intermittency. 

The structure functions and the spectrum of developed 
turbulence are discussed in Sec. IV. In particular, we careful- 
ly analyze the moment exponents c(m). Within the errors, 
they do not deviate from the classical scaling m/3. The value 
of the numerical constant b in the structure function ( 1) is 
still rather bad, evidently because of the still not-large- 
enough number of selected modes. Our results for b and 
c(m) will be summarized in Tables I and II. 

In a recent paper, 22 Kraichnan also raised doubts on the 
fractal properties of turbulent flow and on intermittency cor- 
rections S[( m ), based on a theory for the probability distri- 
bution function for the velocity field. 

In Sec. V, we discuss various relations to previous work, 
provide more insight into the mechanism of the energy 
transfer, and extend our analysis to a multilevel fluctuating 
energy input that models laminar profiles as the origin of 
turbulence. 

We attack this question of fundamental interest in this 
paper by introducing a limited and thus tractable number of 
modes into the Navier-Stokes equation. We take care of the 
self-similarity by defining a Fourier-Weierstrass decompo- 
sition of the flow field. The Lagrangian, Galilean invariant 
character is preserved as far as necessary. The mode decom- 
position in terms of exp(ipx) respects the possibility of spa- 
tial isotropy. No explicit boundaries are introduced; the lar- 
gest scale is present by the size 27rL of the periodicity box. 
The mode amplitudes are determined by numerically solving 
the Navier-Stokes equation. 

II. FOURIER-WEIERSTRASS DECOMPOSITION 
The flow field U, (x,t) is Fourier transformed into plane 

waves 

u,(x,t) = C ui(p,t)eiPx. 
P 

Of course, uF(p,t) = ui ( - p,t) and pw(p,t) = 0. A cubic 
periodicity box of linear extension 277-L is chosen, so 
pi = * n,/L, nj = 0,1,2 ,... . The Navier-Stokes equation 
for the ui (p,t) reads 

Our approach differs in various aspects from previous 
analyses in the following ways. (i) We do not employ pertur- 
bation theory but take into account the full nonlinear inter- 
actions of the Navier-Stokes equation. This captures the sta- 
tistics of the velocity field to any order. (ii) The Reynolds 
number is rather large, implying an inertial range of two 
decades. The value of g( m ) can be calculated to within 1% 
up to m = 8. We find classical scaling but, surprisingly, no 
deviations within the error. (iii) Our methods allow to cal- 
culate nonuniversal effects on the spectrum, for example, 
transients or by stirring steady shear profiles. In particular, 
these latter ones may affect the apparent discrepancy 
between our finding of classical scaling in “ideal” turbulence 
and the measured data analysis. (iv) We do not yet take into 
account spatially varying amplitude statistics (“spatial in- 
termittency”), but temporal intermittency, as provided by 
chaotically varying mode amplitudes, is properly included. 
This, in principle, can well lead23 to corrections of the c(m), 
the velocity structure function exponents. But, numerically, 
we found them to be absent within the error. 

Details of our ansatz are described in Sec. II. We think 
that we improve the work by Kerr and Siggia24 who first 
studied a decomposition into geometrically scaling wave- 
number modes, and, also, we actually perform a calculation 
of the type proposed by Kerr.25 We choose a consistent in- 
teraction between different levels, take other relevant wave 
numbers, and watch all invariances carefully (for more de- 
tails of how we differ see Sec. V). Section II also contains the 
equations of motion, the wave-number hierarchy, and the 
definition of the nonstatistical stirring force. 

a,ui (PTt) = - iJfvk (PI C uj (Q)uk (P - S> 
q 

-l yP2ui (PI +A (PI. (9) 

The coupling strength is symmetric inj, k: 

Mij/( (PI = [Pjp:(P) +P,pi(P)]/2a (10) 

Here, P1 denotes the orthogonal projector and Y is the kine- 
matic viscosity. The external driving force x (p,t) will be 
chosen later; it is not assumed to be stochastic, i.e., (9) is a 
purely deterministic equation. 

Since the number of contributing modes in high Reyn- 
olds number flow is intractably large, we now restrict the set 
of allowed wave numbers. The idea is that the presence of an 
eddy cascade is properly described by a geometrical scaling 
of the wavelengths, corresponding to 

(Lp;)-‘= -&/I -I,, &=0,1,2 ,.... (11) 
Our choice of the scaling factor will be /z = 2. The n, ad- 
mitted for the wave numbersp, are the /z ’ only. 

From the allowed wave numbers ( 11)) we select a sub- 
set K, that will form the I th level of our eddy cascade. The 
next higher level K,, , is obtained by scaling all wave 
numbers with a common factor 2. Thus K, + , corresponds to 
the next smaller eddies. 

It is not possible to work with a single direction in k 
space, for example, to restrict the wave numbers to only 
+ Lp = (/z ‘,A ‘,A’), I= 0,1,2 ,... . Each interacting triad 

p = q1 + q, then consists of three vectors in parallel. But 
because of incompressibility, parallel vectors cannot inter- 
act: 

In Sec. III, we fix the state of high Reynolds number Mijk (P)U, (cr,P)U, (%P) = 0. 
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We therefore include other directions in k-space. Our 
choice is 

2’(1, 1, 11, 
27 -=j, 1, 11, plus two permutations, 

2’( 1, - J, - t), plus two permutations, (12) 
2’cj, 2, 21, plus two permutations, 

m, 4, 31, plus two permutations. 

This mode selection allows for a coupling between different 
cascade levels, for example, via ( - $,1,1) + ( 1, - 4, - 4) 
= 2-‘( l,l,l). Here, the ( - $l,l)-and the (1, -t, - f) 

-modes interact with the ( l,l,l) mode of the next lower 
level, i.e., with the larger eddies. There are also many intra- 
shellcouplings, e.g., ( - $l,l) - ($,2,2) = - (l,l,l). Fig- 
ure 1 represents the modes of two adjacent levels together 
with the possible interactions. The directions of the chosen 
wave vectors are approximately uniform. Equation (12) 
seems to be the smallest system with these coupling and uni- 
formity properties. Note that, in particular, pi = 0 is not 
present. Namely, if vanishing vector components would be 
allowed, this would increase the number of modes by more 
than a factor of 4, since (t, 1, 1 ), (t, - 1,1 ), etc., have to be 
included in addition to ( - f, I,1 ) for consistency. We there- 
fore define the set K, as the wave numbers ( 12) together 
with the corresponding ones of opposite sign: 

K, = { + 2’(1,1,1), + 2’( - $,l,l) ,... 3, (13) 
Here, 1 runs from the lowest level I = 0 to the highest level 
i = N,; later, N, = 10. So the whole cascade will consist of 
the wave number set K: 

wave number 

2 I-1 

eddy size 
2-l+l 

space - 

FIG. 1. The hierarchy of interacting wave numbers for the amplitudes 
I(, (p,t) admitted in the Fourier-Weierstrass plane-wave series for the Eu- 
lerian flow field. The classification into levels is such that all p of one level 
are transformed by a factor of 2 or l/2 to the next higher or lower level. The 
larger the 1 value, the larger the wave number, the smaller the eddy, the 
higher (by definition) the level. Compatible with wave-number conserva- 
tion are either sums or differences of two vectors; if conservation would be 
violated, we skip that interaction. There are 1 + 4x 3 = 13 wave numbers 
per level. 

% 
K= UK,. (14) 

I=0 

There are 13 wave numbers per level, 2 x 13 if the - P are 
included. This corresponds to 26 complex mode amplitudes 
u, (p,t). Since u:(p) = u, ( - p), this is equivalent to 26 
real amplitudes. There are as many modes for the other two 
spatial velocity components. Hence, taking care of 
pu(p,t) = 0, we have 2X26 = 52 independent real modes 
per level I, and altogether on 11 levels 52 x 11 = 572 real 
modes for the whole turbulent flow field. 

The complete set of amplitudes {u( (p,t)[i’ 
= 1,2,3; PEK } is determined by the coupled set of ordinary 

differential equations (ODE’s) (9), in which equations 
p&Y, qdy, and also p - qM will always be understood from 
now on. The possible mode interactions are also indicated in 
Figure 1. They are partly within each level I, and partly they 
couple two neighboring levels (semibroken lines). Equation 
(9) together with incompressibility and wave-number re- 
striction to K is our turbulence model, based on the Navier- 
Stokes equation. 

By properly choosing the force x (p), we control the 
input rate T’” of the energy. The dissipation rate E must 
coincide with this, of course. We next control the degree of 
turbulence by choosing the viscosity Y. The energy contained 
in one level and the total energy density of the flow field are 

E,(t) = 3 2, MPJ) I*, (Isa) 

E(t) = -!- 2v 
I 

,b, IUw)lZd3X= 2 E,(t). (1%) 
P I=0 

Here, p.b- denotes the periodicity box with volume 
v= (2n=L)3. 

In order to check the effect of restricting the admitted 
wave numbers to K, we introduced a bigger set of wave 
numbers K,, also. Here, we allow in addition to the wave 
numbers ( 12), still another type to belong to each level 1: 

2’(2, - 1, I), plus five permutations. (16) 
Combining ( 12) and ( 16) enlarges the possible interactions 
considerably. They are visualized in Fig. 2. In particular, 
there are now three interlevel connections. The correspond- 
ing cascade will be called “large cascade” with the wave 
numbers in K,. In contrast, the wave-number set of the 
“small cascade” described before is denoted by K,. 

Since only adjacent levels interact, one obtains an ener- 
gy balance equation of the form 

d,E,(t) = T,_,-,(t) - T,-,,,(t) -Y c p2~uht)/2. 
PCK, 

(17) 
Here, the contribution of the external forces is still omitted. 
The transfer rates Y,, I + , are defined by 

T 
i 

l-/-et =- 
2 c M,,(P)ut(P)u,(q)u,(P-q). 

P’K, 
WKI 8 ! 

P  - I)wJK, * I 

(18) 

The sum runs over all allowed triads crossing the line 
between levels I and (I + 1). There are precisely one such 
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21’1 

FIG. 2. The large cascade’s wave numbers. Instead of only one interlevel 
interaction, as for the small cascade, there are now three ofthem. There are 
1 + 4 X 3 + 6 = 19 wave numbers per level. 

crossing for the small cascade and three for the large cas- 
cade. Here, r,-, + , has the usual meaning of the net energy 
transfer rate from level I to level I + 1, i.e., down to smaller 
eddies. 

To produce and maintain a turbulent state as the solu- 
tion of (9), energy is fed in at a constant rate into some of the 
largest eddies, i.e., into some modes of the lowest level I = 0. 
We model this with a definition of the driving force similar to 
Kerr and Siggia’sz4 for the Burgers model. 

(19) 

The subset Ki,cKo comprises the wave numbers 
f ( -j,Ll), + (1, - 4, - +), and their permutations, i.e., 

FIG. 3. Shown is the three-component ofthe velocity field u( x, t) for a fixed 
position (x = 0) as a function of time t during two turnover times of the 
largest eddies. The 572 mode amplitudes U, (p, r) were calculated from the 
Navier-Stokes equation. The mode superposition is according to (8) but 
with p&‘,. The Reynolds number is 1.9~ loo, other parameters are docu- 
mented in Table I. The signal strongly resembles measured velocity signals, 
see, e.g., Ref. 26. 

12 elements. The energy balance equation ( 17) has to be 
completed by XptK, u’( p)f; (p). This is ES,,~ for the forcing 
(19). 

The numerical solution of Eq. (9) with the driving force 
( 19) shows chaotic behavior on all scales that apparently 
becomes stationary. Figure 3 displays a typical velocity sig- 
nal. We shall discuss details later, but will point out that 
hence we obtained a statistical flow field without any exter- 
nally applied noise. This verifies the possibility to explain 
developed turbulence as the stochastics generated by deter- 
ministic nonlinear equations, at least in this hierarchical 
wave-number truncated model. The statistical properties are 
uniquely determined by the Navier-Stokes equation (viz., 
its numerical solution). All questions of interest can be ex- 
plicitly answered, such as, e.g., correlation functions, struc- 
ture functions, intermittency, etc. 

Averages performed according to the deterministic cha- 
os statistics are defined as time averages over the mode am- 
plitudes ui ( p,t) and products thereof ofany order. They will 
be denoted by single brackets (. * * ). Because of the restric- 
tion of the wave vectors to K, the flow field (8) needs not be 
exactly statistically translational and rotational invariant. 
We checked dynamical averages like b, (PJ)), 
(~*(p,,t)u,(p~,t)), and found them to be negligibly small. 
[To be precise, the former were less than 2% of ,/m, 
the latter 5 2% of dm, i#j, p, #p2 .] In order to 
formally guarantee homogeneity and isotropy, we y-aver- 
aged e*(’ + y, in all moments and angle-averaged all x direc- 
tions; this averaging is denoted by an additional bracket. 
Altogether (( * . * ) ) is the ensemble and translation/rotation 
mean. 

Two remarks might be useful. We also coupled the stir- 
ring force to only one pa,, mimicking anisotropy; never- 
theless the chaotic solutions of (9) with wave numbers re- 
stricted to K restored statistical homogeneity and isotropy 
on the levels I > 0. The set K is constructed symmetrically 
with respect to the i= 1,2,3 axes, but not with respect to 
continuous rotation; therefore the angle average is necessary 
to ensure isotropy. 

An average of particular interest is the structure func- 
tion 

D(r) = ((IuCx + r) - uCx)l’>) 

= 2 pz (lu(p)l*)( 1 - F). (20) 

The dynamical information is contained in the lu(p,t)12 
average. The longitudinal structure functions are 

Dyw = ((-&(x + r) - u,(x,]ri/rP)>. (21) 

Here, D 6” = 0 by homogeneity, D [,*) (r) represents the 
same information as D(r) by incompressibility, as 
D= 3Di2’ + rd,D,, (*), and D is’ is related to D i2’ by the 
Kolmogorov structure equation 

D i3)( Y) = 6~ d,D,, (r) - 4u/5. (22) 
This is a consequence of the Navier-Stokes equation (9) if 
only rp< 1 for all modes that receive external energy input. 
This is the case if there is energy input at the largest eddies 
only’**’ (see also, the Appendix). Equation (22) remains 
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valid for our K-restricted model. It implies f( 3) = 1 for the 
inertial range, as usual. 

It is straightforward to verify that the average of (4) is 
identical to the parameter E in the force ( 19), 

((dX,O)) = ((UWM(%f))) = 6, (23) 
i.e., the energy input rate equals the energy dissipation rate. 

A serious flaw of the hierarchical cascade model with 
plane waves introduced here is that certain spatial fluctu- 
ations are not admitted. Consider, for example, a large eddy 
on level I = 0. Its contribution to u(x,t) in (8) is coherent in 
the entire box (2nL.)“, fine. It interacts with several half- 
sized eddies of level I= 1. We describe these with amplitudes 
ui (p,t) of plane waves exp(ipx), pa,, and xEbox L 3. So 
they also contribute coherently in the entire box. Our cas- 
cade model presently still neglects that smaller eddies at dif- 
ferent positions in the box should be represented by indepen- 
dent amplitudes tli ( p;x,t) . In Fig. 1, the two eddy subsets of 
level I + 1, for instance, deserve independent mode ampli- 
tudes, but we took the same. 

We have studied the effect of independent branching in 
Ref. 23. It contributes essentially to spatial intermittency, 
visible, e.g., in the E correlation. But it does not influence 
appreciably the structure functions, which are dominated by 
eddies of size >r, which, in fact, are coherent on the scale r. 
Since we restrict ourselves to coherent branching, we cannot 
study all of the intermittency effects mentioned in the Intro- 
duction. We concentrate on the structure function expo- 
nents c(m). 

There is a simple physical reason why the E(XJ) fluctu- 
ations are relatively independent of the exponent deviations 
S<(m) of the structure function ifturbulence is modeled by a 
hierarchical Fourier-Weierstrass decomposition. This is be- 
cause E( x,t) is highly dominated by the highest level (small- 
est eddies) amplitudes, I = N,,, while in the D( r) sum (20), 
the terms Izr- ’ dominate. We have studied this quantita- 
tively and in detail.23 However, since independent spatial 
branching is not admitted, we can study with some confi- 
dence only the effect of temporal statistics (“temporal inter- 
mittency”) on c(m). Spatial intermittency deserves further 
study. 

III. THE STATE OF DEVELOPED TURBULENCE 

We now study the numerical solutions of the system of 
differential equations (9) with K restriction as described 
above. All lengths are henceforth measured in units of L; so 
the periodicity length is 2rr. The time unit T is chosen to 
make the dissipation rate E in units L *T - 3 equal to 1; i.e., 
we have T = L 2’3e - “3. The velocities ui (x) and ui (p) are 
measured in L /T = ( LE) 
L *T - ‘, i.e., ofL 4’3e”3. 

“3. Here, Y comes in multiples of 
In the nondimensionalized Navier- 

Stokes equation, Y- ’ then is the natural Reynolds number 
Re = L ‘T - I/Y. The forceA (x,t) is measured in L T - * or 
L - “31?‘3. We keep L,xJ,u,v,v,E,..., for the dimensionless 
quantities. 

The time unit can be interpreted as the Kolmogorov 
time of the largest eddies, the velocity unit as their Kolmo- 
gorov velocity. 

In our simulations, we took 11 levels I= 0 to 

2 Ul(~,t)lmodeamplitude 

0 

0 5 10 
FIG. 4. The time dependence of the I-component of the modes U, (p, t), 
Lp = 2’( 1.1.11, oflevel I = 0 (largest eddy), 2, and 4. The timeis measured 
in units of the largest eddy’s turnover time T= L “$6 “2, the amplitudes 
U, inunitsofL /T= (Le)“‘. The typical I = Ovelocity is ~0.86, the mean 
values (u, ) are about 10 I. The parameters are those of the small cascade 
(572 modes), see Table 1. A transient period of 50 or more is skipped. 

I = Ntl = 10. The kinematic viscosity Y was adjusted such 
that the energy in an additional 12th level came out to be 
practically zero. Hence this level could safely be omitted. 
Typical values of v are 0.5 to 2 times 10 -6, e.g., Re=: 106. 

Figure 4 shows the stationary oscillations of the ( 1,1, 1) 
modes of levels 0,2, and 4 around their mean value 0. The 
same typical behavior is shown by the other modes, too. Ap- 
parently the amplitudes U, (p,t) and thus the velocity field 
( 8) are chaotic. To check the chaotic time dependence of the 
solutions, we consider the time correlation function of one 
mode amplitude, see Fig. 5. For time separations greater 
than 3, there is complete decorrelation. 

The three modes shown in Fig. 4 seem to behave in time 
qualitatively alike. This can be made even more convincing, 
if the time scale and the amplitude scale are properly adjust- 
ed. According to the classical scaling theory of turbu- 
lence,3-7 one expects 

amplitude a R - I’>, time cc/z - 2”3. (24) 
To check the validity of (24), we consider the energy E, 
contained in the I th level, see Fig. 6. Theclassical scaling law 

FIG. 5. The real part C” (p, I) of the normalized autocorrelation function 
(u*(p,O)~u(p,r))/(lu(p)lZ) of the eddy Lp = (1,l.l) of level I= 0 as it 
decays with time f. The time decorrelation of other modes is similar but on 
timescales u 2 I’ ‘, 
T= t.““e I/‘, 

Time is measured in the largest eddy’s turnover time 
Note the oscillatory decay, which seems to indicate that the 

lowest-order continued fraction calculation for the Lagrangian decay 
rates?’ is not quite sufficient. The parameters of the small cascade (572 
modes) are used, cf. Table I. 
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6 (t) 
30 

20 

IO 

0 
0 5 t IO 

FIG. 6. The time behavior of E,(t), I = 0,2,4, shows small-scale fluctu- 
ations whose typical time and magnitude seems to decrease cc 2 - “‘j. In 
addition, one observes larger and longer lasting meandering, therefore we 
averaged all relevant means at least over periods of 100 and even much long- 
er (up to loo0 turnover times). Time is measured as usual in multiples of 
the largest eddy’s turnover time L *‘3~- I”. The mean energies (straight 
lines) scale pretty accurately as 2 2”3. Numerically, for the parameters of 
the small cascade (cf. Table I), (E,) = 28.77. (For the large cascade, we 
found (E,,) = 32.37, and for the multilevel input, see Sec. V, (E,) 
= 13.71.) 

is obviously confirmed. This is not apriori trivial but reflects 
a property of the numerical solution of our Fourier-Weier- 
strass analysis of turbulence. We can understand it qualita- 
tively from the energy balance equation ( 17). In the inertial 
range of scales, where Y can be neglected, and there is no 
input, we obtain for stationary states 

(T,-,+l) =fz. 
Since T,-, + , is of third order in the amplitudes, the I( ampli- 
tudes are expected to scale approximately like 2 - “3 and E, 
as 2 - 2”3. However, one should remember the possibility of 
a buildup of fluctuations while the energy cascades down.24 
It is not at all trivial that these fluctuations are self-similar 
nor that they are small. In fact, one does not even come close 
to the classical scaling (24), if the Burgers equation is con- 
sidered and treated analogously;24 cf. Sec. V. Figure 7 shows 

-101 
t 1 

’ ’ ’ ’ ’ * * ’ 
0 5 IO 

FIG. 7. The large fluctuations of the rate of energy transfer r, --L (2) from 
level I = I to level I = 2 as a function of time. The mean value (r, --1 ) 
(dashed line) agrees very well with the energy input rate E, i.e., 1. The nu- 
merical integration was performed with the parameters of the small cas- 
cade. The typical time in r, -2 is comparable with that of level 2. 

the actual temporal behavior of the transfer rates T,, , + I (1) 
in the present approach. 

We now report the various characteristic numbers of the 
turbulent state that we realize numerically. For the small 
cascade we take Y = 5.4X lo- 7 and, as stated, E = 1, L = 1. 
The Kolmogorov length and velocity are 
r] = (S/E) 1’4 = 2.0~ lo-‘andu, = (~6)~‘~ = 2.7~ lo-*. 
Then the Re number is Re = Y- ’ = 1.9X lo6 and 
Re = (L/T)~‘~ without any additional factor. The Taylor 
microscale is defined by /2, = ,/( (u:))/( ((8, U, )‘)). The 
value of ( ( (~9, u, )‘) ) can be calculated via the well-known 
relation (((c~,u,)‘)) =e/15~ and ((UT)) is given by 
(1/3)&dlU(P) IZ), or (2/3)X,@,). Assuming that the 
mode energies ( lu( p) I*)/2 scale, to a good accuracy, as 
2 - 2”3 this gives (extrapolating the ISR to infinity) 

((4 (xl)> = 
1 

3(1-2- 
2,3 c (IuCP)I’> = l.WEo). 

) pcK, 
The largest level’s sum (E,) was evaluated numerically to 
give ( (uf ) ) = 52, so that AT = 0.02 1. This finally gives the 
Taylor-Reynolds number Re, = ,/~AJY = 2.73 
X 105. Table I contains all these characteristic parameters 
and physical quantities of the small cascade together with 
the corresponding values for the large cascade and the multi- 
level input cascade, which will be explained in Sec. V. 

Note that our model allows a fairly well developed tur- 
bulence. The Taylor-Reynolds number Re, z 273 000 
should be compared with Re 1 ~4300 in typical atmospheri- 
cal measurements (estimated in Ref. 27 using data of Ref. 
28). One might wonder about the relation between Re and 
Re, . There still holds the relation 

Re, = 3t Re”* = x(L /v)*‘~. (26) 
But the value of PC is characteristic for the dynamics of the 
cascade, and therefore related to 6. In Ref. 23 we derive for a 
one-dimensional Fourier-Weierstrass model 

x = 0.506. (27) 
Using the experimental value b = 8.4, one recovers the value 
3c = 4.24 known from the literature** and implying 
Re, z ,/I&& For the small cascade here, however, b = 300, so 
3c = 150; the large cascade has it = 86. With these x’s, Eq. 
(26) is in agreement with the numbers quoted in Table I. 

If Re = Y- ’ = 1.9 X lo6 is used together with the realis- 
tic value of 3c = 4.24 in (26), our turbulence still has the 
unusually large Taylor-Reynolds number Re, z 6000. 

IV. STRUCTURE FUNCTION AND SPECTRUM 

We begin with a discussion of the second-order struc- 
ture function D(r). To produce Fig. 8, we directly used (20) 
with the moments (lu(p) I’) calculated numerically for the 
small cascade. For comparison, Batchelor’s29 interpolation 
for D(r) is also shown, 

- 2/3 
, 

(28) 
which coincides with ( 1) if PzISR. The only free parameter 
in (28) is the numerical factor b. We can determine it by 
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TABLE I. The physical parameters of the various eddy cascades. The first row contains the number of real modes and of levels; 1 I levels correspond to 3 
decades. All physical quantities are dimensionless, lengths being measured in multiplesofL, dissipation rates in those ofe, timesofl. Z’fe- 1’J, velocities ofL, / 
Tor ( LE) - “s. The periodicity box is 27r, length I, dissipation rate 1 or 0.35, respectively. The energy input rates are constant and on the largest eddy level 
I= Oonly (first two columns) or they fluctuate and contribute on several levels resulting from basic laminar parabolic profile. The kinematic viscosity is Y, its 
inverse the bare Reynolds number. The Kolmogorov internal (viscous) length scale is v = ( v’/e) i/4 and the corresponding velocity u, = (ye) “4. The mean 
turbulent shear is \I (( (8,~ ,/ax, )a)) = dt-/o. All these quantities are externally controlled parameters if v, e are given. The other quantities contain 
dynamical information about the cascade and were obtained numerically. The quantity U, is a measure of the typical mode amplitude for any of the largest 
eddies, U2,/2 = (&)/[3*2*( I3 or l9)]; U, can bereadfrom Fig.4,forexample. with (E,} in Fig. 6.Thermsofthevelocity [seeEq. (S)] fluctuationsin 
position space is dm-. The value b denotes the prefactor in the inertial range structure function ( I ), determined in Sec. IV; in the multilevel input 
flow, we do not determine a value b since in parts of the inertial range, there still is ( T:) # 0. The Taylor length /I r and the Taylor-Reynolds number Re, are 
defined as usual. Note the impressive degree of turbulence, quantified by Re 1 =: 273 000 or, with the physical b using (26) and (27), Re, z 6000. The last line 
contains the numerical values of (E,), the largest eddy level energy, on which various other physical quantities are based. 

Physical 
quantity 

Number of real modes 
Energy input rate 
Dissipation rate c 
Viscosity Y 
Viscous length 77 
Viscous velocity of 
Re=Y-’ 

Small cascade Large cascade 
52 modes per level, 76 modes per level, 

I I Ievels 1 I levels 

572 836 
only 2 = O,Tr = I onlyI=O,T$= I 
I 1 
0.54x 10-6 2.4x IO-” 
2.0x 10-s 6.1 x lO-5 
0.027 0.039 
1.9x 10” 4.2 x IO5 
0.86 0.75 
7.2 5.4 

Small cascade 
parabolic profile 
multilevel input 

572 
(7-b”) = 0.30 
0.35 
0.40x 10-6 
2.1 x 10-s 
0.019 
2.5 x IO6 
0.59 
5.0 

b 
\I((c%/ax,,*)) 

3M3 I71 
351 167 

.*. 
242 

4 0.021 0.032 0.021 
Re,t 273 000 73 000 255 000 
C%~ 28.77 32.37 13.71 

evaluating the exact expression (20) for D( r) , As we already 
pointed out, the energies (/u(p) I’} scale with p in sufficient 
accuracy as 2 - 2i’3* , t his will be checked and confirmed once 
more later in this section. We then apply Poisson’s sum for- 
mula for EISR and get 

The remaining sum over pEKO was calculated numerically 
giving the value 86.2. Comparing now (29) with (28) in the 
ISR leads to the value of b in our turbulent Navier-Stokes 
flow. We find for the small cascade (cf. Table I) b = 300. 

This value is considerably larger than the experimental - - 
D(r) = 2 3r( - 2/3)sin( - n/6) 

5 In 2 

x & IP12’3(lu(PI I”) 
> 

fJ’3. 

log&-1-q) 

value of 8.4. We think this can be understood by phase space 
considerations.30 If one adds more modes to the small cas- 

(29) 

FIG. 9. Spectrum (E,) versus eddy level I, i.e., versus wave number p, to- 
gether with some moments. The ordinate shows log, of the moments (E ;“), 
In the bottom part. themean transfer ratesbetween adjacent levelsare plot- . . . 
ted on a separate scale: in the inertial range they are l* ofcourse. All lutes are 
rms fits. After omitting a transient of 50 turnover times, the averaging time 
is 1200. For the physical parameters of the small cascade. cf. Table I. The 
scaling (E;“) o p““‘” with 5 (2m) = 2m/3 is quite accurate. The decrease 
of (E;“) in the viscous subrange is less than expected. 

FIG. 8. Scale dependence of the structure function (delta variance) D(r). 
The inertial subrange (ISR) comprises about 2 decades. Near the transition 
to the viscous subrange (VSR) the viscosity lowers the numerical, Navier- 
Stokes-based curve stronger than Batchelor’s interpolation formula says. If 
wedecrease Y. i.e., increase Re further, both curves tend to agreeeven more. 
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TABLE II. Computed values of moment scaling exponents 6 (m) and comparison with the corresponding numbers from the analysis of experiments by 
Anselmet et al.’ We estimated the statistical errors with the commonJ routine.“’ Theaveraging times c,, for (E y> for thesmall cascade was 1200, although 
an increase from 400 to 1200 influenced 6<(m) by less than the statistical error. In the multilevel case, we used r,, = 2000, for the big cascade 200. 

Moment 
exponent 
deviation 

Experiment 

Small cascade 
T’“= 1 0 

Large cascade 
y-1” = 1 0 

Small cascade 
quadratic profile 
four-level ISR 

mP))~P-~‘2’ 
65(2) = c(2) - 2/3 

0.04 

0.012 
f 0.002 

0.014 
+ 0.003 

- 0.008 
f 0.015 

(EZ(p)) czp - 574) 
&(4) = g(4) - 4/3 

0.00 

0.013 
+ 0.006 

0.015 
* 0.008 

- 0.027 
f 0.027 

(EQ)) ap - Q6) 
65(6) = c(6) - 6/3 

- 0.20 

0.001 
* 0.013 

0.003 
* 0.015 

- 0.057 
+ 0.036 

(E“(p)) ap-4”’ 
S&S, = ((8) - 8/3 

- 0.45 

- 0.022 
* 0.020 

- 0.023 
+ 0.030 

- 0.098 
* 0.047 

Small cascade 
quadratic profile 
six-level ISR 

0.006 0.003 - 0.006 - 0.021 
* 0.007 f 0.014 * 0.02 1 * 0.030 

Small cascade 
linear profile 
four-level ISR 

- 0.093 - 0.190 - 0.292 - 0.399 
* 0.033 + 0.068 * 0.104 * 0.141 

Small cascade 
linear profile 
six-level ISR 

- 0.040 - 0.087 - 0.142 - 0.203 
+ 0.02 1 f 0.042 k 0.063 + 0.084 

cade, the number of permitted interlevel wave-vector triads 
grows quadratically with the number of modes. So the ener- 
gy transport becomes more effective, lowering the value of b. 
In fact, we have also calculated b for the large cascade, which 
gave the smaller value 6, = 171. 

Let us consider now the spectrum of the flow field. Fig- 
ure 9 shows the moments (E ;“) for m = 1,2,3, and 4. The 
length of the inertial range was defined so that the data could 
faithfully be fitted by straight lines with sufficiently small 
scatter. In the inertial range, relation (25) is fulfilled to with- 
in 0.5%. 

The slopes were obtained by a least square fit to the data 
in the ISR, the results are listed in Table II together with the 
corresponding variances of the c(m). For comparison, we 
also give the c( m ) values of the experiments of Anselmet et 
al.” 

In general, the scaling exponents lie near m/3 within the 
variances. So we find no significant corrections to the classi- 
cal scaling values. Of course, there remain systematic errors 
due to the finite width of the ISR. So we think that the high 
values for c(2) and c(4) show the influence of viscosity, 
since Sc( 2) and S{( 4) should have opposite sign, if the cor- 
rections were induced by intermittency. 

We repeated the procedure for shorter averaging times 
and found theX2 value ofthe fit to go down in time. Thus the 
data fit a straight line sufficiently well only in a long time 
limit ofconsiderable length that might not always be guaran- 
teed in the analysis of experiments. 

To check a possible influence of the number of modes on 
the values of the exponents c(m), we repeated the analysis 
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for the large cascade. We still did not find significant correc- 
tions to classical scaling, see Table II. In fact, convergence of 
the moments was faster than for the small cascade, so the 
fluctuations seem to decrease by adding more modes. 

It would be interesting to proceed further and include 
vector components with Lpi~ k 2’{2,3) or LP,G f 2’{4,5,6} 
and so forth. This allows for interactions between more dis- 
tant levels. The influence of nonlocal energy transfer could 
thus be studied systematically. 

V. DISCUSSION 
Similar to our ansatz, Kerr and Siggia24 analyzed the 

Burgers equation with the one-dimensional decomposition 
of the Row field 

u&t) = C u(p,t)eiPx, K = { & A ‘,O<kN,)}. (30) 
pEK 

Each cascade level is represented by one complex mode. The 
energy balance equation (17) stays intact, but the system 
looses its complicated intrashell dynamics, which seems to 
be responsible for the typical time dependence of the ampli- 
tudes shown in Fig. 4. In our cascade, we found that the 
mode set consisting of the wave numbers of a single level 
gives qualitatively the same chaotic solutions. In the Burgers 
system, by contrast, this is not so. For the whole coupled set 
of mode equations, two different types of “collective” behav- 
ior can be observed. As reported by Lee,32 if the energy is 
removed consistently by viscosity, the solutions approach a 
steady state that is globally stable. The system shows no sto- 
chastic behavior and has lost its time scale. 
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Kerr and Siggiaz4 substituted the viscous terms by phe- 
nomenological eddy damping terms of second order in the 
velocity. Then the stationary solution becomes unstable and 
the energy is transported in “bursts” traveling through the 
cascade. To this type of collective behavior the arguments of 
Sec. III, giving the approximate scaling form of ui (p,t), do 
not apply. So the authorsz4 were not able to infer scaling 
exponents from their simulations, though working with up 
to 12 levels. In our mode system, we did not find evidence for 
traveling pulses from plotting the time dependence of the 
various energy transfer rates, but we cannot exclude that 
more sophisticated techniques (as introduced by Kerr33 ) 
might reveal pulselike behavior. Kerr found indications for 
pulse formation in his simulations of Navier-Stokes flow. 

An earlier work of Siggiaz4 is based on the 3-D Navier- 
Stokes equation. He chooses a set of wave numbers different 
from ours, namely, 

K, = {2’(e) ,e,,e, ), ei = t l,O;(e, ,e2,e3 1 #O}. (31) 
But instead of coupling the modes by the Navier-Stokes in- 
teraction, a modified set of equations was introduced, where 
momentum conservation p = q, + q2 between the wave 
vectors of an interacting triad is satisfied only approximate- 
ly. This leads to equations, where any mode of one level is 
coupled to all modes of the two adjacent levels. The resulting 
time dependence of the energy E, (t) or the energy transfer 
rate T,,,, , (t) is dramatically different from the results 
shown in Figs. 6 and 7. 

To analyze the difference between Ref. 24 and our solu- 
tion in more detail, we simulated a 4-level system with differ- 
ent interaction structure. The interlevel energy loss via the 
symmetric mode 2’ ( 1 , 1,l) is skipped. Instead, each mode of 
a given level I gets a loss term by adding (like in Ref. 24, 
second approximation) 

- (T-t.+, /2E,)ui(PJ) (32) 

in Eq. (9). The interlevel energy input is kept. This new 
system conserves energy [as described by ( 17) ] and mo- 
mentum but violates Galilean invariance, since E, and 
T l--I+ I are not Galilean invariant quantities. As in the case 
of Siggia’s model, we found that its solutions show no resem- 
blance to the previous results anymore. In particular, the 
characteristic classical time scale 0: E- “’ r 2’3 is completely 
lost. So we conclude that it is important for the success of our 
method that the truncated equations still share the invar- 
iances of the original Navier-Stokes equation. 

The case of Galilean invariance still deserves some com- 
ments. Since K does not contain the null vector, Galilean 
invariance is formally violated. However, two neighboring 
levels couple in a Galilean invariant manner, and convection 
effects of more distant levels are not present, since they were 
skipped by ansatz. A similar mechanism was analyzed in 
Ref. 30. 

Even if they still miss the complete Navier-Stokes equa- 
tion, our restricted equations (9) with K,$ or K, should be of 
interest in their own right, because they allow to study non- 
perturbatively any aspect of turbulent phenomena by direct 
simulation. 

We now address the question of possible corrections to 
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the classical scaling. Can one understand the experimental 
findings, which show (though somewhat inconclusively) in- 
termittency corrections within our plane-wave analysis. We 
consider two different possible mechanisms to account for 
these corrections 

( 1) The external force need not be of the form ( 19). In 
fact, in real flows, pressure differences or external shear in- 
duce a basic laminar steady profile ZJ, (x), which is a station- 
ary solution of the Navier-Stokes equation. If we write the 
total velocity field as the sum of U, (x) and a fluctuating field 
ui (XJ) we obtain for this U, (XJ) an equation of motion (9) 
with a force, which is linear in both U, and ui, 

A(W) = -ZMii,(p) Cui(4)Uk(p-q). (33) 
q 

The Fourier amplitudes U, (p) of the laminar profile 
U, (x) provide a force (33) that acts on all scales and not 
only on the I= 0 level. There is a mean energy input 
(Tr) = 8,,,,(utlp)fI(p)) into all levels 1. ff the Fourier 
components of U scale like /q) -a, one expects an estimate 

(Tf’) K (E,)Z” - n)i=: (E,)2”‘3 -a,‘. 
The laminar profile of the plane Poiseuille problem, for ex- 
ample, is given by 

Ux(x) = Ux,(l -X3)&, O&X,(1. (34) 
This gives a = 2, so the energy input is still dominated by 
(Ton), and the exponents of sufficiently high levels are un- 
changed. However, over a limited range of scales O<i&, , 
the total input (T r*““) = 2:, = o (TF) still increases with I 
leading to less decrease of the (E,). If the modified spectra 
are nevertheless fitted by a pure power law, this will have a 
corrected exponent. As an example, we simulated the small 
cascade with a force that mimics the essential features of 
( 33) with the parabolic profile ( 34)) 

A(P) = 2iUP:, (P) 2 2-‘u,(q(p,l)). 
I 

(35) 

Here, q = q( p,Z) = (p, ,p2 ,/2 ’ - p3 ) shall be EK, the possible 
case q = p is omitted, since it would correspond to a contri- 
bution of U, (p - q = 0) in (33), although a mean velocity 
does not feed in energy. Ifthe driving laminar profile is linear 
instead of quadratic, as in (34), one only has to skip the 
factor 2-‘in (35). 

Figure 10 shows the strongly fluctuating energy input 
rate into the lowest level. The input parameter E no longer 
appears in our equations. Nevertheless, a finite value of 
(T$> adjusts itself for a given value of U. For U = 0.4, we 
obtained ( Tl;) = 0.30 after the cascade became stationary. 
The transfer rates between the lowest levels increase slightly, 
because there is also input for I > 0. The numerical values for 
the input rates are (TF) = 0.303, 0.039, 0.004, 0.0004..., 
I= 0,1,2,3 ,..., which agrees roughly with our previous esti- 
mate. 

We determined the exponents c(m) by fitting a straight 
line in two slightly different manners. We chose first (cf. Fig. 
11) a reduced inertial range, which comprises only the first 
four levels, as one often has in real experiments. The result- 
ing values of &rn ) may be found in Table II. The deviations 
S[( m ) are not large enough to fully account for the experi- 
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FIG. 10. The rate ofenergy input into the lowest level I = 0 (largest eddies) 
as provided by the parabolic driving laminar profile, cf. (34) and (35). 
Sincefa u, we have r:y 0: uu, so r::(t) reflects the strong fluctuations of 
the solution u, (p, I). There is momentary input as well as output but the 
average input rate is positive (dashed line at 0.30). The turnover time ofthe 
largest eddy here is L *“( Tf;‘) - “’ = 0.30 I” = 1.49; this is visible as a 
typical time scale (abscissa in the usual units, cf. Sec. III). 

mental findings, but they are significantly larger than for 
constant E input. Second, we extended the inertial range to 
six levels, as we had before. This time the same numerical 
data yield smaller corrections Sc( m), see Table II. 

For a linear shear profile it is U, (q) a q - I (i.e., a = 1 ), 
so 2 - ’ in the force (35) has to be skipped. The input rates 
( r)D) decrease slower with Z and the total input up to level I 
grows even more pronounced. The exponent corrections are 
visible in Fig. 11. The slope evidently depends appreciably 
on the chosen length of the ISR. The increase of (E y) with 1 
can approximately be explained with the initial increase of 
(Tl;l+““), since (E ;“) a ( TF*‘0’)2m’3. 

(2) Another possible reason for deviations of <(ml 
from m/3 might be that the cascade has not yet reached a 
stationary state. 

If the energy distribution initially deviates significantly 

i!d-- 
’ + 

l + 1.37 

- 0 0 0 D  0 4 0.37 
-0.63 u-O.63 

0 2 4 6 8 log,(Lp)=l 

FIG. I I. Spectrum (E,) and some moments (Ey) for m = 2,3,4 as func- 
tions of the wave number pa 2’. The classical scaling 2 - “““’ has been sub- 
tracted, i.e., any nonclassical exponent correction is visible as a deviation 
from a horizontal line. The value c,,, is chosen such that the m = 1 curve 
starts at 1, the m = 2 moment from 2, etc. The small cascade is simulated; 
the driving laminar profile is linear; the averaging time (after transients) is 
900. The deviations &J(m) are reported in Table II. Bottom curve 
(r,) = (TT) + (T, , .,), linear scale. Note the initial increase. 

from the 2/3 law, we found in our numerical solutions that it 
takes about an order of magnitude longer than a turnover 
time for the cascade to equilibrate. This was most apparent 
in simulations of the small cascade with constant largest 
eddy energy input, where initially the energy was contained 
only in level Z = 0. 

We conclude this also from the time dependence of the 
E, ( t), as displayed in Fig. 6. There are many generations of 
smaller eddies within the lifetime of the largest eddy, as seen 
from the fine structure of E4 (t). But the E,(t) may never- 
theless take long ( >> 1) excursions from their mean values, 
even after the equilibrium state is reached. 

In grid turbulence, the disturbances produced behind 
the grid are carried downstream by the mean flow, where 
they are allowed to decay freely.34 So, when measuring at 
some distance behind the grid, one might expect to have no 
influence of the shear. But even if this picture is correct, the 
measured spectra may well depend significantly on the ini- 
tial energy distribution of the disturbances, since the lifetime 
of one eddy turnover does not seem to allow for complete 
equilibration, at least in the Fourier-Weierstrass description 
of high turbulence, which we analyzed here. We seem to 
agree with the results of the “mapping closure” for the prob- 
ability distribution function forwarded recently by Kraich- 
nan.22*35 He foundpu,ps,pK, and SQ m) to vanish. There is 
stochastics but the cascade is no fractal or multifractal pro- 
cess. 

After finishing this manuscript we received a recent pre- 
print36 in which a mode system similar to ours is introduced 
and treated by renormalization group methods. Again, clas- 
sical scaling results within the error. 

According to our simulations, for our restricted set of 
spatially coherent plane-wave modes there are two possible 
sources of exponent deviations Sc( m) both of which are not 
really intermittency corrections. The first is additional ener- 
gy input in the inertial range due to the slow decrease of the 
driving laminar profile’s spectrum and the second is unex- 
pectedly long equilibration times and long lasting excursions 
from equilibrium of the energy distribution. If both effects 
are controlled, our results are compatible with Sg( m) = 0, 
i.e., despite chaotic, high Re, turbulence, there is no inter- 
mittency effect as far as being due to temporal deterministic 
chaos of the hierarchy of mode amplitudes. 

We recently extended the Fourier-Weierstrass mode 
decomposition to allow for spatial branching of the eddy 
decay process. Level I = 0 consisted of one box, the next 
smaller eddies I = 1, with half the original wavelength, con- 
sisted of 23 = 8 boxes each having independent mode ampli- 
tudes, and so forth. This branching leads via Navier-Stokes 
interaction to a spatially statistical distribution of the trans- 
ferred energy from one level to the next and affect both the 
moment exponents as well as the probability distribution of 
the velocity differences ui (r;x,t) = ui (x + r,t) - ui (xJ). 
The latter [v(r) ] becomes (with decreasing scale r) expo- 
nential instead of Gaussian as it is in the nonbranching plane 
wave exp(&x), pEK, decomposition. The former ones, the 
moment exponents, were found to be c(2) = 0.70, 
c(4) = 1.27, c(6) = 1.70, and g(8) = 1.94. Details will be 
published separately.“’ 
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APPENDIX: KOLMOGOROV STRUCTURE EQUATlON 

We give here a short derivation of the Kolmogorov 
structure equation, based on our K-restricted model. By per- 
forming they and the angle averages, we obtain for the longi- 
tudinal structure functions of second and third order: 

D ((2)(r) = f c (b(P) 12k, (pr), 
PF;K 

XIm[ (4@(P)uj(P - Q)Ui(S))]S3(Pr). 
(A21 

Here, the functions g, , g, are introduced, which contain the 
scale r and the geometry of the three-dimensional flow 

g, @r) = (pr1 - “C (pr) 3 + 3 [pr cos(pd - sin (pr) I I, 
(A31 

g, (pr) = (pr) - “{ [ 3 - (pr)’ 1 sin (pr) - 3pr cos(pr) 1. 
(A41 

We now multiply (9) with 127.~7 ( p)p - ’ g, (pr) and take the 
ensemble average. In the stationary state, this gives 

O= -iMt$(P) C (“+(P)uj(P-q)U[(q)) 
qtK 

x 12P - ‘if3 (Pr) - 12~p*(tu(P) 12)p - ‘g, (pr) 

+ 12p-‘g,(Pr)(uT(P)~(P)). 

Using 

C-i~~,(P)(u:(P)uj(P-q)u,(q)) 
WK 

‘zKPj Im[ (@(P)uj(P - q)U;(q))] 

and summing over all p&C we obtain 

0 = D;r3’(r) - 6vd,D$‘)(r) 

+ 12 pFK (uT(p)f;(p))p-‘g,(pr). (‘45) 

The Kolmogorov structure equation thus depends on the 
form of the external forcef, (p), In the case of the force ( 19)) 
which only acts on the largest scales, one may expand g, (pr) 
for r4 L, p - ‘g, (pr) + r/l 5. This gives 
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12 2 b:(P).l$(P))P-‘g,(pr) =-+. 
paK 

So (A5) finally leads to (22). 
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