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1. Introduction

The space–time volume in D-dimensional Minkowski space of
a time-like (M + 1)-dimensional hypersurface M, that at any time
t can be described as a graph over R

M , z(t,x), is

S[z] =
∫ √

1 − ż2 + (∇z)2 dM x dt. (1)

Stationary points of (1) correspond to manifolds M whose mean
curvature vanishes. In the simplest case, M = 1 and D = 3 (z =
z(t, x), ż = ∂z/∂t , z′ = ∂z/∂x), the Lagrange equation reads

z̈
(
1 + z′2) − z′′(1 − ż2) = 2żz′ ż′. (2)

This so-called Born–Infeld equation [1] describes the motion of a
string in the plane, and has been studied for more than 40 years
[2–4]; recent work related to higher dimensional time-like zero
mean curvature hypersurfaces includes [5–8].

Here we show how (2) can develop singularities in finite time,
starting from smooth initial data. While generic singularity forma-
tion of strings in four-dimensional Minkowski space is well under-
stood (cf. [9–14]), we are not aware of any literature obtaining the
swallowtail singularity that we find in three dimensions. This is
done first via the self-similar ansatz

z(t, x) = z0 − t̂ + t̂αh

(
x

t̂β

)
+ · · · , (3)

where t̂ := t0 − t → 0 (the dots are indicating lower order terms),
and then via Taylor expansion of the general parametric solution
for closed strings near the point where the singularity first forms.

Inserting (3) into (2) one finds the similarity equation
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h′′
(

2αh − (α + 1)2

4
ξ2

)

= (α − 1)

[
h′2 + αh − 3

4
(α + 1)ξh′

]
. (4)

The above ansatz is consistent provided β = (1 + α)/2 > 1, and
(3) is an asymptotic solution of (2) if the similarity equation is
satisfied. For consistency with a finite outer solution of (2), the
profile h must satisfy

h(ξ) ∝ A±ξ
2α

α+1 for ξ → ±∞ (5)

(for a general discussion of matching self-similar solutions to the
exterior see [15]).

The ansatz (3) is formally consistent for a continuum of similar-
ity exponents α � 1 and for any solution of the similarity equation
(4). However, by considering the regularity of solutions of (4) in
the origin ξ = 0 the similarity exponent must be one of the se-
quence

α = αn = n + 1

n
, n ∈ N, (6)

certainly if h(0) = 0 = h′(0), and presumably in general (i.e. all rel-
evant solutions of (4)). Of this infinite sequence, we believe that
only α = 2 is realized for generic initial data; indeed, in this case

ξ = ζ + cζ 3/3, h(ξ) = ζ 2/2 + cζ 4/4, (7)

which we will deduce from a parametric string solution corre-
sponding to (2).

The importance of the similarity solution (3) lies in the fact
that it can be generalized to arbitrary dimensions, in particular
to membranes. We find that the same type of singular solution
is observed in any dimension, even having the same spatial struc-
ture (7).
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Section 2 is devoted to solving the similarity equation (4). In
this analysis we confine ourselves to a description of the solution
for times t < t0. In Section 3 we consider the relevance of our
results to higher dimensional cases with codimension D − (M +
1) = 1. In Section 4 we compare our results to an exact solution
for closed strings. While this analysis is confined to D = 3, it does
permit to consider times before and after the swallowtail singular-
ity.

2. The similarity equation

A way of satisfying (4) is to demand

L2 := h′2 + 2αh − (α + 1)ξh′ = 0 (8)

(differentiating e.g. (1 + α)ξ = h′ + 2αh/h′ one can eliminate h′′ ,
reducing (4) to an identity, as long as h′ 	= 1).

The transformation

h(ξ) = ξ2 g(ξ) = ξ2
(

(1 + α)2

8α
− v2

2α

)
(9)

yields

−dξ

ξ
= v dv

v2 ± αv + (α2 − 1)/4

= 1

2

(
α + 1

v ± α+1
2

− α − 1

v ± α−1
2

)
dv, (10)

i.e. (choosing the lower sign)

|v − (α + 1)/2|α+1

|v − (α − 1)/2|α−1
= E

ξ2
. (11)

This yields solutions v ∈ [(α − 1)/2, (α + 1)/2),

v ≈ α − 1

2
+

(
ξ2

E

) 1
α−1

+ · · · as ξ → 0,

v ≈ α + 1

2
−

(
E

ξ2

) 1
α+1

+ · · · as ξ → ±∞, (12)

i.e.

h(ξ) � 0, h(0) = 0,

h(ξ) ∝ ξ2/2 as ξ → 0,

h(ξ) ∝ 1 + α

2α
E

1
1+α ξ

2α
1+α as ξ → ±∞. (13)

Note that these solutions are consistent with the growth condi-
tions (5).

To solve the second order equation (4) we note that h̃(ξ) :=
ch(ξ/

√
c ) solves (4), if h does, and that

h′

ξ
− 2h

ξ2
= 1

α
f

(√
(α + 1)2

4
− 2α

h(ξ)

ξ2

)
≡

(
1

α
f (v)

)
(14)

reduces (4) to

−
(

v2 − (α + 1)2

4

)(
v2 − (α − 1)2

4

)
= f

(
αv f ′ − (α − 1) f − (α + 2)v2 + (

α2 − 1
)
(α − 2)/4

)
,

(15)

and

dξ

ξ
= − v dv

f (v)
= α dg

f
. (16)

The growth condition (5) implies that h grows less than
quadratically at infinity. Thus we deduce from (14) that f van-
ishes at (α + 1)/2. Furthermore, from a direct calculation using
the growth exponent (5) we find the first derivative, yielding the
initial conditions

f

(
α + 1

2

)
= 0, f ′

(
α + 1

2

)
= 1. (17)

Using (17), (15) yields a polynomial solution

f (v) =
(

v − (α + 1)

2

)(
v − (α − 1)

2

)

= v2 − αv + α2 − 1

4
, (18)

i.e. (11), which corresponds to the first order equation (8), but
also an infinity of other solutions (a Taylor expansion around
v∞ = (α + 1)/2 shows that (15) leaves f ′′((α + 1)/2) undeter-
mined, when (17) holds). We note that (15) also has the solution
f−(v) = f (−v), and for the special case α = 2 another pair of
polynomial solutions,

f̃ (v) = (v + 3/2)(v − 1/2) = v2 + v − 3/4, (19)

and f̃−(v) = f̃ (−v). While the asymptotic behavior following
from (19) is in disagreement with (5), integration methods similar
to those used by Abel [16] perhaps permit a complete reduction
of (15) to quadratures.

In any case, (15) can be simplified in various ways. For α = 2,
e.g. it reduces to

yy′ = y − 1

4v5/2

(
v2 − 9/4

)(
v2 − 1/4

)
(20)

via

f (v) = √
v y

(
4v3/2/3

)
. (21)

The solution (18), which is consistent with the growth condi-
tion (5), is equivalent to the solution (11) of (8) given before. If
one investigates the behavior of the solution in the origin (either
using (11) directly or by series expansion of (8)), one finds that
only for α = αn (cf. (6)) a smooth solution is possible. Thus the
first consistent solution is found for n = 1 or α = 2. Higher or-
der solutions n = 2,3, . . . are also possible in principle. They have
the property that apart from f ′′(0), the first non-vanishing deriva-
tive is f (2n+2)(0). However, we believe that they correspond to
non-generic initial conditions, whose derivatives have correspond-
ing properties of vanishing up to a certain order. To demonstrate
this point, one would have to perform a stability analysis of the
corresponding solution [15]. In the string picture discussed below
this can be shown explicitly, as higher order solutions correspond
to non-generic initial data.

3. Higher dimensions

The solutions of (8), found to govern singularities of (2), also
apply to higher dimensions. The reason is that the left-hand side
of (8) is the leading order term of

L2 = 1 − ż2 + z′2. (22)

In other words, the asymptotic singular solutions discussed above
have L2 = 0+ lower order. In fact, differentiating (22) with respect
to t and x one easily shows that L2 = 0 provides solutions of (2).
In higher dimensions, differentiating 1 − zαzα = 0 gives zαzαβ = 0,
and hence
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(
1 − zαzα

)
�z + zβ zαzαβ = 0. (23)

Thus solutions of L2 = 0 also solve the M-brane equation (23) in
arbitrary dimensions.

For the special case of radially symmetric membranes:

z̈
(
1 + z′2) − z′′(1 − ż2) − 2żz′ ż′ = z′

r

(
1 − ż2 + z′2) ≡ z′

r
L2.

(24)

Insert the radial version of the ansatz (3),

z(t, r) = −t̂ + t̂αh

(
r − r0

t̂β

)
+ · · · , (25)

into (24). If r0 	= 0, the entire right-hand side of (24) is of lower
order in t̂ , and the similarity equation (4) remains the same. Ge-
ometrically, this corresponds to the singularity forming along a
circular ridge of radius r0.

If on the other hand r0 = 0, i.e. the singularity forms along the
axis, the right-hand side is of the same order, and the similarity
equation becomes

h′′
(

2αh − (α + 1)2

4
ξ2

)
+ (1 − α)

[
h′2 + αh − 3

4
(α + 1)ξh′

]

= −h′

ξ

[
h′2 + 2αh − (α + 1)ξh′]. (26)

This equation can in principle have solutions different from (4). For
solutions of (8), however, the expression in angular brackets in (26)
vanishes, hence solutions of (8) also solve (26). Thus (25), (7) de-
scribe a point-like singularity on a membrane. These observations
straightforwardly generalize to higher M-branes, M > 2.

4. Parametric string solution

Let us now compare our findings with the solution of closed
bosonic string motions given by Eq. (50) of [17] (note that the def-
initions of f and g are changed by π/4, and that the constant λ

is chosen to be 1):

ẋ(t,ϕ) = sin( f − g)

(− sin( f + g)

cos( f + g)

)
, (27)

x′(t,ϕ) = cos( f − g)

(
cos( f + g)

sin( f + g)

)
, (28)

where f = f (ϕ + t) and g = g(ϕ − t). From (28) one finds the
curvature

k(t,ϕ) = f ′ + g′

cos( f − g)
. (29)

The hodograph transformation

(t,ϕ) → t = x0, x = x1(t,ϕ),

x2(t,ϕ) = z
(
t, x1(t,ϕ)

)
, (30)

implying ż = ẏ − ẋy′/x′ , z′ = y′/x′ (∂φ/∂x0 = −ẋ/x′ , ∂φ/∂x1 =
1/x′) permits to go between the parametric string picture (27)–
(29) and the graph description (2). In particular,

1 − ż2 + z′2 =
(

cos( f − g)

cos( f + g)

)2

(31)

is manifestly non-negative in the parametric string-description,
while for solutions of (2) one has to demand it explicitly — leading
e.g. to the exclusion of solutions with h′(0) = 0, h(0) < 0.

Fig. 1. The formation of a swallowtail, as described by (37). Shown is a smooth
minimum (t̂ > 0), a minimum with a 4/3 singularity (t̂ = 0), and a swallowtail or
double cusp (t̂ < 0).

Let us give an explicit example of M2 ⊂ R
1,2 being at t = 0

a regular graph, while for t = 1 a curvature singularity has devel-
oped. Let M2 be described by x(ϕ, t), as defined by (27), (28), with
ϕ ∈ R, t � 0. Let

f (w) =
⎧⎨
⎩

arctan w for w � ε,

χε(w)arctan w for 0 � w � ε < 0,

0 for w � 0,

(32)

where χε(w � ε) = 1, χε(w � 0) = 0, and χε(0 < w < 0) such
that f ′(w) � 0. We also assume that g(w) = − f (−w). A simple
calculation then shows that for ϕ ∈ [−t + ε, t − ε] one obtains
(x0(t = 0, u = 0) = 0)

x(ϕ, t) = −ϕ + arctan(ϕ + t) + arctan(ϕ − t),

y(ϕ, t) = ln
√(

1 + (ϕ + t)2
)(

1 + (ϕ − t)2
)
,

k(ϕ, t) = 2√
(1 + (ϕ + t)2)(1 + (ϕ − t)2)

ϕ2 + 1 + t2

ϕ2 + 1 − t2
. (33)

Note that for t > 1 this is no longer a graph.
The example (32) underlies a general structure that can be un-

covered by a local expansion of the functions f and g around the
singularity. Namely, as seen from (29), the singularity occurs when
cos( f − g) vanishes. We are interested in describing the situation
when this first occurs. Then a Taylor expansion yields

f (ζ ) = f0 + f1ζ + f2ζ
2/2 + O

(
ζ 3),

g(ζ ) = g0 + g1ζ + g2ζ
2/2 + O

(
ζ 3), (34)

where f0 − g0 = π/2. Without loss of generality the parametriza-
tion can be chosen such that the singularity occurs for ζ = 0. Then
to leading order in ζ we find

f − g = π/2 + ( f1 − g1)ϕ + ( f1 + g1)t + · · · . (35)

Without loss of generality we can assume that the singularity oc-
curs at ϕ = 0, since ϕ is simply a parameter. For ϕ = 0, f − g then
assumes the singular value for t = 0, i.e. we have t0 = 0. But the
expansion (34) must in fact obey the constraint f1 = g1, otherwise
there will be a ϕ such that f − g becomes critical at some earlier
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time t < t0, contradicting our assumption of capturing the earliest
time a singularity occurs.

Now using f1 = g1 to leading order the expansions are

f − g ≈ π/2 − 2 f1t̂ + ( f2 − g2)ϕ
2/2,

f + g ≈ f0 + g0 + 2 f1ϕ. (36)

It is clear from the first equation that ϕ is of the order t̂1/2; hence
the entire expression (33) can be expanded in powers of t̂ , using
ϕ ∝ t̂1/2. Deriving the corresponding expressions for x′ and y′ , and
using the integrability condition (27), (28), one obtains(

x
y

)
= R(ω)

(
2at̂ϕ + 2bϕ3/3

−t̂ + 2a2t̂ϕ2 + abϕ4

)
(37)

where a = f1 and b = (g2 − f2)/4. The rotation matrix R is

R =
(

cosω − sinω

sinω cosω

)
, ω = f0 + g0. (38)

For the case that ω = 0, i.e. up to a rotation in space, (37)
corresponds exactly to the similarity equation (3) with similarity
solution (7), putting ζ = 2aϕ/t̂1/2. Furthermore, the free constant
c in (7) can be identified as c = b/(4a3) > 0. Since ϕ is of order
t̂1/2, it follows that x is of order t̂3/2 and y of order t̂2, implying
that the exponents are α = 2 and β = 3/2. The case ω 	= 0 is not
included in the analysis of Section 2, since the corresponding curve
is no longer a graph, as implied by (3).

The curve described by (37) is shown in Fig. 1, for the case of
w = 0, and disregarding the spatial translation of z by the term
−t̂ . In catastrophe theory, the curve that results for t̂ < 0 is known
as the “swallowtail” [18]. The same swallowtail curve also appears
as the shape of a wavefront in geometrical optics [19,20]. For t̂ > 0
the curve is smooth, while for t̂ = 0 a rather mild singularity de-
velops; at the origin, y ∝ x4/3. After the singularity (t̂ < 0) two
cusp singularities are formed, and the curve self-intersects. It is
easy to confirm that both cusps behave locally like xr ∝ y2/3

r , but
where the axes are rotated by an angle of t̂1/2/c1/2 relative to the
orientation of the original swallowtail. This means the orientation
of the cusps is asymptotically at a right angle to the swallow-
tail. The important point is that the cusps, which are born out
of the swallowtail, exist for a finite amount of time t > t0, rather
than existing only for some particular singular time. Note that in
our earlier analysis based on the similarity description (3) we fo-
cused on the time before the first singularity alone. To describe the
regime t > t0, and thus the continuation through the initial swal-
lowtail singularity, would require a separate ansatz for t̂ < 0 in the
similarity formulation.

In [9, pp. 157–160] (see also [10–14]) the dynamics of closed
bosonic strings x(t,ϕ) is considered in 3 space dimensions (rather
than in 2, discussed above), and the general solution is written in
the form

x(t,ϕ) = 1

2

[
a(ϕ − t) + b(ϕ + t)

]
. (39)

The vector-valued functions a and b are arbitrary up to the con-
straint a′ 2 = b′ 2 = 1. An important conclusion then is that gener-
ically a y ∝ x2/3 cusp singularity forms at a time ts , but that the
curve is regular for some time interval t 	= ts . However, as we have
seen above, this scenario is incorrect for a curve embedded in two-
dimensional space, in which case a cusp exists for a finite interval
in time. In higher dimensions, on the other hand, the swallowtail
singularity becomes “unfolded” into directions out of its plane, and
the generic situation of [9–14] applies.

In the case of non-generic initial conditions other solutions are
possible. For example, instead of (34)

f (ζ ) = π/4 + aζ − bζ 2n, (40)

where n ∈ N but n > 1. Only even powers 2n are allowed, other-
wise the singularity occurs for all ϕ at the same time, i.e. it is no
longer point-like. If the leading order term is not linear but itself
of higher order, the resulting similarity profile becomes singular
at the origin, cf. (A.6). Repeating the above calculation along the
same lines, we find

x′ = 2at̂ + 2bϕ2n, y′ = 4a2t̂ϕ + 4abϕ2n+1, (41)

which is equivalent to the symmetric shape function

ξ = ζ + 2d(n + 1)ζ 2n+1/(2n + 1),

h = ζ 2/2 + dζ 2n+2. (42)

The corresponding similarity exponent is α = αn , as given by (6).
We thus retrieve the exact same solutions identified by our previ-
ous analysis, based on a similarity description.
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Appendix A. Additional solutions of the similarity equation

It is possible to construct many more solutions to the similar-
ity equation (8), which are all defined on the real line, but which
we reject since they either contradict (5) or are not smooth. The
simplest case is

h(ξ) = ξ2

2
, (A.1)

which is a solution for any α, but evidently does not satisfy the
matching condition (5).

Recall that for α = αn , (11) furnishes smooth solutions on the
real line. On the other hand, while for α = 3 the second deriva-
tive of the resulting solution is well-defined, the third derivative is
discontinuous. Namely, for E = 4 (e.g.) one finds that for ξ > 0,

h(ξ) = −2

3

(
ξ + 2(1 + ξ) − 2(1 + ξ)3/2),

h′(ξ) = 2(
√

1 + ξ − 1) > 0,

h′′(ξ) = 1/
√

1 + ξ, (A.2)

so that

h′′′(ξ) =
{−(1 + ξ)−3/2/2 for ξ > 0,

(1 + ξ)−3/2/2 for ξ < 0.
(A.3)

Other solutions whose scaling exponent is not from the set (6),
but which have well-defined second derivatives, can be found from
the parametric string solution as described in Section 4. If the ex-
pansion of f does not start with a linear term as in (34), but at
higher order, e.g.

f (ζ ) = π/4 + ζ 3/2 − bζ 4, (A.4)

one finds
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x′ = 3t̂ϕ2 + 2bϕ4, y′ = 3t̂ϕ5 + 2bϕ7. (A.5)

Integrating (A.5), the result once more conforms with (3), with
a similarity exponent of α = 4, and the similarity function has the
parametric form

ξ = ζ 3 + 2bζ 5/5,

h = ζ 6/2 + bζ 8/4. (A.6)

It is confirmed easily that (A.6) solves (8) with α = 4, but the third
derivative of h(ξ) is singular at the origin.
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