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Drop dynamics after impact on a solid wall: Theory and simulations
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We study the impact of a fluid drop onto a planar solid surface at high speed so that at impact,
kinetic energy dominates over surface energy and inertia dominates over viscous effects. As the drop
spreads, it deforms into a thin film, whose thickness is limited by the growth of a viscous boundary
layer near the solid wall. Owing to surface tension, the edge of the film retracts relative to the flow
in the film and fluid collects into a toroidal rim bounding the film. Using mass and momentum
conservation, we construct a model for the radius of the deposit as a function of time. At each stage,
we perform detailed comparisons between theory and numerical simulations of the Navier—Stokes
equation. © 2010 American Institute of Physics. [doi:10.1063/1.3432498]

I. INTRODUCTION

Understanding the impact of fluid drops on a solid wall
is relevant to a large number of industrial and environmental
processes. Examples include printing, cooling of surfaces by
sprays, deposition of pesticides or nutrients on plant leaves,
or natural rain. Of particular interest is the question of
whether the drop will be deposited on the solid surface or
whether it will rebound eventually. The latter is particularly
likely on water-repellent surfaces, such as plant leaves.' To
address this question, an understanding of the entire impact
process is necessary, as well as to calculate the remaining
kinetic energy available for rebound. A large number of the-
oretical and applied papers are testament to the scientific
interest of the problem (see, for example, Refs. 1-10).

Upon impact, the drop begins to spread on the solid
surface and the kinetic energy of the drop is converted into
surface energy. At the same time, fluid viscosity comes into
play, in particular near the solid surface, where we assume a
no-slip boundary condition. In this paper, we will consider
the case that the fluid is repelled perfectly by the solid, as it
is true to a very good approximation for water on plant
leaves. This means that the contact angle between the drop
and the solid is 180° and wetting properties do not enter the
description.“

Thus assuming a spherical drop upon impact, there re-
main three dimensionless parameters which determine the
dynamics
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which are called the Weber number, Reynolds number, and
Froude number, respectively. Here, R is the drop radius
(D=2R is the diameter), p is the fluid density, v is the kine-
matic viscosity, and g is the acceleration of gravity. For high
We, the surrounding gas atmosphere provokes instability of
the rim of the spreading drop, which renders the motion un-
steady and breaks the cylindrical symmetry. This instability
can be avoided by reducing the ambient gas pressure by
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about a factor of 5 (Ref. 12) below the atmospheric pressure.
Additionally, a small air bubble can be entrapped below the
drop at impact, owing to the air layer below the drop.lS_]5
However, in the following, we will ignore the effect of rim
instabilities and the influence of the surrounding gas.

Our focus in this paper is on the regime of large We, Re,
and Fr numbers. For example, for rain, the size and speed
varies between R=0.5 mm and U=4.5 m/s for small drops
and R=2 mm and U=9 m/s for large drops.16 Thus
(Re,We)=(4500,280) and (36 000,4500), respectively,
while Fr=2025 in both cases. The Froude number measures
the relative importance of kinetic and gravitational energy on
the scale of the drop size. Thus, as long as the drop remains
on the plate, gravity can be neglected, as we will do through-
out this paper. However, similar arguments do not apply to
the Reynolds and Weber numbers. The Weber number mea-
sures the relative importance of kinetic and surface energy of
the drop. A large We number means that the drop spreads to
a maximum radius much greater than its initial value, thus
acquiring a large surface area. A large Reynolds number, on
the other hand, means that viscous effects are confined to a
thin boundary layer close to the solid surface.

Previous modeling efforts largely ignore the small-scale
structure that results from the fact that both We and Re are
large. For example, in Refs. 2 and 7, the spreading drop after
impact is modeled as a pancake of constant thickness, as
opposed to a thin film actually observed in the high-speed
regime.5 In addition, the boundary layer structure is ignored
as well, except for a recent paper17 in which some of the
solutions we used were employed independently. Both ingre-
dients are necessary to model high-speed impacts correctly.

In this paper, numerical simulations will be used both as
a guide to the proper modeling of impact and to compare to
theoretical predictions quantitatively. We simulate the
Navier—Stokes equation for the liquid with free surface
boundary conditions at the interface (so that no outer fluid is
considered) using a method described in detail in Ref. 18. To
assure an accurate description of the interface, we use a
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FIG. 1. Snapshots of a drop impacting on a solid surface obtained numerically using the markers method for Re=400 and We=800. Times of the different
snapshot correspond to ¢t/ 7=0, 0.22, 0.43, 1.3, 2.5, 5.7, 15.8, 21.2, and 60 from left to right and top to bottom, respectively.

marker method which imposes a hydrophobic (180° contact
angle) boundary condition at the contact line between the
drop and the plate. This also has the advantage that the usual
viscous singularity at a moving contact line is avoided," so
the contact angle condition can be enforced on the scale of
the mesh. The drop dynamics will be described in cylindrical
coordinates r and z, the z-axis being defined by the symmetry
axis of the problem, with z=0 at the wall. The drop is as-
sumed to remain spherical before it touches the wall at r=0.
In the simulations, we have been able to vary the Reynolds
number from 400 to 8000 and the Weber number from 400 to
16 000, while still being able to resolve all the relevant flow
features.

A typical series of snapshots of the drop impact dynam-
ics is shown in Fig. 1 for Re=400 and We=800. We report
times in units of the typical impact time 7=R/U and lengths
are given in units of R. In the first line of Fig. 1, the first
stage of impact is shown, during which the drop is strongly
deformed near the bottom, while its upper part retains its
original shape. In Figs. 1(d) and 1(e), the drop starts to flat-
ten and deforms into a film much thinner than R. In Fig. 1(f),
the film has reached its final and remarkably uniform thick-
ness. At the same time, the end has begun to retract and fluid

collects into a rim. Subsequently, retraction continues and
fluid collects into the rim which thickens, while the film
thickness remains the same, as seen in frame (g). In Fig.
1(h), the radius of the film has shrunk to zero and in the last
frame [Fig. 1(i)], the drop is seen to have left the substrate
and to hit the upper boundary of the computational domain.
The time evolutions of two key quantities derived from the
impact dynamics of Fig. 1 are shown in Fig. 2. The contact
radius of the drop on the solid substrate illustrates the
spreading and subsequent retraction and the height at the
center of the drop shows the formation of a thin film, whose
thickness remains constant during the retraction phase.

The analytical description of the first stage of impact is
particularly difficult, as the drop undergoes a strong defor-
mation and the flow is redirected from a vertical to a hori-
zontal flow direction. The redirection of the flow is driven by
very strong pressure gradients, as illustrated in Fig. 3. In
agreement with classical impact theory,20 the high pressure
region occupies a volume with the same radius as the contact
area of the drop with the solid. Using the horizontal momen-
tum balance to such open domain and applying the pressure
impact approach,21 we obtain that the amplitude of pressure
field P(r) in this self-similar region behaves like
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FIG. 2. Time evolution of (a) the radius of the contact area between the drop
and the substrate and of (b) the height of the interface on the symmetry axis.
The radius and the height are rescaled by the drop radius R and time is
shown in units of 7.

pU? t’

similar to the scaling obtained for the drop impact on a thin
liquid film.* Thus, after time 7=R/U, the high pressure re-
gion has spread over the whole drop and the stopping of the
original vertical flow is complete. This means that shortly
after this time, the maximum pressure in the flow decreases
very quickly, as shown in Fig. 4, and the flow in the drop is
no longer pressure-driven. Instead, it is described to a good
approximation by a simple hyperbolic flow with a rapidly
decaying pressure, as suggested in Ref. 23 and described in
Sec. II below. This observation permits a universal descrip-
tion of drop impact at high speeds.

In this paper, we will concentrate on times 7> 7, during
which the drop spreads dynamically and subsequently re-
tracts. We use the abovementioned hyperbolic flow solution
as an outer solution of the Euler equation with a free surface,
and show that it leads to a similarity solution of drop dynam-
ics; this will be done in Sec. III. There, we will describe the
growth of a viscous boundary layer and compare the result-
ing velocity profile to numerical simulations.

Phys. Fluids 22, 062101 (2010)

The asymptotic film thickness in the interior of the drop
is reached when the free surface meets the viscous boundary
layer. Section IV describes the dynamics of spreading and
retraction by considering the coupled dynamics of the film
and its rim. The rim grows in mass at the expense of the film
as the edge of the film retracts relative to the flow speed in
the film. The dynamics R(z) of the total drop radius is once
more compared to our numerical simulations, using a mini-
mal set of adjustable parameters. Finally in Sec. V, we com-
pare to the results of earlier theories.

Il. LIQUID SHEET EXPANSION

We intend to describe the intermediate and long time
dynamics of drop impacts. There, the pressure becomes in-
significant as a driving force for the flow. This suggests the
following hyperbolic flow pattern as the inviscid base flow,
following the first interaction period:

2z
-

;
U= t s Uz - (2)
We note the obvious fact that time can be replaced by #+1,
here and in all of the following expressions. The physical
significance of 7, is the time it takes for the pressure to decay
and the hyperbolic flow to establish itself. According to our
previous arguments, #, is in the order of 7.

The flow (2) is an exact solution of the Euler equations
with the pressure distribution p(z,r,t)/ p=—3z%/1>. The pres-
sure is thus decaying quickly in time, in agreement with the
observation that the flow at intermediate times is no longer
pressure-driven. The equation of motion for the convection
of the free surface h(r,t) by Eq. (2) is

oh
dh+v,—=v,. (3)
or
This equation has the similarity solution
1 [(r
h(r,t)=t—2H<;>, 4)

valid for any function H. Note that Eq. (4) permits to imple-
ment any initial condition for the shape of the drop at time
t=0. It is an exact solution to the inviscid flow problem apart
from the pressure boundary condition, which requires
p=-3h%*(z,1)/1*. As h goes down, this pressure quickly be-
comes insignificant and the boundary condition may be taken
as one of vanishing pressure. This is consistent with the fact
that at intermediate times, inertia dominates over surface ten-
sion, so the physical boundary condition is once more one of
constant pressure.

To put the similarity solution (4) to the test, we compare
it to our numerical simulations. In Fig. 5 (left), we plot a
series of drop profiles for different times in the intermediate
regime of drop spreading. We consider two very different
Weber numbers We=800 and We=16 000 for the Reynolds
number Re=800. The profiles are first made dimensionless
by rescaling with the length V'3, where V is the drop vol-
ume. Calling the resulting maximum dimensionless height €,
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we divide the height by € and the radius by \/E . The result is
equivalent to dividing the physical height by its maximum
humax and the physical radius by (V/hy,,) "%, As seen in Fig. 5
(right), the collapse to a self-similar profile is quite satisfac-
tory over a period of very significant drop deformation. In
both examples, the rescaled profiles for larger times come
close to a profile of universal shape, which is well fitted by

H(x)=1/(1+Cx*°, (5)

with the constant C=0.625. As we vary the Weber number
from 800 to 16 000, we see no difference in the self-similar
profile, while there is a mild dependence of C on Reynolds
number. With this adjustment, Reynolds numbers from 200
to 8000 can be described equally well. This confirms our
assertion that the initial (pressure-driven) impact dynamics is
forgotten after a time 7 and the subsequent evolution is de-
scribed by the flow (2).

Phys. Fluids 22, 062101 (2010)

FIG. 3. (Color online) The pressure
field corresponding to the same condi-
tions in Fig. 1 for (a) t/7=0.08, (b)
0.12, (c) 0.2, and (d) 0.29. The shade
scale goes from light to dark for in-
creasing values of the pressure.
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FIG. 4. (Color online) Pressure at the center of impact as function of ¢/ 7 for
different Reynolds and Weber numbers ranging from 400 to 8000 and from
160 to 80 000, respectively (Py=pU?). The behavior predicted by the small
time impact theory is the dashed line. For #> 7, notice that the pressure
drops dramatically.
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FIG. 5. Top and bottom left: series of drop profiles for different times. Top left for Re=400 and We=400 for ¢ varying from 0.8 to 2.7. Bottom left:
Re=400 and We=8000 for ¢ varying from 0.9 to 2.3. Right figures show the same profiles rescaled by the maximum height for / and by its square root for
r, according to Eq. (4). The axis coordinates in the figures correspond to the numerical mesh. The dashed line shows a fit of the converged rescaled profiles

H,=1/(1+Cx%®, with C=0.625 in dimensionless units.

lll. BOUNDARY LAYER

In the Sec. II, we described an inviscid outer solution
(2), which for large Reynolds numbers will develop a thin
boundary layer near the solid surface. If the boundary layer
is thinner than the drop thickness, we can neglect the effect
of the free surface. Remarkably, solutions of this time-
dependent boundary layer equations have been studied more
than 50 years ago and can be found in Ref. 24; we repeat the
axisymmetric version of the analysis here. Moreover, similar
calculations have been proposed recently in the same context
of drop irnpacts.17

The r component of the axisymmetric Navier—Stokes
equation reads”

(9,0, + vrarvr + vzazvr
=—d,plp+ (v, + a§U,+ a,0,/r=v,Ir?) (6)

and

v, + v +v,/r=0 (7)

is the incompressibility condition. According to the boundary
layer theory of Prandil,”® a typical length scale in the
z-direction (normal to the solid surface) is smaller by a factor
of 1/ V’E than a corresponding scale in the r-direction. Ac-
cording to Eq. (7), on the other hand, v,/v,=0(JRe). As a
result, all terms on the left hand side of Eq. (6) are of the
same order, but of the viscous terms, only the one with the
highest number of z-derivatives survives.
Thus the boundary layer equation becomes

v, + 0,00, +0.0.0,=—3d,plp+ v&fv,. (8)

As usual, the pressure distribution is that of the inviscid
problem, which does not have any radial gradients, so it
drops out from the equation. To satisfy incompressibility, it is
most convenient to look for the stream function ¢
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FIG. 6. (Color online) The similarity profile. The dashed line is f'(&)=-1
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In the inviscid case, =-r’z/t. Moreover, the typical length
scale for diffusion of vorticity is 6=\ vt, which suggests the
ansatz

2
p= \,rvr_r (i_) (10)
vt

For f(¢)=-&, the inviscid result is recovered. Inserting Eq.
(10) into the boundary layer Eq. (8), we find

[ a2+ =2ff" == f". (11)
The boundary conditions are
fl(®)=-1, f(0)=0, f(0)=0. (12)

The numerical solution of Eq. (11), subject to Eq. (12), is
shown in Fig. 6. We are not able to solve the equation ex-
actly but report an empirical function which matches the true
solution closely.

We now compare this boundary layer solution with our
numerical simulations of the impacting drop. The z compo-
nent of the velocity field is given in the boundary layer
theory by

. /Lf{;} (13)
b= t+1y | Nu(t+1p) '

so that its derivative becomes

b, = ——pr| ==
v, = .
Tttty | Ve to)

Since the minimum of f’ is —1 from the asymptotic
matching, we can write for any time

Phys. Fluids 22, 062101 (2010)

, Z
azvz_(_M)f |:V/—2V(—M):|’ (14)

where M is the minimum of J,v,. Therefore, rescaling the
numerical velocity derivative profiles by —M and the vertical
coordinate z by \2v(—M), all profiles should collapse onto
the master curve f’. This is true for any time and or any
value of the parameters Re, We.

Figure 7 (left) shows the numerical profiles d,v, for two
different sets of parameter values at different times. On the
right, the profiles which have been rescaled according to Eq.
(14) are compared to the theoretical boundary layer profile.
We find good collapse as well as good agreement with the
predicted similarity profile f'(&). We have also checked the
collapse for Reynolds numbers between 200 and 8000 and
Weber numbers between 400 and 16 000, and found the re-
sults comparable to those shown in the two representative
examples of Fig. 7.

Note that we have assumed the boundary layer to remain
laminar, which we believe to be realistic. Namely, according
to Ref. 27, p. 95, the critical Reynolds number Res based on
the boundary layer thickness is typically 400. On account of
the smallness of &, Res is much smaller than Re, and well
below the critical value. We will give a more quantitative
estimate below.

IV. RIM DYNAMICS

We now put all the information gathered so far together
to develop a coupled system of equations modeling the rim
and film dynamics (see the sketch of the model in Fig. 8).
Our approach is similar to the classical Taylor and Culick
method to describe receding liquid sheets.”™*’ It has already
been used in the context of drop impact but without taking
into account the viscous layer explicitly.9

We assume that the velocity field in the film is Eq. (2),
but with a shift in the z-direction to account for the viscous
boundary layer thickness #,(z)

r 2fz-n)]
t+ty t+1

}@[z - h(1)].

(15)

U(V,Z,l‘) = (u,,uz) = {

Here, O(-) is the Heaviside function. We thus suppose that
most of the fluid is at rest inside the boundary layer. From
the profile of f shown in Fig. 6, we infer that the viscous
layer is of order unity in boundary der coordinates, and
thus we will use the estimate /,;(r) = \vt. When this boundary
layer reaches the height of the film, the film ceases to thin, so
we define an effective thickness below which there is no
more motion

h,,,(t) = min[A,(2),h(1)]. (16)

Using this idea, one can derive an estimate for the
asymptotic film thickness A at which the drop motion stops
in the inner region of the drop. Namely, from the scaling of
the inviscid solution (4), one derives the estimate
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FIG. 7. (Color online) Numerical profiles of the derivative of vertical velocity d.v_ on the symmetry axis for Re=400, We=800 (top figures) and Re=800,
We=4000 (bottom figure) at different dimensionless times 7/ 7 ranging from 0.2 to 3 in the first case and from 2 to 8 in the second case. The top and bottom
left figures show the numerical profiles, while the top and bottom right figures show the same profile rescaled according to formula (14). The thick line in the
right figures indicate the approximated theoretical boundary layer f'(£)=—1+exp{—¢-&}.

3

R
h(t) = W (17)
At some critical time ty, the drop thickness will have reached
the boundary layer thickness h(t_ﬂ:\r%. The value of A at
this time gives the film thickness

R
hy= @ , (18)
which becomes very thin for large Re, as expected. If we
base the estimate of the boundary layer Reynolds number
Re; on hy as an upper limit, we obtain Res;~Re*. This is
about 200 even for the extremely high Reynolds number of
8000, still well below the critical value of 400.”

The rim dynamics is obtained by writing the mass and
momentum balance for the rim located at R(¢) and moving at
speed U(r). We use the following simplified description: a
layer of thickness 4,,(¢) inside the film (near the wall) is at
rest. The remainder A(t)—h,,(t) of the film moves with speed

Ur=u,(R(t),h(1),?) in the radial direction at the rim position.
With these simple ingredients, volume conservation becomes
dv
= = 2mRO{A() = (01U, = RO U@}, (19)

where V(7) is the volume of the rim. Momentum conserva-
tion can be written as

V()L = 27RO{H0) - by DTV - VT

+ hm(l) U(t)z - 2’)’/[)}

Here, the first and second terms on the right come from the
acceleration of the fluid inside the film to the speed of the
rim, for the upper layer and the viscous layer, respectively.
The third term comes from the pull of the film on the rim,
exerted by surface tension. This is, of course, the term re-
sponsible for retraction. In the case of a 180° contact angle to
be considered here, the force per unit length is 2. In prin-
ciple, one can generalize to a finite contact angle, if one

(20)
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FIG. 8. A sketch of a drop after impact at high speed, so that both Re and
We are large. The film thickness is A(7), the radius of the film is R(z), the
volume of the rim is V(z), and the total drop radius is R(7).

replaces the factor of 2 by 1-cos(6,,), where 6,, is the ap-
parent contact angle.11 Finally, the kinematic conditions for
the rim position and the film height follow as

dR dh

P Ul(r), 5 =u[0,h(1),t]. (21)

We now compare the model Egs. (19)—(21) to our nu-
merical simulations. Initial conditions are estimated at t=7
using simple geometrical arguments. The comparisons are
based on the full drop radius R, which we consider to be the
sum of R(7) and the rim diameter 2R, (1)

R,(t) = R(t) + 2R (1). (22)

Our numerical simulations show that up to = 7, and at suf-
ficiently high impact speeds, R, depends neither on We nor
on Re. At time =7, we thus consider the drop to be a pan-
cake of height 4(7)=R/2 and of radius Rv’%, as demanded
by volume conservation. We estimate the volume V(7) of the
rim as the edge of this pancake, with the thickness being half
of the height

T 3
o (1)

Further on, the rim radius R, is related to the rim volume by
considering the rim a torus

V(1) = 27°R(0)R%(1). (24)

Finally, three parameters still need to be specified to
compare the output of the model to the numerical simula-
tions: the time f, appearing in the inviscid velocity field Eq.
(15) and two parameters determining the effective boundary
layer thickness 4,

(1) = aNv(t+ ). (25)

Here, #, indicates the time delay between the impacting time
and the growth of the boundary layer. The prefactor « in Eq.
(25) expresses the lack of mass flux in the film due to the
boundary layer. We adjust these three parameters only once,
for a particular pair of (Re,We). The same parameters
will then be used to predict the time dependence of R(z)
for a wide range of other values. The three dimensionless
parameters ty/ 7, t;/ 7, and « have been determined as a best
fit to R, for the parameter values Re=800 and We=800, as
shown in Fig. 9; we find

Phys. Fluids 22, 062101 (2010)
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FIG. 9. (Color online) The total drop radius R(¢) as function of time of an
impacting drop with Re=We=800. The line is the numerical simulation and
the dashed line shows the model output. The free parameters [Eq. (26)] have
been fitted to obtain the best possible fit of the experiment.

=09, /=035, #/7=0.2. (26)

In particular, @ can be compared to our boundary layer
analysis (7), where one can estimate « as

@y =j [1+f(§]dE=0.55. (27)
0

However, in view of the simplifying assumptions of our
model, Eq. (27) cannot be expected to provide a perfect de-
scription of the effective film thickness. Instead, we have
used « as an adjustable parameter and found a=0.9, which is
reasonably close to the theoretical value.

A first observation is that the model predicts the rim size
and its mass to grow only during the retracting regime of the
drop, as shown in Fig. 10. This implies that simplified mod-
els, which describe the drop as a pancake of uniform thick-
ness, capture the essential ingredients of the drop dynamics
during expansion. During retraction, on the other hand, such
a simple description is no longer valid, as the film in the
center of the drop becomes very thin. As a result, most of the
mass is eventually contained in the rim [see Fig. 10 (right)].
Now keeping the parameters in Eq. (26) fixed, the model
shows good agreement with simulations as shown in Fig. 11
for Weber and Reynolds numbers varying from 400 to
16 000 and from 800 to 8000. Given the simplicity of the
model, this demonstrates remarkably good agreement with
the full numerical simulations of the drop impact; in particu-
lar, the typical time scale of the evolution is well captured by
the model over a wide range of parameters.

V. DISCUSSION

As we demonstrated above, our model gives a quantita-
tive description of the drop dynamics over the entire period
of expansion and retraction and for a very wide range of
parameter values. We now use this model to extract the uni-
versal (scaling) behavior of the dynamics of drop impact and
compare it to direct numerical simulations where available.
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FIG. 10. (Color online) (a) The rim radius [R(f)—R(¢)]/R (dashed line) and
the spreading drop radius R(#)/R (solid line) as function of dimensionless
time ¢/ 7. (b) The mass (normalized by the total mass M,=4p7R?/3) in the
rim (solid line) and the one in the film (dotted line) are drawn as functions
of time. Both figures show that the rim grows only during the retraction
phase of the drop.

In fact, a major advantage of our simplified model descrip-
tion is that it permits to describe parameter regimes in
(Re,We) space not accessible by numerical simulation.
Namely, if the impact speed becomes too high, certain flow
features can no longer be resolved. We will focus on three
characteristic quantities of the impact, namely, the minimal
film thickness /i, reached during the impact, the maximum
spreading radius R,, which we define as the maximum of R;
over time, and the retraction dynamics.

A. Minimal film thickness

In Fig. 12 we show that the minimal film thickness does
obey the predicted law (18). Good agreement is also exhib-
ited with the direct numerical simulation cases available. The
agreement is significantly better than with the alternative
scaling law fi,o Re "2, discussed elsewhere by two of us.
Such latter scaling arises if one neglects the effect of the
initial hyperbolic flow (2) and, in that case, the film thickness
scales simply like the thickness of a viscous boundary layer.
In the discussion in Ref. 30, the variation in the Reynolds
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number was not large enough to exclude the Re™"? against
the Re™?°. The use of our model therefore allows us to dis-
criminate unambiguously between the two theories.

B. Maximal spreading radius

We now turn to the maximum spreading radius R,,, for
which numerous theoretical models have been proposed. For
large Re and We numbers, two regimes may be assumed: one
where viscosity may be neglected so that surface tension
selects R,,, the other for which viscous dissipation dominates
surface tension, and the maximal radius R,, appears as a
balance between inertia and viscosity. As we will see below,
the crossover between the two regimes depends on the inter-
play between viscous and capillary effects, so that the depen-
dence on Re and We can be gathered into a single scaling
relation. In the viscous regime, most of the initial kinetic
energy will be lost to viscous dissipation. In that case, one
obtains for the maximum spreading radius”'

R
;’” ~ C,Re!s, (28)

where C, is a prefactor of order 1. In an analytical model
where the drop dynamics is described as an expanding pan-
cake, it can be calculated exactly:31 C,=1.113.

When viscosity can be neglected (apart from the bound-
ary layer that we have taken into account in our description),
the maximum radius is determined by a balance between
inertia and surface tension. Two different scaling laws have
been proposed for this regime in the Re — o limit. The first is
obtained by calculating the radius for which the initial ki-
netic energy is converted completely into surface energy,
giving in the large We regime32

1/2

Refinements of this theory account for corrections due
to viscous dissipation9 or contact angle dynamics.33 On
the other hand, an alternative scenario has been suggested
recently7 for the same regime. The drop is modeled as a
pancake flattened by an effective gravity. The thick-
ness is thus determined by a capillary length, the usual
expression being replaced by an “impact capillary length”
A=\ yR/(pU?). Using volume conservation, this gives

R 8 1/4
-~ (—We) . (30)
R 9

The two regimes, viscous and capillary dominated, can
be condensed into two scaling relations depending on the
two different capillary models (29) and (30). If the kinetic
energy transfer into capillary energy is valid [cf. Eq. (29)]
the spreading radius can be written as

R
?m « Re'*f.(WeRe™?) (31)

and the relations (28) and (29) impose that the function f,
satisfies
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FIG. 11. (Color online) The radius R,(¢)/R as function of time ¢/ 7, for a variety of impact parameters (Re,We) (a) (800,400), (b) (800,1600), (c) (800,4000),
(d) (800,16000), (e) (400,800), and (f) (8000,800). The continuous line shows the numerical simulation and the dashed lines the results of the simplified

model.

limxaoc fc(x) = Cv and lim)HO fc(x) ~ \/g

On the other hand, for the effective gravity theory (30), the

spreading radius can be condensed into

R, 1/5 —4/5
?OCRe f,(WeRe™>).

(32)

Now the scaling function f, needs to satisfy the following
limits:
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FIG. 12. The minimum radius &,/ R of the film as a function of the Reynolds
number obtained using the model (circles) for Weber varying between 100
and 4000 and compared to numerical simulations of the full equations
(square). The predicted law h;~ R/Re*? is the dashed line, while the Re™"/
law is the dotted line for comparison.

lim, ... f,(x)=C, and lim,_q f.(x) ~ (gx)m.

These two relations have the same behavior in the vis-
cous regime, while they differ clearly in the inviscid limit.
Again, the simplified model developed here can help to dis-
criminate between the two models (29) and (30). Indeed, Fig.
13 compares the maximum radius obtained with the model to
the scaling relations (31) in Fig. 13(a) and (32) in Fig. 13(b).

We observe that Eq. (31) gives a good description of the
spreading [Fig. 13(a)], while Eq. (32) [cf. Fig. 13(b)] does
not work for small impact parameter x=We/Re*>, for which
the different results do not collapse onto a single curve. In
addition, we observe that the prefactor in the scaling law is
reasonably well predicted by the theory for the capillary law
(31), while it is poorer for the other relation (32). The appar-
ent contradiction with the experimental results of Ref. 7 is
explained by the fact that only an intermediate regime was
investigated, where R,,/R varies between 1.5 and 4 only.
Over such a small range, one cannot reliably discriminate
between the two regimes (29) and (30). Our model therefore
suggests that in the limit of small viscosity, the maximum
spreading radius is controlled by a balance between kinetic
energy and capillarity, and is not described by the effective
gravity theory.

C. Retraction dynamics

Finally, the model also describes the receding dynamics
of the drop, at least up to the point where the film radius R(z)
goes to zero. As shown in Fig. 11, the model captures the
retraction dynamics quite well. The numerics and the model
both show that a regime of almost constant retraction veloc-
ity (denoted by V,.,) is reached during retraction. This veloc-
ity is slower at the onset of the retraction because the rim
needs first to be accelerated and at the final stage of the
retraction, before the rebound of the drop, where the drop
cannot anymore be described as a thin film connected to a
growing rim but rather as a thick cylindrical structure [see
Fig. 1(h)]. The retraction dynamics is crucial for our under-
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FIG. 13. A test of the two scaling relations (31) (left) and (32) (right), using
R,, as calculated from the model. The rescaled maximum radius
(R,,/R)/Re') is plotted (a) as a function of x=We/Re??; the expected
behavior for small x, Vx/6, is indicated in dotted line; (b) as function of
x=We/Re*?, again showing the expected behavior for small x, (8x/9)"*
(dotted line).

standing of drop rebound or when thermal effects
(Marangoni flows or solidification) are considered.** Experi-
mentally, two regimes have been observed:* the first one is
dominated by a balance of capillarity and inertia and is char-
acterized by the following relation for the retraction rate:>

3 3 U
VidRy= \| iz =\ . (33)
208>~ N WeR

This effective retraction rate V,./R,, is simply obtained by
estimating the Taylor—Culick retracting velocity using the
minimal film thickness /. This Taylor—Culick can simply be
deduced from Eq. (20), considering that in the retracting dy-
namics h(t)=h,,(t)=h; and dU/dt=0. It gives

|2y
Viet = .
phy

Assuming that the drop is close to a pancake at its maximum

radius, as suggested above by Fig. 10, mass conservation

imposes 77th,2,1~ §WR3, which gives the relation (33)
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The second regime corresponds to a viscous-capillary
balance close to the contact line and does not apply to the
case of a 180° contact angle, considered by us. Figure 14(a)
shows the maximum velocity during the retraction regime
obtained within our model as a function of the Weber num-
ber for different Reynolds numbers. As expected on the basis
of the capillary retraction theory (33), these results collapse
onto a single curve when the retraction rate is considered in
Fig. 14(b). The retraction rate is Vo /R,,, which, in our non-
dimensionalization, translates into RV,./(R,,U). According
to Eq. (33), it is expected to scale like We™""2, as confirmed
in the figure.

D. Conclusions

In summary, in this paper we have developed a quanti-
tative model for the description of high-speed, hydrophobic
drop impact. We disregard all effects of the external air at-
mosphere, which is justified in a moderate vacuum. The drop
evolution is divided into the following stages:

(i)  initial inviscid spreading,

(i)  boundary layer growth and formation of a film,
(iii)  film spreading, and

(iv)  rim formation and retraction.

For each stage and/or aspect of the flow, we develop an
approximation based on the Navier—Stokes equation, each of
which is tested against our full numerical simulations. We
then use our understanding of each part of the solution to
develop a complete model of the impact process, which de-
scribes the time evolution of key parameters such as the drop
radius during expansion and retraction. Again, the results
agree favorably with numerical simulation.

Our key observations are the following:

(1) After a time R/ U, the fluid motion is well described
by a time-dependent, hyperbolic flow, bounded by a
viscous boundary layer near the wall.

(i)  The thickness of the boundary layer grows like
o= \e’%.

(iii)  The drop stops thinning when the free surface reaches
the boundary layer thickness; as a result, the drop
spreads into a thin film of thickness f;~R/Re*>.

(iv)  The dynamics of the drop radius R(7) during spread-
ing and retraction is described by a thin film, bounded
by a toroidal rim.

(v)  For high speeds, the maximum spreading radius R,
behaves like R,,/R*We!’.

(vi)  The retraction velocity V. of the rim scales like
V! R, c UWe™2/R.

Each of the predictions of the model are checked against
full numerical simulations, yielding a rather complete
description of the complex dynamics of high-speed drop
impact.
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FIG. 14. (Color online) Retraction velocity measured in the model as the
maximum velocity reached during the retraction regime (a) V,/ U is shown
as a function of Weber number for different Reynolds numbers. (b) Accord-
ing to the theory balancing inertia and capillarity [Eq. (33)], all the curves
collapse when the retraction rate RV ./ (R,,U) is considered. The line shows
the fit RV,,/(R,,U)=2/vWe to be compared to the Taylor—Culick retraction
rate (33) RV, /(R,,U)=\3/We.

It is also interesting to discuss the possible extension of
this approach to the general case of drop impact on nonhy-
drophobic surfaces. If the contact angle 6, is not 180°,
mainly two effects have to be incorporated: the surface force
on the rim is different and an additional dissipation is present
as the contact line moves.''*® While the surface tension ac-
tion 27y on the rim can be simply replaced in Eq. (20), as
discussed above, accounting for the contact line viscous dis-
sipation is more complex and should be the subject of further
works.
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