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Breakdown of scaling in droplet fission at high Reynolds number
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In this paper we address the shape of a low-viscosity fluid interface near the breaking point.
Experiments show that the shape varies dramatically as a function of fluid viscosity. At low
viscosities, the interface develops a region with an extremely sharp slope, with the steepness of the
slope diverging with vanishing viscosity. Numerical simulations demonstrate that this tip forms as
a result of a convective instability in the fluid; in the absence of viscosity this instability results in
a finite time singularity of the interface far before rupture~in which the interfacial curvature
diverges!. The dynamics before the instability roughly follow the scaling laws consistent with
predictions based on dimensional analysis, though these scaling laws are violated at the instability.
Since the dynamics after rupture is completely determined by the shape at the breaking point, the
time dependences of recoiling do not follow a simple scaling law. In the process of demonstrating
these results, we present detailed comparisons between numerical simulations and experimental
drop shapes with excellent agreement. ©1997 American Institute of Physics.
@S1070-6631~97!00306-1#
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I. INTRODUCTION

Droplet breakup has been a subject of scientific scru
for over 100 years. Early contributions include Plateau’s
scription of the instability mechanism,1 Lord Rayleigh’s cal-
culation of the most unstable wavelength,2 Worthington’s
pictures of splashes,3 and Edgerton’s high-speed strob
scopic photographs,4–6 which first revealed the intricate
shapes during rupture.

In the 1970’s, there was a resurgence of interest in
breakup,7–11 mainly driven by its technological relevanc
~e.g., to ink jet printing!. Detailed experiments studied th
dynamics of both high- and low-viscosity fluid jets eman
ing from a nozzle, focusing on the early stages of pinchi
A principal goal of this work was to understand the cont
of the size distribution of satellite droplets. More recent
numerical methods have been developed to study jet de
based on the assumption of inviscid, irrotational flow12 or
highly viscous Stokes flow.13–15

From a mathematical point of view droplet breakup p
vides a simple example of singularity formation.16–19 Start-
ing from a smooth initial shape with finite fluid velocities,
breaking drop develops singularities in a finite amount
time in which physical quantities, such as the curvature
the interface or the fluid velocity, diverge. A fundamen
question is to determine the nature of the flow in the nei
borhood of the singularity.

For a liquid drop breaking in vacuum, the shape near
breaking point depends critically on the viscous length sc
first identified by Peregrineet al.,20 defined as

l n5
n2r

g
,

wheren is the kinematic viscosity,g the surface tension, an
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r the fluid density. Figure 1 shows several shapes for th
different fluid viscosities: the radius of the water neck@Fig.
1~a!# is much larger than the viscous length scale, which
only 140 Å. Increasing the viscosity by a factor of 100@Fig.
1~b!# leads to a 104 increase inl n . At such a high viscosity,
the shape is slender near the breaking point. For even hig
viscosity fluids like glycerol (l n51 cm) the slenderness i
more pronounced@Fig. 1~c!#, with a much more gradual tear
drop shape.

The goal of the present paper is to understand the qu
tative differences between the shapes in these picture
high viscosities, the connection of the fluid thread to the d
is gradual@Fig. 1~c!#, whereas at low viscosities the shape
highly asymmetric, with an abrupt transition from the thre
to the drop separated by a region of extremely steep s
@Fig. 1~a!#. In fact, as will be shown below through exper
ments and numerical simulations, the steepness of the s
actually diverges with vanishing viscosity. Through a co
bination of numerical simulations and experiments, we w
attempt to answer the following questions: What sets
scale of the asymmetry? How does the asymmetry vary w
fluid viscosity? And how does this asymmetry arise from t
dynamics leading to droplet fission?

In addressing these questions, our study will focus o
fundamental idea about how liquid drops break, origina
introduced by Keller and Miksis:21 Arbitrarily close to the
breaking point there are no external length scales descri
the interface, so the dynamics should beself-similar:22 the
shape of the interface when the minimum radius is 1mm
should be the same as the shape when the minimum radi
10 mm, modulo rescalings of the axes. Peregrineet al. re-
fined this idea20 and applied it to their experiments on fallin
water drops: They point out that for low-viscosity fluid
1573$10.00 © 1997 American Institute of Physics
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FIG. 1. Shape of the fluid interface immediately before rupture, for three different viscosities.~a! is waternH2O50.01 cm2/s; ~b! is a 85 wt. % glycerol water
mixture with a viscosityn5100nH2O

; ~c! is pure glycerol with viscosityn51200nH2O
.

u

in
hy
ds

te
ov
u
lu
op

i-

p-
a
to

he

il
th
in
in
he
ts
g
ai
ot
o

gu
th

le,
of
he
ta-
a

p,
me
f
e
ich
wer

tion
by
imu-
o-
g-
c
-
ith
ent,
old
ns
he
re
ter
ex-
lete
there is a range of scales where the thickness of the fl
neck is much larger than the viscous length scalel n , but
much smaller than the length scale, where energy is fed
the system. Over this range of scales, the self-similarity
pothesis might be expected to hold. For high-viscosity flui
the thickness of the thread is usually much smaller thanl n ,
so that self-similarity will also hold.

These considerations suggest that a breaking fluid in
face should be described by a similarity solution to the g
erning hydrodynamic equations. The first study to o
knowledge that succeeded in constructing a similarity so
tion for a breaking fluid thread was for the rupture of a dr
in the two-dimensional Hele–Shaw cell.16,17This initial suc-
cess was followed up with the identification of further sim
larity solutions for the Hele–Shaw cell,19,23 as well as the
discovery of a similarity solution for three-dimensional dro
let fission for fluid threads with thickness much smaller th
l n .

24–26 In this case the similarity solution is unstable
finite-amplitude perturbations,27 with the critical amplitude
for instability approaching zero at the singularity.28 At the
high viscosities where this similarity solution is relevant, t
droplet shape is long and slender, as apparent in Fig. 1~c!.

The question addressed in this paper is whether sim
scaling ideas can explain the interfacial shapes during
breakup of low-viscosity fluids, such as the water drop
Fig. 1~a!. Based on the above discussion, this translates
the question of whether the self-similar singularities in t
equations ofinviscid hydrodynamics describe experimen
when the thread thickness is larger than the viscous len
scalel n? To answer this question, we will describe in det
the characteristics of a water drop falling from a nozzle b
before and after a fission event. Through a combination
experiments, numerical simulations, and theory, we ar
that the scaling hypothesis fails for this problem. When
1574 Phys. Fluids, Vol. 9, No. 6, June 1997
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thread thickness is far greater than the viscous length~105

times greater for a water drop falling from a 4 mmnozzle!, a
dynamical instability produces another small length sca
which destabilizes the similarity solution. In the absence
viscosity, this instability actually causes a singularity in t
curvature of the interface before rupture occurs. This ins
bility of the scaling solution at low viscosities provides
natural explanation for the steep front in water drops@Fig.
1~a!#. Although there is no inviscid singularity after breaku
the scaling behavior before breakup is imprinted on the ti
dependences after breakup,29 since the solution at the time o
breakoff provides an initial condition for the recoiling; th
shape at the rupture point is not a perfect power law, wh
results in a more complicated time dependence than po
law scaling.

The paper is organized as follows: The second sec
introduces the experimental and theoretical frameworks
presenting a detailed comparison between a numerical s
lation of a drop falling from a faucet and experimental ph
tographs. The simulations use a one-dimensional ‘‘lon
wavelength’’ approximation to the full hydrodynami
equations developed previously.24,30,31 The agreement be
tween simulations and experiment is remarkably good, w
simulations reproducing detailed features of the experim
even though the long-wavelength assumption does not h
uniformly throughout the breaking. The next two sectio
study in detail the solution near the breaking point in t
low-viscosity limit. In Sec. III we address solutions befo
breakup, while in Sec. IV we address the situation af
breakup. In both cases we combine available theoretical,
perimental, and simulational evidence to provide a comp
picture of the singularities.
Brenner et al.
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II. FORMULATION OF PROBLEM

The experimental configuration addressed in this pa
is the falling of a drop from a circular nozzle. We consid
the limit of slow dripping: the drop is adiabatically fille
with fluid until the shape becomes unstable. Two dimensi
less parameters characterize this situation: the Bond num

Bo5R2rg/g;

and the Reynolds number,

Re5~R/ l n!1/2.

Here R is the radius of the nozzle,g is the gravitational
acceleration, andr, l n , andg are the fluid parameters de
fined above.

Several groups have recently studied large-scale feat
of a drop dripping from a circular nozzle.20,27,32Here, we are
primarily concerned with the nature of singularities in t
limit of zero viscosity~infinite Reynolds number!. Near the
rupture, there is a large separation between the time sca
the flow at the singularity and the time scales characteriz
flow fields far from the breaking point. Thus, it is expect
that properties of singularity formation are only weakly d
pendent on the specific experimental setup—in this case
Bond number Bo. The results of this paper should theref
apply to droplet breakup at high Reynolds number in a
experimental configuration. Indeed, Edgerton’s initial obs
vation of sharp interfaces in low viscosity fluids occurred
several experimental setups, ranging from his famous
tures of splashes4 to fluid falling from a nozzle.

The goal of this section is twofold: first we describe
simplified model for understanding the drop dynamics.
inviscid version of this model was first proposed by Lee33

viscosity was later included by Bechtel, Forest, and Lin30

Eggers and Dupont,24 and Sellens.31 Then, we present two
sets of experiments and simulations and compare the res
The first set studies a water drop falling from a nozzle, wh
the second set focuses separately on the thin neck re
separating the drop from the nozzle. Eggers and Dupo24

already presented such a comparison for Peregrine’s ph
graph of a water drop immediately before it breaks. Here
continue the simulations through the rupture of the init
drop and the satellite drops until the original drop is se
rated from the nozzle by several smaller satellite drops.
simulations continue to describe the experiment, even for
nearly spherical satellite drops, when the long wavelen
approximation clearly no longer holds.

The experiments consisted of photographing a lo
viscosity fluid, deionized water at room temperature, dr
ping from a thin vertical nozzle. The rate of drop formatio
at the nozzle was kept small so that the initial velocit
could be assumed to be negligible. This was determined
decreasing the rate of flow until the macroscopic shape of
drop no longer varied with the rate. The diameter of t
nozzle could be varied. The photographs were taken in
ways. In order to determine the shape of the drop as a fu
tion of time, we used a HyCam 400 16 mm movie came
which, with its quarter-frame attachment, could take a ma
mum of 44 000 frames per second. In order to measure
movement of the drop as a function of time, the frames fr
Phys. Fluids, Vol. 9, No. 6, June 1997
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the HyCam were transferred onto videotape and analy
with a computer. For precision pictures of the droplet sha
we used a medium format camera with an open shutter a
strobe. When the drop began to fall, it interrupted a la
beam incident upon a photodiode. After a variable time
lay, this triggered a fast 5 MS EG and G MVS-2601 Strob
In both cases, the lighting was from the rear so that
liquid/air interface would be plainly visible.~Since the drop
acts like a small lens, the edges of the liquid appear bl
and bright spots appear along the axis.! For close-up photog-
raphy, the lens was attached via a bellows to the camera

The mathematical problem assumes the dynamics o
axisymmetric column of fluid with kinematic viscosityn,
densityr, and surface tensiong falling in vacuum. The fluid
moves via the incompressible Navier–Stokes equations, a
mented with the two boundary conditions that~i! normal
stresses are proportional to the mean curvature and~ii ! tan-
gential stresses are zero. The final condition is that the in
face moves with the fluid.

The full hydrodynamic equations are difficult to unde
stand theoretically or simulate numerically. We instead c
sider a long-wavelength approximation of the fu
equations24,30,31 by systematically expanding the full equa
tions in powers of a slenderness parameter. Another der
tion of the long-wavelength equations, is presented in A
pendix A, which elucidates the physical constraints: T
form of the equations is fixed by seeking the simplest n
linear equations that preserve the conservation laws~mass
and momentum! of the flow, while preserving Galilean in
variance, an idea that is quite old.34,35 The only nontrivial
term describes viscous dissipation: this term follows by
manding that the equations also generate the same dispe
relation of long-wavelength disturbances as the full hydro
namic equations. The evolution equations for the interfa
radiush(z,t) and the velocity fieldv(z,t) are

~h2! t52~h2v !z , ~1!

v t1vvz5
3

Reh2
~h2vz!z2kz1Bo, ~2!

k5S 1

hA11hz
2
2

hzz

~A11hz
2!3

D , ~3!

where we have nondimensionalized all lengths by the noz
radiusR, and all times by the basic time scale

t5ArR3

g
. ~4!

Note that the equations as written above violate
asymptotic derivation in powers of the slenderne
parameter,36 since they selectively include higher-ord
terms inhz . Specifically, it would be asymptotically correc
to approximateA11hz

2'1, and also to neglect thehzz term
entirely.36 The reason for including these terms is twofol
first, only by keeping the higher-order terms in the press
do the equations have the correct equilibrium shapes, wh
is important for capturing the flow away from the breakin
point.24 Second, even starting from a cylinder as an init
condition, the asymptotic equations show exponential gro
1575Brenner et al.
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at arbitrarily short wavelengths. In simulations, this sho
up as rapidly growing oscillations on the scale of the co
putational grid, which would have to be damped out by so
ad hoc method without the presence of the higher-ord
terms.

The numerical simulations solve a finite difference v
sion of the lubrication approximation discussed above. T
details of the finite difference method have previously be
discussed in several places.16,24,19,27We briefly summarize
the major points of the simulations; technical details are
served for Appendix B. The finite difference equations a
solved implicitly, resulting in a system of nonlinear equ
tions at each time step, which are solved using Newto
method. The time step is dynamically adjusted to con
several different indicators of the numerical error. The co
employs a dynamically evolving mesh, which is essential
obtaining the level of resolution necessary to resolve
breaking adequately. The mesh is adjusted whenever
specified conditions on the solution are satisfied. When
minimum thickness of the droplet drops below a thresho
the code ‘‘breaks’’ the drop, by dividing the computation
domain into two pieces and then interpolating the shape
the interface around the breaking point. Once the drop
artificially broken, the equations are solved at each m
point. Numerical tests demonstrate that the large-scale
sults are independent of the method of cutting the thread
particular, decreasing the threshold thickness for ‘‘breakin
does not affect any of the results. The details associated
implementing this procedure efficiently are discussed in A
pendix C. A typical simulation lasts a few hours on a SU
Sparc 20.

As an illustration of how closely simulations match th
experiment, in the following figures we focus on a wa
drop falling from aR51.5 mm nozzle~Bo50.3, Re5330!.
In both experiments and simulations, the drop is slowly fill
with fluid, passing through a sequence of equilibrium shap
at a critical volume, the drop falls from the nozzle. Figure
shows both experimental photographs and simulations at
ferent stages of the breaking: Initially the drop hangs fr
the nozzle in equilibrium. Then the drop falls, pulling out
thin neck that separates it from the nozzle@Fig. 2~a!#. After
breaking@which occurs between the times of Fig. 2~b! and
Fig. 2~c!#, the drop continues to fall, while the thin nec
recoils toward the nozzle@Fig. 2~c!#. As the thin neck recoils
capillary waves are generated and propagate towards
nozzle. These waves are excited since the wave spee
capillary waves coincides with the retraction speed of
fluid neck~see Appendix C!. Then the recoiling neck break
at the top of the thin neck, near the nozzle@Fig. 2~d!#.

It should be emphasized that the simulation contains
free parameters: given the dimensionless Bond number
and Reynolds number Re the shapes are uniquely determ
by the dynamics. We find it remarkable that such a sim
model can capture so many details of the breaking proce

It should be noted, however, that these simulations c
not capture all qualitative aspects of the experiments: in p
ticular, simulations of the long-wavelength equations are
capable ofoverturning, where the thicknessh(z) becomes
double valued. Close examination of movies of water dro
1576 Phys. Fluids, Vol. 9, No. 6, June 1997
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shows that overturning never occurs before the initial fiss
event, but does tend to occur during the oscillations of
satellite drops. Typically, overturning in satellite drop osc
lations occurs for experiments with larger nozzles~Bond
numbers! than Fig. 2. The long-wavelength equations avo
overturning~which would result in a singularity! by produc-
ing a large amount of dissipation where overturning is ab
to occur. This feature allows the simulations to be continu
to arbitrarily long times; however, the agreement betwe
simulations and experiments degrades after an~experimen-
tal! overturning event.

Recently, Schulkes37 performed a boundary integra
simulation of aninviscid, irrotational fluid dripping from a
nozzle, and presented a detailed comparison of his sim
tions with the Peregrineet al.20 experiments on water drops
An interesting difference between the present simulati
and Schulkes’ inviscid simulations is that the latter demo
strate overturningbeforethe initial fission event, whereas th
former do not. The reason for this difference will be elab
rated in detail below: Based on comparisons of experime
and simulations, we argue that this difference is because
long-wavelength equations more accurately describe the
namics than the assumption that the flow is inviscid a
irrotational. Our simulations show that viscosity is a singu
perturbation to the dynamics in the long-wavelength eq
tions; the inclusion of an~arbitrarily small! amount of vis-
cosity stops overturning during rupture. The agreement
tween these simulations and experiments leads us
conjecture that the full equations also contain this singu
viscosity dependence.

Now we summarize another set of simulations and
periments to be used in the remainder of the paper in a
lyzing the dynamics of the rupture. Immediately after ru
ture, the interface~when viewed on a length scale larger th
the viscous scale! consists of a sharp conical tip attached to
spherical shell. Figure 3 shows a sequence of the recoil f
both simulations and experiments, for a water drop falli
from a R53.5 mm pipette~Bo56.5, Re5500!. The initial
state of the drop was prepared exactly in the manner as
the previous simulation~i.e., by passing through a sequen
of equilibrium shapes!. We show only the thin neck region
separating the drop of fluid from the nozzle, since this is
relevant regime for the analysis in the following section
however, we emphasize that the agreement between sim
tions and experiments persists throughout the entire drop
demonstrated in the previous figure. The speed of the p
tography was enhanced by a factor of 4 by printing fo
successive pictures~separated in time by 2.531025 s! on a
single frame of film. In each frame, the earliest time
printed at the bottom, and latest frame at the top. The fo
fold increase in the timing gained allows a more prec
analysis of the singularity reported in Sec. IV.

III. SHAPES NEAR RUPTURE

In the remainder of this paper, we analyze the pictu
aiming at a complete description of the interfacial shapes
fluid velocities close to a breaking event. For water dro
the viscous length scalel n'0.01mm is much smaller than
the length scales visible in the photographs~larger than 1
Brenner et al.
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FIG. 2. Left panel: Photographs of a water drop falling from a nozzle with radiusR51.5 mm ~Bo50.3, Re5330!. The nozzle is visible at the top of the
picture. Right panel: Sequence of shapes from numerical simulations of Eqs.~1!–~3! for the same configuration. The times were chosen so that the drop sh
match the experiments. Length scales are in units of the droplet radius. In both simulations and experiments a pendant drop is filled adiabatica
becomes unstable and falls.
1577Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al.
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FIG. 3. Comparison of numerical simulations~left! and experiments~right!
for the recoiling fluid neck of a drop falling from nozzle with radiu
R53.5 mm. The characteristic timet52.431022 s. The lengths of the
successive drops~in units of the radius! in the simulations are 1.8, 1.5, 1.45
1.27, and 1.16, respectively. The times between the successive photog
~in units of t! are 0.092, 0.01, 0.03, and 0.02, respectively. The times
tween the successive frames from simulations are 0.15, 0.013, 0.03,
0.02, respectively. Note that the neck in the first photograph is at a slig
later time than the first simulation frame. The absolute length of the velo
vectors is normalized by the maximum velocity. Sections IV and V gi
detailed comparisons of the time dependences in simulations and ex
ments near the breaking point.
1578 Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al.
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mm!. This separation of scales leads to the expectation
the viscous stresses shouldalwaysbe much smaller than th
other forces when the drop thickness is much larger t
l n . If this is true, then the viscous term 3(Reh2)21(vzh

2)z in
Eq. ~2! can simply be dropped when analyzing the flow fie
thus, inviscid hydrodynamics might be expected to be su
cient for describing rupture.

In their classical paper,21 Keller and Miksis advanced a
dimensional argument suggesting the time dependences
recoiling inviscid wedge. Their argument is sufficiently ge
eral that it applies to the inviscid dynamics of any surfa
tension driven flow near a singularity.38 The application to
droplet breakup was emphasized by Peregrine.20 When vis-
cosity is unimportant, the only relevant dimensional para
eters near the singularity are surface tensiong and the fluid
densityr, since the external forcing and initial conditions a
assumed to be unimportant. Using these parameters an
dimensional time intervalDt from the singularity~either be-
fore or after!, only one length scale can be formed, name

S g

r D 1/3~Dt !2/3. ~5!

In dimensionless units, witht85Dt/t the dimensionless time
interval to the singularity, this length isl (t8)5t81/3. If l is
indeed the only length scale governing the dynamics, t
the shape and velocity field should obey a similarity solut
of the form

h~z,t !5 l ~ t8!HS z8

l ~ t8! D , ~6!

v~z,t !5
l ~ t8!

t8
VS z8

l ~ t8! D , ~7!

where z85z2z0 is the position relative to the point o
breakupz0 . These equations are exact solutions of the eq
tions ~1!–~3! at zero viscosity.

The question is whether this dimensional argument s
fices to explain the experiments and simulations prese
above. There are two assumptions hidden within the ar
ment, which could cause it to fail in practice: First, it
assumed that when the interfacial thickness is larger than
viscous length scale the viscous stresses are irrelevant;
might be dynamical mechanisms that make viscosity imp
tant on a length scale different from the viscous length sc
l n . Second, it is assumed that the singular solution is no
all affected by the outer length scales, i.e., those set
boundary conditions at the nozzle or initial conditions. A
though it is generally true that scaling exponents are in
pendent of outer scales, it is often the case that prefactor
depend on outer length scales. The mechanism for this is
the singular solution must bematchedto the solution far
from the singularity, which generically introduces consta
in the singular region depending on the outer scales.

We will demonstrate below thatbeforebreakup the di-
mensional scaling law fails because viscosity becomes
portant when the drop radius is much larger than the visc
scale. This fact was already indicated by Eggers a
Dupont,24 and is a consequence of an intrinsic instability
the inviscid equations: without viscosity, the momentu
Phys. Fluids, Vol. 9, No. 6, June 1997
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equation resembles a forced kinematic wave equation
which high-velocity regions move faster than low-veloci
regions. This leads to an instability that forms discontinuit
in velocity gradients in finite time. The continuity equatio
implies that a discontinuity in a velocity gradient also caus
a discontinuity in the slope of the drop. A finite but arb
trarily small viscosity changes the situation drastically: t
steepening of the gradients is stopped by viscous stre
before the interfacial curvature diverges. The viscosity s
the value of the maximum curvature, and thus the maxim
slope, and therefore has macroscopic consequences on s
of the order of the drop radius,evenwhenl n is infinitesimal.
This instability provides a natural explanation for the striki
difference between the interfacial shapes near rupture for
ids of different viscosity~see Fig. 1!. At low viscosity this
additional singularity causes the sharp front observed in
periments.

The initial recoiling after breakup for fluid dripping from
a nozzle does not manifest the inviscid convective instabi
just described: We show in Appendix C that when start
from a cone as the initial condition, simulations obey t
dimensional scaling laws discussed above. However,
cause of the breakdown of scaling before breakup, the sh
at the rupture point deviates from a cone on scales m
larger thanl n . Using mass and momentum conservatio
Keller29 showed that the initial conditions directly affect th
dynamics after breakup. Therefore, after breakup a sim
scaling will only be observed over a range of scales set
how closely the shape at the rupture point is a pure po
law.

A particularly sharp way of illustrating this problem i
the set of scaling solutions for the recoiling of an invisc
drop proposed by Ting and Keller.39 They pointed out that
there are actually a continuous family of other possible si
larity solutions to the lubrication equations other than~6! and
~7!.39 The more general form,

h~z,t !5 l radial~ t8!HS z8

l axial~ t8! D , ~8!

is also a possible solution to the dynamical equations
t8→0 as long as

l radial5R~ l axial/R!b. ~9!

These solutions are consistent with the long-wavelength
sumption wheneverb.1, so thatl radial goes to zero faste
than l axial. Note that these solutions require the introducti
of an additional length scaleR. Correspondingly, the solu
tions~8! and~9! also have a different asymptoticsawayfrom
the singularity: since the solution must be time independ
far from the breaking point, the scaling functionH(j) must
obeyH(j);jb at largej, so thath(z);zb.

IV. SHAPES BEFORE BREAKUP

In this section we analyze the dynamics before rupture
establish the claims made above. We begin by measuring
characteristic thicknesshmin of the interface as a function o
time of the figures shown above.
1579Brenner et al.
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FIG. 4. ~a! Measurements of the minimum thicknesshmin of the interface
as a function of the timet0 2 t to rupture. Solid dots denote experimental
measurements; the solid line is a numerical simulation. The dotted lin
represents thet0 2 t2/3 scaling law.~b! The characteristic horizontal length
scalej as a function of time before rupture. The scalej is defined by
measuring the axial distance over which the thickness of the thread i
creases by a factor of two from the point of minimum thickness. The soli
line is a numerical solution to the partial differential equation, while the
dotted line represents thet0 2 t2/3 law. ~c! The maximum velocity as a
function of time before rupture. The solid line is a numerical solution
to the partial differential equation, while the dotted line represent
vmax; t02 t21/3.
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Figure 4~a! showshmin(t) for the second breaking even
for both theory and experiments shown in Fig. 4. The mi
mum thickness was measured in units of the drop radiusR,
and the time was measured before to the singular timet0 . In
simulations the singular time could be measured exactly.
perimentally it could be measured to within one frame of
movie corresponding to a time error of6 2.531025 s. Note
that the time is measured in terms of the time scale give
~4! to facilitate comparison between simulations and exp
ments. As above,R denotes the radius of the nozzle. Th
absolute scale on the photographs was not directly measu
but was instead deduced by comparison with simulatio
The simulations can also measure the characteristic leng
the interface and the maximum fluid velocity as a function
time to rupture. These dependences are shown in Figs.~b!
and 4~c!.

Note that the viscous length scale is 431026 in dimen-
sionless units, far below the scales shown.

Does this numerical data agree with the dimensio
scaling law? There are two separate points to make:
experiments can resolve 2.531025 s before the rupture, cor
1580 Phys. Fluids, Vol. 9, No. 6, June 1997
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responding tot02t'1023. Beforet02t;1022.5 simulations
show a decrease of the minimum thickness consistent w
the t2/3 law; however, the simulation shows that a dras
event occurs near this timeDTE , causing a severe deviatio
from the scaling law. This event can be seen in all simula
quantities. Examining the experiments with this result
mind, there also seems to be a slight deviation of the d
from straight power-law behavior aroundt02t;531023,
though it is difficult to establish this conclusion definitive
with current resolution.~We remark, however, that we wer
unable to get rid of the slight ‘‘glitch’’ in the experimenta
time dependences near the breaking point by adjusting
time of rupturet0 . This is consistent with our conjecture th
the deviation from power-law behavior is a real effect.!

We will discuss the physical origin of this behavior b
low. It is demonstrated that the timeDTE at which the de-
viation from t2/3 occurs isindependentof the viscosity of the
fluid; for a fluid of viscosity ten times smaller than that
water the deviation also begins neart02t51023. Thus, the
scaling range does not become larger as the Reynolds n
ber Re→`. This indicates an intrinsic failure of the dimen
Brenner et al.
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sional scaling argument, which suggests that the agreem
between thet2/3 law and experiments is somewhat artificia
Also, below, we present further experimental evidence
the breakdown of the assumptions leading to the dimensi
scaling law, based on the shapes of the profiles.

What is the reason for the complex time dependence
is counterintuitive that the minimum thickness does not
crease monotonically as the drop breaks, but actuallyin-
creasesfor a short time. The origin of this can be understo
by carefully examining the shape profiles: Figure 5 sho
the maximum slope of the profile as a function oft02t: The
inviscid similarity solution predicts that the slope should
constant. Before the nonmonotonic glitch, during the ti
period when the scaling laws are consistent with the dim
sional scaling laws, the slope is constant@max(hz)'2#; how-
ever, att02t'1022 the slope increases rapidly, saturating
a constant value@max(hz)'110#.

The major consequence of the time dependence of
slope is that when the profiles are rescaled according to
~6!, the shapes donot collapse on the steep side of the pr
file, as shown in Fig. 6~a!. Thus, even though the time de
pendences agree with the dimensional predictions, the sh
are not self-similar in time, even beforet02t'1023, when
the time dependence seems to agree with the dimens
scaling laws.

This same behavior can be seen in experiments@Fig.
7~b!#: Profiles were extracted from the images using the
age processing package IDL, and then rescaled as out
above: both radii and horizontal length scales are scaled
the characteristic lengthl (t8). The experimental profiles als
do not collapse onto a single curve, implying that the d
namical behavior deviates from the similarity solution equ
tion ~6!. Qualitatively, the experimentally collapsed profil
@Fig. 7~b!# are very similar to the simulations@Fig. 7~a!#.

It is interesting to note that simulations of inviscid, irro
tational flow12,37show an overturning of the profile at a finit
time away from the singularity, rather than a gradual ste

FIG. 5. The maximum slope of the interface as a function of time to rup
from simulations. The similarity solution equation~6! predicts that this slope
should be constant in time.
Phys. Fluids, Vol. 9, No. 6, June 1997
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ening. A profile that has overturned looks perfectly flat wh
viewed from the side, as done in the experiments. The
that the simulations and experiments agree so well be
breakup provides evidence that no such overturning occ
before breakup. As remarked before, the situation is differ
during violent satellite drop oscillations, where flat portio
appear at the end of a drop.

The interfacial shapes in both simulations and expe
ments are inconsistent with the similarity solution~6!. Al-
though the characteristic length scales do agree with
similarity solution over a range of scales, the agreem
breaks down in a regime where the similarity solution sho
still hold. Again, we emphasize that simulations with ev
smaller viscosity show that the deviation from the scali

e

FIG. 6. ~a! Rescaled profiles from numerics before the curvature singula
(t02t>1023). Both horizontal and vertical scales are rescaled byt0
2 t)2/3. The location of the final breaking pointz0 is subtracted from each o
the profiles. The solid, dotted, dashed, and long dashed lines repre
t02t50.03, 0.01, 0.003, and 0.001, respectively.~b! Collapsed profiles
from experiment. The location of the final breaking pointz0 is subtracted
from each of the profiles. The solid, dotted, dashed, and long dashed cu
representt02t50.019, 0.011, 0.007, and 0.003, respectively. Note t
these experimental profiles show no evidence of overturning.
1581Brenner et al.
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solution occurs very near the time the deviation occ
above, so that the deviation isnota consequence of the finit
fluid viscosity.

A. The curvature singularity

The overall deviation from self-similarity occurs becau
the slope next to the breaking point grows by a factor of
on a time scale much faster than the pinching. This steep
ing is a remnant of a finite time singularity in theinviscid
equations; without viscosity, steepening leads to a singula
in which the local gradients in the velocity blowup in fini
time. The mechanism of the steepening is a convective in
bility: regions of high velocity are convected at higher v
locities, leading to a singularity in which the velocity grad
ent diverges with the velocity remaining finite. This points
the dynamical formation of a new length scalelEuler, which
approaches zero in finite time. The mechanism is reminisc
of shock formation in compressible hydrodynamics. For fl
ids with finite viscosity, the convective instability is stoppe
beforelEuler→0, at a scalel̃ set by the viscosity. The lengt
l̃ controls the maximum steepness of the front. This mec
nism therefore provides a natural explanation for why lo
viscosity fluids have very sharp fronts.

The maximum slope of the sharp front is controlled
the dynamics of the steepening. If the inviscid or Lee’s eq
tions are simulated, rapid growth occurs at the highest w
numbers, and the solution is dominated by fluctuations
the scale of the grid. Therefore, we performed a series
simulations at increasing Reynolds numbers, which we la
extrapolate to the inviscid case. Even for the largest R
nolds numbers, no high-wave number instability was o
served. Figure 7 plots the maximum slope for the Reyno
numbers Re543, 427, and 4273 as a function of the time
rupture. All of the plots demonstrate a rapid increase in
slope up to a saturation level determined by the Reyno
number, similar to Fig. 5.

Finally, we note that the simulations depicted in Fig.

FIG. 7. Maximum slope during the course of a simulation as a function
time for liquid bridge simulations, for various Reynolds numbers. A liqu
bridge is a cylinder of fluid held at constant radius at both ends.
1582 Phys. Fluids, Vol. 9, No. 6, June 1997
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were done for a liquid bridge~a finite cylinder of fluid
pinned at both ends! instead of drops falling from a fauce
the major differences are the absence of gravity for the liq
bridge, and the different initial conditions for the two case
Although the basic qualitative features of the formation
the curvature singularity are independent of experimen
configuration note that there are several quantitative dif
ences between the dynamics of Fig. 7 and Fig. 5: the
simulations have a different early time transient than
drop simulations. Also, at the highest Reynolds num
(Re54273), the jet simulation shows a nonmonotonic b
havior. We do not know if this nonmonotonic behavior pe
sists when Re→`. There are two important qualitative fea
tures of Fig. 7: first, the maximum slopedivergesas the
Reynolds number Re→`. Figure 8 plots the maximum slop
as a function of Reynolds number for the above simulatio

The points are numerical data, and the solid line rep
sents the scaling law

maxhz;Re1.25. ~10!

We cannot be sure, however, that this exponent repres
the asymptotic scaling law. Note that Re54273 represents a
fluid with one-tenth the viscosity of water, falling from a
cm nozzle. At the point where the slope reaches its ma
mum, the smallest features resolved are of the size 1027,
which is the best we can do with the present numerical sim
lations.

The second important point is that the time at which t
steepening begins is roughly independent of Reynolds n
ber. Therefore, we conclude that the steepening is a rem
of a finite time singularity in the inviscid equations, in whic
the interfacial curvature diverges. This ‘‘curvature singula
ity’’ is distinct from the singularity at rupture, and introduce
a new length scale into the problem a finite time from t
rupture. This is the reason that the dimensional scaling la
break down before rupture. Moreover, the inviscid equatio
are not able to describe the bifurcation of a liquid drop,
the curvature singularity provokes a breakdown of the eq
tions before breakup occurs.

f

FIG. 8. Maximum slope as a function of Reynolds number, extracted fr
the liquid bridge simulations of Fig. 7.
Brenner et al.
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As a word of caution, we reiterate that our theoretic
description was based on an equation that has not been
rived from the Navier–Stokes equations; moreover, the
mal motivation for the equations breaks down in the limit
sharp slopes. The argument that we are making is that~1! the
lubrication equations show this curvature singularity;~2! the
solutions of the lubrication equations agree quantitativ
with experiments, and therefore~3! it appears that the ful
equations must also show a curvature singularity in the
viscid limit, of the type described here. The actual struct
~e.g., time dependences! of the singularity in the full Euler
equations may be different than the structure in the lubr
tion equations.

B. After the curvature singularity

After the curvature singularity is stopped by viscosi
what is the resulting dynamics? This is a regime where
only have simulational evidence. Since the curvature sin
larity occurs at a time independent of Re, in principle
Re→`, there could be a large scaling region for anoth
scaling solution. One possible scenario is that viscosity
only important in a thin boundary layer region, where it s
the maximum slope. In the other parts of the solution, v
cosity is not important until the minimum thickness cross
the viscous length scale. Depending on how strongly the
parts of the solution affect each other, Keller–Miksis scal
could be observed.

Although the simulation above does seem to follow
t2/3 law in the maximum velocity after the curvature sing
larity, the scaling of the other quantities behaves differen
Moreover, the profiles in this regime do not collapse up
rescaling. We take this as a hint that immediately after
curvature singularity there is a transient regime in which
scaling occurs. Neither our numerical simulations nor o
experiments are able to resolve what happens after trans
settle down, so that we are not able to determine the struc
of the solution in this asymptotic regime.

We remark that Chen and Steen have recently car
out an interesting study40 of the dynamics of a membran
with surface tension surrounded by an inviscid fluid. Th
study shows a regime before rupture similar to that sho
here, where the interfacial shape is single valued and
t2/3 breaks down. However, in their example, the subsequ
dynamics is quite different than that described here: Nota
in their case, the interface overturns before pinch-off~be-
comes double valued!. After overturning, the dynamics even
tually returns to thet2/3 scaling. We believe that the differ
ence between the two studies is that in the present study
curvature singularity is regularized by viscosity, which sto
the steepening of the slope and prevents overturning. H
ever, more work on the limit of infinite Reynolds number
the full Navier–Stokes equation is necessary.

V. SHAPES AFTER RUPTURE

Immediately after rupture, the shape of the interface
the length scales of the experimental photographs@Fig. 4~b!#
looks like a sharp conical tip attached to a spherical shel
conical tip has no intrinsic length scale, and thus should
Phys. Fluids, Vol. 9, No. 6, June 1997
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coil according to thet2/3 scaling law. Measurements of how
this sharp tip relaxes after the rupture can be extracted f
both experiments and simulations, in the same manne
outlined above. There are two dynamical length scales
interest: the lengthL(t) that the tip has recoiled a timet after
the rupture, and the characteristic thicknessw(t) of the neck.
Simulations can also measure the velocityv tip of the recoil-
ing tip. Figure 9 shows plots of these quantities from bo
experiments@Fig. 9~a!# and simulations@Figs. 9~b! and 9~c!#.
We remind the reader that the rupture time used for t
figure is exactly the same time as the one used for the an
gous plots before breakup. Thus, given the rupture time
termined before breakup, the plots after breakup contain
free parameters.

Although the experimental data seems to be consis
with the dimensional scaling laws, in the simulations the
are rather severe deviations, especially very close to the
ture time. It should be noted that the deviations from t
dimensional scaling law occur when the droplet thicknes
far greater than the viscous length scale. The basic ques
is whether the deviation of the simulations from the dime
sional scaling law represents afundamentalor if it merely
reflects a breakdown of the approximations within the sim
lations.

The reason for the breakdown in the scaling laws for
simulations can be understood by examining the shape o
interface immediately at the point of rupture, before any
coiling occurs~Fig. 10!. Recall that the experimental shape
as shown in Fig. 4~b!, show a conical tip before the recoiling

The simulations can probe much closer to the break
point than the experiments. It is clear from Fig. 10~a! that the
shape at the instant of rupture in the simulations is m
complicated than a simple conical tip~though at large scale
the shape does look conical!. The region bracketed in the
figure between 0.83,z,0.91 is conical, though there ar
transitions to different shapes on both sides of this regi
Figure 10~b! shows a closeup of the region on the left-ha
side of the conical tip, nearest to the breaking point.

The closeup revealsanother conical region between
0.795, z, 0.8, and also a crossover to amore slender reg
nearz50.795. The complicated structure of the interface
the rupture point is a remnant of the dynamics befo
breakup. The crossover atz50.795 noted in Fig. 10~b! arises
from the curvature singularity before breakup, and cor
sponds roughly to the interfacial thickness (hmin'1023),
where the curvature singularity saturates~see Fig. 6!. The
crossover between the two conical regions nearz50.83 oc-
curs when the recoiling tip interacts with the capillary wav
caused by the recoiling of the first rupture at the bottom
the neck@see Fig. 4~a!#.

The argument of Keller29 based on mass and momentu
conservation of the recoiling tip~see Appendix C! shows that
the time dynamics of recoiling reflects the detailed struct
of the initial shape. If the initial shape is a power law, th
the time dependences are power laws; Given the complic
initial shape in the present situation, we expect the time
namics after breakup to be more complicated than a sim
scaling law, with crossovers corresponding to the crossov
in the initial shape.
1583Brenner et al.
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FIG. 9. ~a! Recoil length and width as a function of time measured fro
experiments. Distances are measured in units ofR. The recoil length is
shifted vertically by a factor of 10. The solid line represents the (t02t)2/3

scaling law.~b! Plot of the recoil length as a function of time from simula
tions. The solid line corresponds to the Keller–Miksis scaling la
(t02t)2/3. ~c! Plot of velocity of the recoiling tip as a function of time from
rupture in simulation.
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Indeed, the two crossovers noted in the time dep
dences of Fig. 9~b! to the crossovers in the initial shape. Th
first crossover, occurs when the recoil length is 1022, and
corresponds to the crossover noted in Fig. 10~b!. The second
crossover occurs when the recoil length is around 231021,
and corresponds to the large-scale crossover in Fig. 10~a!.
These crossovers are also apparent in the scaling for th
velocity v tip . There does exist a region on the plot of t
recoil length where the time dependence is well appro
mated by thet2/3 law. This region, betweent02t'1023 and
t02t'231022 occurs nearly at the same time that the e
periments show time dependences consistent with
Keller–Miksis laws ~Fig. 9!. The ‘‘wiggles’’ appearing in
the simulations at times larger thant02t.231022 do not
seem to exist in the experimental data@Fig. 9~a!#; this seems
to represent a quantitative discrepency between the ex
ments and the simulations. To substantiate that
‘‘wiggles’’ arise from the interaction of the recoiling nec
with capillary waves in the initial shape, we have studied
time dynamics of recoiling at the bottom of the neck@Fig.
1584 Phys. Fluids, Vol. 9, No. 6, June 1997
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3~a!#: in this case, the crossover due to the curvature sin
larity still occurs at the same characteristic thickness, wh
the crossover at large scales is completely absent, as no
illary modulations exist before the recoiling. It should al
be noted that Fig. 9~c! is completely inconsistent with the
dimensional scaling lawt21/3, even in the range where th
length is roughly consistent with the dimensional scali
law.

As mentioned in our description of the dynamics befo
breakup, a more precise test for whether the scaling hyp
esis is realized is to collapse the profiles by their charac
istic length scales. Because of the complications outlin
above we focus on only the regime where scaling occu
Figure 11~a! shows the interfacial profiles after rupture fro
the simulations, rescaled according to Eq.~6!, for several
different times after the rupture.

A similar procedure can be applied to the experimen
data, as shown in Fig. 11~b!. The data collapse reasonab
well, although only over a finite range in similarity variable
The reason for this is twofold: First, there are finite si
Brenner et al.
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effects associated with the neck having a finite length
observations being made a finite distance away from the
gularity. The second reason is the initial shape is not a p
power law, and this causes deviations.

In Appendix C we show a simulation thatdoesstart out
with a conical initial shape, and show that it is perfec
described by the Keller–Miksis scaling theory. This va
dates the argument of this section that the deviations f
the Keller–Miksis scaling law are not because of a dyna
cal instability but instead complications in the initial shap

VI. CONCLUSIONS

Experiments demonstrate that the shape of a fluid
plays a dramatic dependence on fluid viscosity~cf. Fig. 1!.
Whereas high-viscosity fluids are slender near the brea
point, water drops exhibit a sharp conical tip. In this pap
we have presented detailed comparisons between ex
ments and numerical simulations of the breaking of lo

FIG. 10. ~a! Shape of the interfacea the instant of rupture from numerica
simulations. Because the shape is not a power law, the argument of K
~see Appendix C! suggest that the time dependences will not be per
power laws.~b! Closeup of~a! of the initial shape of the interface befor
recoiling.
Phys. Fluids, Vol. 9, No. 6, June 1997
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viscosity fluid drops, in order to understand better the dy
namics at low viscosity. The simulations are of one-
dimensional evolution equations that were previously
derived by several groups24,30using asymptotic analysis from
the Navier–Stokes equations. In Appendix A we present a
alternative way of looking at the equations emphasizing
symmetries and conservations laws. The version of the equ
tions employed here uses an approximation of the mean cu
vature that captures the exact equilibrium shapes of penda
drops. Because of this, the numerical simulations and expe
ments are in quantitative agreement well beyond the initia
fission event. We present a series of two experiments an
simulations, demonstrating the excellent agreement betwe
simulations and experiments throughout the breaking pro
cess.

Detailed comparisons between the dynamics of th
simulations and the experiments uncovered several intrigu

ler
t

FIG. 11. ~a! Collapsed solutions from simulations for the recoiling fluid
neck.~b! Collapsed solutions from the experiment. Length scales are mea
sured in pixels from the photographs.
1585Brenner et al.
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ing features of the dynamics of low-viscosity fluid drops.
this study we demonstrate the presence of aconvective insta-
bility of the drop shape before breakup. The dynamics of
instability is reminiscent of shock formation in gasdynami
and occurs because regions of high fluid velocity are c
vected faster than low-velocity regions. This instability
stopped by viscous stresses; in this way viscosity sets
scalefor the steep tip in water drops. The convective ins
bility reflects that the infinite Reynolds number limit is si
gular: the convective instability forces equations w
Re5` to develop a finite time singularity well before th
drop breaks. With very small viscosity, the sharp tip form
on a very fast time scale well before rupture, though the fi
bonafide singularity occurs at rupture. An intriguing cons
quence of the formation of a sharp tip is that for fluids w
viscosity much smaller than water, so that the viscous len
scale is smaller than the molecular length scale, the con
tive instability is actually regularized by molecular effec
instead of viscous dissipation: in this case, the hydrodyna
equations break down well before the drop itself breaks.

In this study we provide a concrete example of the co
plications that can occur in describing a singularity. A
though dimensional arguments and their corresponding s
larity solutions are suggestive, in general whether they
actually realized depends on subtle dynamical issues, w
at present are not entirely understood. Instabilities of sca
solutions in the limit where dissipation approaches z
might be important in other contexts where singularities
cur in inviscid flows, such as the three-dimensional Eu
equation. An example of of a basic issue that we still do
understand is why the system chooses the similarity solu
in Eq. ~7! with b51 before breakup, corresponding to th
Keller–Miksis scaling law. In principle, any value ofb could
have occurred, and would have caused both different t
dependences and different interfacial shapes away from
breakup point. Although our study confirms that there
something special about the similarity solution suggested
dimensional analysis, we do not understand the dynam
mechanism that selects this solution. Perhaps selection
ciples, analogous to those used previously in resolving s
lar issues for traveling wave solutions41 are relevant for the
formation of singularities.

On a different level, this study provides another st
toward understanding the dynamics, leading to the break
of a fluid drop. The general picture emerging is that rupt
is described by a number of different scaling regimes; T
particular state of the drop is controlled by dimensionle
parameters formed by combining fluid parameters w
length scales characterizing the drop. Since the latter are
dependent, a drop typically passes through several diffe
scaling regimes during a single fission event. Understand
the details of each scaling regime individually, and when
various crossovers occur, yields a quantitative descriptio
the breaking dynamics.
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APPENDIX A: DERIVATION OF LUBRICATION
EQUATIONS

In this appendix, we motivate the nonlinear evolutio
equations by relying on conservation laws and symmetrie
the full equations. Our principle aim is to emphasize that
long wave equations are the simplest one-dimensional pa
differential equations that could be expected to model
motion of a droplet. The discussion is similar to the previo
work of Green,35 whose theory was applied by Shieldet al.42

The first equation that the fluid must satisfy is mass cons
vation:

~h2! t52~h2v !z , ~A1!

whereh(z,t) is the thickness of the fluid neck an axial di
tancez from the nozzle, andv(z,t) is the azimuthal compo-
nent of the velocity. As in the main text, we nondimensio
alized lengths by the nozzle radiusR, and times by
ArR3/g. Galilean invariance implies that the equation
motion is of the form

v t1vvz52kz1D, ~A2!

wherek is the curvature andD is the dissipation function. A
general form forD andp follows from the requirement tha
the total energy,

E5E dz h2v21E dz hA11hz
2,

satisfies] tE , 0. This implies thatp5dE/dh, and thatD is
of the form

D~h,v !5
1

h2
@2 f 1v1~ f 2vz!z

2~ f 3vzz!zz1~ f 4vzzz!zzz1•••#,

where thef i are positive definite functions ofv andh. The
values of thef i can be obtained to leading order bydemand-
ing that the model equations exactly reproduce the lin
growth rate of the full hydrodynamic equations. For the ca
of present interest, liquid falling into vacuum, this implie
that f 150 and f 253/Re.

Thus, the equations are

~h2! t52~h2v !z , ~A3!

v t1vvz5
3

Reh2
~h2vz!z2kz , ~A4!
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k5S 1

hA11hz
2
2

hzz

~A11hz
2!3

D , ~A5!

where Re is Reynolds number.
The most important point of this argument is that t

model equations are constructed so as to dissipate thetotal
energy of the fluid while preserving theexactdispersion re-
lation of linear disturbances, in the long-wavelength lim
This means that the model is guaranteed to predict exa
the correct equilibrium shapes of the theory, as well as
correct linear disturbances for modulations about a cylind

APPENDIX B: NUMERICAL CONSIDERATIONS

The numerical simulations utilize a second-order c
tered finite difference scheme of the partial differential eq
tions~1!–~3!, which has been previously described in seve
places. The goal of this appendix is to mention the vario
pitfalls and tricks that were necessary to develop for
simulations reported in this paper.

There were two different numerical challenges: the fi
involved issues associated with breaking the drop and si
lating the subsequent dynamics~Figs. 2 and 3!. A priori it
was unclear that these simulations would work because
the concerns about overturning expressed in the main
and demonstrated in completely inviscid simulations. It w
also necessary to develop algorithms to deal with the si
lation of many drops simultaneously.

The second numerical challenge was to resolve the v
ous singularities described in this paper. We emphasize
in order to achieve enough numerical data to make accu
assertions about singularity mechanisms, it is necessar
haveat leastseveral decades of power law behavior. Witho
several decades of scaling, it is possible to be fooled in
possible ways: first convergence to similarity solutions d
not occur exponentially in time, but instead exponentially
2 log(t02t). This means it typically takes a few decades
scaling for the transients to die out and reveal the true sca
behavior. Without several decades of scaling measurem
of exponents will be inaccurate; the latter can be s
consistently tested by determining if the solution conver
to the spatial structure of the similarity solution. Secon
recent work23 has demonstrated that there are concrete ph
cal examples of singularities which can destabilize at a
trarily small time distances from singularities. Although th
can never be ruled out completely in a purely numeri
study, a sufficiently large number of decades of scal
makes this outcome less probable.

Before proceeding into specific issues that arise w
each of these problems, we first summarize some of the
eral procedures. The time step control was adjusted so
only one Newton iteration was required at each time st
The time step is adjusted by using a two step method:
each time step, we first step byDt, and then redo the calcu
lation with two time steps of sizeDt/2. The relative error in
the solution is then computed. Typically the time step
controlled by demanding that the relative error is less tha
fixed threshold~e.g., 1%!.
Phys. Fluids, Vol. 9, No. 6, June 1997
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High resolution is achieved by using a dynamically a
justing mesh. At low viscosities there are two different s
gularities: one associated with the minimum height going
zero, the other with diverging gradients. Thus we monito
both the minimum height and the gradient of the mass fl
h2v. If either changed by a specified percentage, new m
points were added to the grid. The mesh is organized
defining an underlying macrogrid, and adjusting the num
of microgrid elements into which each macrogrid is divide
After introducing new grid points, the solution is reinterp
lated onto the new grid. Typically linear interpolation or c
bic splines are used.

A subtlety of this procedure is that at places where
mesh spacing changes by a factor of 2, we observed an
stability of the discretized equations. This may be connec
with the fact that our spatial discretization was only fir
order correct at those places~because of thehzzz term at the
mesh points!. This ‘‘numerical noise’’ does not have a larg
effect on highly viscous fluids, though it is capable of ini
ating instabilities in viscous similarity solutions. However,
Re→` these effects are quite substantial and make accu
numerical simulations very difficult. In order to perform th
simulations at the highest Reynolds numbers, it was ne
sary to smooththe mesh. This was done by diffusing th
mesh points until the ratio of neighboring mesh spacin
differed by less than a percent.

To break a drop, we used the following procedure.
threshold thicknesshthreswas defined~typically 10

25!. When
the minimum thickness of the fluid neck passes belowhthres
the drop is manually broken into two pieces, by attach
small spherical masses of fluid to each end. The radius of
spherical masses was determined by demanding that it
constant pressure. The interpolation of the spherical m
onto the fluid was done so thathzz is continuous. Extensive
tests revealed that the macroscopic dynamics was insens
to both the precise spatial location of the breaking point
well ashthres.

Once the drop was broken, each of the drops remain
were evolved by the code. The thicknesshi , the velocity
v i , and the positionszi of each point were stored and th
equations of motion applied at each time step. Regridd
proved to be crucial for following through many ruptures,
order to always have enough mesh points.

APPENDIX C: IDEALIZED INITIAL CONDITIONS:
CONES AND CUSPS

We have seen that simple theories based on a resca
of the pinch region are invalidated by the appearance of
other singularity, which introduces a second length scale
directly associated with the pinch. This inviscid singularity
convective in character, and thus arises through the mass
across the pinch region. After breakup, this mechanism
absent, because the flow across the pinch region is in
rupted. Hence it seems as if self-similar solutions sho
exist after breakup. However, it turns out that the solut
after breakup depends heavily on the shape of the inter
h0(z)5h(z,0) at breakup, which in turn is a reflection of th
1587Brenner et al.
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dynamicsbeforebreakup. If additional length scales play
role before breakup, they are thus also introduced into t
dynamics after breakup.

This is immediately evident from the arguments ad
vanced by Keller29 and worked out in more detail by Keller,
King, and Ting,43 using a matched asymptotic expansion
The first assumption is that velocities at breakup are sm
compared with the velocities produced by the violent reco
so h0(z) is the only input needed. The second assumptio
which was validated by the matching in Ref. 43, is that th
fluid contained in the part of the neck that has already r
coiled is sucked up into a spherical head. Intuitively, this
because there is no flux across the head, so it is acceler
uniformly by the recoil, and assumes a static shape. To a fi
approximation, one neglects the crossover region betwe
the bulbous head and the static part of the neck, which h
not yet recoiled. Thus, apart fromh0(z), the geometry is
completely specified by the recoil lengthL(t8) ~which de-
fines the head’s center, witht85t2t0 the dimensionless time
from the initial cone! and the width of the headw(t8). Fig-
ure 12 shows the time dependences from a numerical sim
lation of a recoiling cone. The initial shape is conical with
small spherical cap of sizeh0 , so thatL(0) andw(0) are of
order h0 . The time dependences agree quite well with th
Keller–Miksis scaling law, except for a small transient pe
riod of orderAh03r/g ~in dimensional units!.

Mass conservation gives

4p

3
w32pE

0

L

h0
2~z!dz50, ~C1!

and from conservation of energy we have

2p

3
w3Lt

21H 4pw222pE
0

L

h0A11h0z
2 dzJ 50. ~C2!

FIG. 12. Time dependences for the recoiling lengthL as a function of the
time t2t0 from the initial cone. The dots represent numerical data and t
solid line is the Keller–Miksis scaling law. The crossover atL'1024 cor-
responds to the small-scale cutoff in the initial condition.
1588 Phys. Fluids, Vol. 9, No. 6, June 1997
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To exemplify the dependence of the solution onh0 , we as-
sume that

h0~z!5bzb, b>1, ~C3!

as was done by Ting and Keller.39 We hasten to add that
self-similar solution withbÞ1 was never observed exper
mentally or in simulations. The caseb51 was observed
over a limited scaling range, whose size does not expand
decreasing viscosity. To focus on scaling properties, we
sume that

w~ t8!;t8a1, L~ t8!;t8a2. ~C4!

From ~C1! one has

w;L ~2b11!/3,

and combining that with~C2! one obtains

a15
2

3 S 2b11

b12 D , a25
2

b12
. ~C5!

Two crucial observations are to be made here: First,
solution explicitly depends onb, i.e., on the initial condition
h0 . If h0 does not scale like a power law, as it is observed
simulations, neither willw or L. Second, only ifb51,
which corresponds to Keller–Miksis scaling, will the sol
tion be describable by a single rescalingj5z/L of the ab-
scissa. Namely, forb51 w andL both scale liket82/3, as to
be expected from Keller–Miksis scaling, while forb.1 the
two will scale differently. The time dependence of the ne
lengthL agrees with the scaling law proposed by Ting a
Keller,39 which is based on the scaling ansatz~8!, ~9!. How-
ever, the width of the tipw is in disagreement with this
scaling forb.1. This is not surprising because the under
ing assumption is that the slopeh8 is negligible, which evi-
dently is not the case near the tip. Therefore, the solu
must assume a more complicated structure, the neck and
tip region being governed by different scaling laws.

Finally, we discuss the caseb51 in a little more detail,
since it can be understood completely within the framew
of our simplified model~1!, ~2!. It also gives the closes
approximation to existing experimental data. Namely, in t
case~6!, ~7! is an exact solution of the inviscid equations,
H andV obey the similarity equations

2

3
H2

2j

3
H852VH82

1

2
V8H,

~C6!

2
V

3
2
2j

3
V852VV81S 1

HA11H82
2

H9

~A11H82!3
D 8
.

Here the primes denote a derivative with respect to the s
larity variablej. These equations have to be solved subjec
two sets of boundary conditions. At infinityH andV should
behave like

H5aj, V5bj21/2, ~C7!

and at the tip, located atj5j0 , one has

H~j0!50, H8~j0!5`, V~j0!5
2j0
3

. ~C8!
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Two free parameters, which are the tip position and the
locity gradientV8(j0) at the tip have to be adjusted to ma
the solutions match the free constantsa andb in ~C7!. This
procedure is analogous to the one employed in Ref. 26
viscoussolutions.

In Fig. 13 a solution of~C6! is compared with the resul
of a simulation, starting from a perfect coneh0(z)5az and
zero initial velocity. The valuea50.13 was chosen close t
the opening angles observed in Fig. 3, while in experime
unfortunatelyb is not available. Among other things, th
excellent agreement between simulation and the predic
of similarity theory shows that the small amount of viscos
present in the simulation does not appreciably affect the
lution on scalesL@ l n . Thus the viscous terms do not repr
sent a singular perturbation, as was the case before brea

The similarity solutions also allow for an analytical u
derstanding of the capillary waves excited on the surfa
which are the most characteristic feature of inviscid so
tions. Namely, repeating the perturbative analysis of T
and Keller39 for the model~1!, ~2!, we find the amplitude and
wavelength of capillary waves on the receding cone a
function of the parametersa and b. The wavelength just
depends ona, reflecting the weak dependence of the solut
on the initial velocity field:

l52pS 98 a

~A11a2!3
D 1/2j21/2. ~C9!

Thus the wavelength gets shorter farther away from the
The analytical formulas are confirmed beautifully by t
simulation, but are difficult to observe experimentally, b
cause of the shortness of the scaling range.

The same observation was made by Schulkes,37 who
simulated inviscid, irrotational flow. While solutions startin
from initial cones collapse well under Keller–Miksis scalin
no quantitative collapse is found for initial shapes that ca
from his computations.

FIG. 13. Collapsed numerical data for the recoiling cones. Each of
symbols refers to numerical data, corresponding to the times 1026 ~circles!,
1025 ~squares!, 1024 ~diamonds!, 1023 ~triangles!, 1021 ~side triangles!,
and 5021 (X) from the initial conical shape. The solid line is a similari
solution of the inviscid equations.
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