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Viscous free-surface cusps: Local solution
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Free-surface cusps appear as a generic feature in viscous flow with a free surface.
However, a mathematical description has so far only been possible by constructing exact
solutions to the Stokes equation in very specific and idealized geometries, using complex
mapping techniques. Here we use the boundary integral formulation of the Stokes equation
to show that cusps are local singular solutions to Stokes’ equation. We recover Jeong and
Moffatt’s [J. Fluid Mech. 241, 1 (1992)] local cusp solution in the limit of diverging cusp
curvature, demonstrating its universality across all viscous flows.
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I. INTRODUCTION

Free-surface cusps appear widely in viscous flow problems [1] whenever the flow is strongly
forced in an approximately two-dimensional manner, and such that viscous forces are comparable
to surface tension forces. This balance is quantified by the dimensionless capillary number Ca =
Uη/γ being of order unity or larger, where U is a typical flow speed, η the fluid viscosity, and
γ the coefficient of surface tension. On the right of Fig. 1 we show a cusp with a rounded tip, as
found from a local analysis of Jeong and Moffatt’s exact solution [2], and whose curvature increases
exponentially with capillary number. The goal of this paper is to derive this structure directly from
a local analysis of Stokes’ equation.

Cusps have been demonstrated experimentally in a variety of geometries, for example by
dragging fluid with two rollers [2,3] or a single roller [4], or by pouring a jet of viscous liquid
into a bath of the same liquid [5–7]. Theoretically, exact solutions of the two-dimensional Stokes
equation showing cusping have been found by placing singularities underneath a free surface [2,8–
10], or next to a two-dimensional “drop” [11,12]. More exact solutions displaying cusping behavior
were found placing a dipole next to a bubble [13], or adding suction [14].

Free-surface cusps deserve particular interest since they can serve as channels through which air
can enter into a fluid, as shown theoretically [5,6] and experimentally [4,6]. Thus, cusps are of broad
interest for air entrainment in jets and waves [15], as well as coating flows [16].

It is important to distinguish cusps, which are quasi-two-dimensional objects, and which become
singular along a line, from conical tips, which form at the end of bubbles in a variety of flows
[17–19], and which become singular at a point. Available experimental evidence indicates that cusps
occur when the driving flow becomes sufficiently two-dimensional, for example, when a rising
bubble is close to a wall. It is also known that a sufficiently large bubble rising in a viscoelastic
liquid breaks axisymmetry to form a “knife-edge” ending in a cusp at its rear [20].
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FIG. 1. A cusp can be understood as arising when a loop in a smooth curve is formed. We plot x = δϕ +
cϕ3/3, y = ϕ2/2, for c = 1. On the left, δ < 0, and the curve self-intersects, so the mapping is no longer
invertible. In the middle, the critical state of δ = 0 is shown, for which the curve is a cusp x ∝ y3/2. On the
right, δ > 0, and the curve has opened to produce a cusp in the far field, but being rounded at the tip. Physically,
a cusp at finite capillary number corresponds to a rounded tip, whose curvature increases exponentially with
the capillary number [2]. Thus, formally the singular cusp in the middle occurs in the limit of infinite capillary
number.

Most of the theoretical information we have about the structure of cusps comes from an analysis
of exact solutions, found by mapping the fluid domain onto the unit disk. A cusp singularity of
the free surface occurs when the map becomes noninvertible on the unit circle, corresponding to
the free surface. This means the viscous cusp singularity has a very simple, highly universal
structure, associated with an exponent of 3/2, when the width of the cusp is plotted as a function of
the distance from the tip [21,22].

Other physical examples, which share the self-similar structure with viscous cusps, appear in
elasticity (the Hertz solution [23] and elastic folds [24]), biology [25], optics [26], relativistic mem-
branes [27], shock formation [28], and contact line motion [29]. These “geometrical” singularities
[22] are to be distinguished from other cusp solutions, such as the cusp that arises from the touching
of two smooth surfaces (the viscous coalescence problem [34]), for which the cusp width scales like
the distance from the tip to the power 2. The same far-field exponent 2 is observed for cusps formed
by steep capillary waves [22].

However, although the surface shape often follows from simple geometrical considerations and is
thus common to many different problems, the underlying physics, and in particular the underlying
bulk motion away from the interface, is nontrivial, and can be quite different from problem to
problem. It therefore remains to be shown for each individual case that the cusp structure follows
from the equations of motion. It is this we will undertake in this paper for the case of Stokes’
equation with a free surface.

A first step in this direction was taken in Ref. [3], where the 3/2 power-law form of the cusp
was calculated by a local expansion of Stokes’ equation. However, this leaves open the structure
of the tip, which is an important issue, since a truly singular tip would lead to a force singularity,
which would produce a logarithmically infinite energy dissipation [3]. This issue was resolved by
Jeong and Moffatt in Ref. [2], who showed that in their exact solution the tip was rounded on a scale
exponentially small in the capillary number, making the energy dissipation finite.

An alternative approach to the cusp problem was taken in Refs. [30–32], where the slenderness of
the cusp shape was exploited to formulate an effective “codimension-two” boundary value problem,
similar to the classical lubrication approach of Reynolds [33]. This boundary value problem has to
be matched to an inner problem describing the tip of the cusp, to avoid the problems encountered by
Ref. [3]. A great advantage of this approach is that it applies to a much more general class of cusp
problems, for example the coalescence of viscous cylinders, also treated initially by constructing
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exact solutions using mapping techniques [34,35]. In addition, the same idea has been applied to
problems involving Laplace’s equation, such as water entry, and Hele-Shaw flow [30]. However, the
stationary cusp of Jeong and Moffatt [2] has not been addressed explicitly.

As the starting point of our calculation we now derive the asymptotic form of the free-surface
shape of a cusp based on the idea that the parametric form of the curve (x(ϕ), y(ϕ)) is no longer
invertible. This is motivated by Jeong and Moffatt’s analysis, who for a free-surface flow forced
by a vortex dipole, find a smooth mapping z = w(ζ ) of the unit disk onto the flow domain. A
cusp singularity occurs when a point with w′(ζ ) = 0 approaches the unit circle from the outside.
In terms of the parametric representation, such a singularity corresponds to x′(ϕ) = y′(ϕ) = 0 [22]
somewhere on the curve. The simplest, generic form of this singularity occurring at ϕ = 0 is (after
appropriate rotations and rescaling) x = cϕ3/3 and y = ϕ2/2, which reproduces the expected 3/2
scaling; the cusp has been oriented in the positive y-direction. The constant c provides a scale for the
width of the cusp, and is a nonuniversal quantity depending on each individual flow configuration,
as we will see below.

The generic perturbation to this singular shape (all other perturbations can again be eliminated by
trivial transformations [1]) is x = δϕ + cϕ3/3, y = ϕ2/2, as shown in Fig. 1. For δ > 0 this yields a
rounded tip, as shown on the right of Fig. 1, for δ < 0 the figure self-intersects, while for δ = 0 the
singular cusp is seen.

For the purposes of our calculation, we expand in the size κ−1 ≡ ε2 of the cusp tip, where κ is
the curvature at the tip, written in suitable units of length. In the example presented by Jeong and
Moffatt, this would be the distance of the singularity driving the flow from the free surface. With
these conventions, the cusp solution becomes

x = ε2
(
ψ + εcψ3/3

)
, y = ε2ψ2/2, (1)

which has a curvature d2y/dx2 = y′′/x′2 = ε−2 = κ at the tip, as required. In the scaling of Eq. (1),
taking the limit ε → 0 at constant ψ yields the tip region of the cusp, described by x = ε2y/2.
However, putting ψ = σ/

√
ε, we obtain

x = ε3/2
(
σ + cσ 3/3

)
, y = εσ 2/2, (2)

which has the form of a similarity solution. Exactly the same form of solution is obtained from the
exact solution [2], for a particular value of c. We conclude that there are three relevant scales in our
problem, as sketched in Fig. 2. In Eq. (1), ψ values O(1) describe the tip, whereas σ values O(1)
describe the cusp. Finally, there is a nonuniversal outer length scale.

The purpose of this paper is to show that the full self-similar solution (1) or (2), written in units
of the curvature and with c a free parameter, satisfies Stokes’ equation. This is done using the
boundary integral method, which involves integrals over the interface. To this end we still need to
find the tangential velocity along the interface, which we do by calculating the limiting behavior of
the exact solution found by Jeong and Moffatt on the inner and intermediate scales.

We will see that in the limit ε → 0 the integral equation splits into closed sets of equations on
two different scales: the tip (inner) and the cusp (intermediate) scale. At the tip scale, shown in the
inset of Fig. 2, the integral equation closes. This means the dominant contribution to the integrals
comes from the leading order, parabolic part of Eq. (1), the remainder is subdominant. At the cusp
scale, shown as the dashed line in Fig. 2, the main driving comes from the highly curved tip region
(inset). However, there are also local contributions within the cusp region itself, which account for
the presence of an interface.

In Sec. II, we set up the integral equation and find the velocity. In Secs. III and IV, we calculate
the limits of the boundary integral equation appropriate for the tip and cusp regions, respectively.
For both regions, we then show that Eq. (1) is a solution.
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FIG. 2. A sketch of the scaling regions relevant for our calculations; the solid line is the exact solution
of Jeong and Moffatt [2], the dashed line is Eq. (1), with c = 33/2/4 to fit the Jeong-Moffatt solution (cf.
Appendix A). The inner tip region is the scale on which the tip is rounded and is found keeping ψ = O(1) as
ε → 0 in Eq. (1). The integral equation is closed on the scale of the tip, as shown in Sec. III. The intermediate
cusp region is described by Eq. (2) and is recovered keeping σ constant. Here the dominant contribution to the
J integral (see Sec. II) is nonlocal and comes again from the tip region. Finally, the outer solution depends on
the particular problem at hand, and is found for ψ = φ/ε, where φ is held fixed.

II. THE INTEGRAL EQUATION

Boundary integral equations [36,37] can be used to describe Stokes (viscously dominated)
flow for an arbitrary combination of solid and free surfaces. The advantage is that they require
information about the bounding surfaces only, in the case of a free surface (such as a bubble in an
external flow) the value of the velocity field on the surface. While boundary integral equations have
been used primarily for numerical purposes, here, following Refs. [19,38], they are the starting
point for an analytical treatment. The key idea is to make use of insight into the structure of the free
surface, to write the boundary integral as an ordinary one-dimensional integral.

Since we are interested in a small neighborhood around a free-surface cusp only, here we restrict
ourselves to the integral equation for a single free surface, which in units of vη = γ /η reads [39]

v(ψ1)

2
= −

∫ ∞

−∞
κJ · n̂dψ2 −

∫ ∞

−∞
v · K · n̂dψ2 + v(ext)(ψ1), (3)

where ψ is used to parametrize the interface as x(ψ ), and v(ψ ) is a shorthand for v[x(ψ )]. For
convenience, we have written the boundary integral as an integral over the real line, and we assume
that the surface can be closed at infinity to produce a closed surface, as required by the boundary
integral method. The vector n̂ = (yψ,−xψ ) points in the direction of the outward normal; with this
choice, the parameter ψ used as integration variable is arbitrary.

In Eq. (3), defining r = x1 − x2 and r = |r|, kernels are defined by

J(r) = 1

4π

[
−I ln r + rr

r2

]
, K(r) = − 1

π

rrr
r4

, (4)

which are the Green’s functions of the two-dimensional Stokes equation. This means that J · F is
the velocity generated at x1 by a point force f = Fδ(x1 − x2), located at x2 (the “Stokeslet”), while
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K · F is the stress (the “stresslet”), and

κ = xψyψψ − yψxψψ(
x2
ψ + y2

ψ

)3/2

is the curvature. The contribution v(ext) is an externally applied velocity, which depends on the
problem, and which does not affect the local structure of the solution. In the solution of Ref. [2] it
is a vortex dipole, placed underneath the free surface. More generally, one can think of v(ext) as the
flow generated by all the stresses not represented by the first integral in Eq. (3), expanded to leading
(monopole) order around the position of the cusp.

We are looking for stationary solutions, which implies that the interface is a streamline. Conse-
quently, the velocity along the interface can be written

v = u0t, t = (xψ, yψ )√
x2
ψ + y2

ψ

, (5)

with t the (normalized) tangent vector. The mathematical problem to be solved in this paper consists
in solving the simultaneous equations (3) and (5) for an interface shape x(ψ ), as well as for the
tangential velocity u0(ψ ).

We aim to solve Eq. (3) in the limit ε → 0. The most obvious strategy would be to rewrite Eq. (3)
in terms of the similarity variable σ of Eq. (2). However, expanding κ at constant σ yields

κ = ε−1/2 1 − cσ 2

σ 3
+ O(ε3/2),

which is singular at the tip as σ → 0. Instead, we must resolve the interface on scale ψ , for which

κ0 = ε−2

(1 + ψ2)3/2 (6)

as ε → 0, which is now regular for arbitrary ψ , up to an overall scale factor ε−2.
Thus, we solve Eq. (3) in two steps: first we solve for the flow near the tip, by taking the limit

ε → 0 at constant ψ1. Since the integral extends over all scales, we must consider ψ2 varying over all
scales. However, our analysis reveals that to leading order, all contributions (apart from constants),
come from a region of O(1) in ψ2. In particular, the constant c does not come into play at this order,
since its contribution in Eq. (1) is of higher order in ε. To find the tangential velocity u0 on this scale,
we can analyze the Jeong-Moffatt solution, as explained in more detail in Appendix A 2. Starting
from Eq. (A4), putting θ = π/2 − √

3εψ , and taking the limit ε → 0, using the approximation
(A5), one finds

u0(ψ ) = − 1

π
arcsinh(ψ ) = − 1

π
ln

(√
1 + ψ2 + ψ

)
(7)

to leading order in ε. In Sec. III below we confirm that Eq. (7), together with x = ε2ψ , y = ε2ψ2/2,
is a solution of the integral equation (3), to leading order O(1) in ε.

To characterize the cusp, in Sec. IV we put ψ = σ/
√

ε and take the limit ε → 0 at constant
σ . Analyzing the integral over ψ2, in addition to the tip region the contributions now come from
ψ2 = σ2/

√
ε, where σ2 = O(1). To leading order, the tangential velocity (7) is now

u0 = 1

2π
ln

( ε

4σ 2

)
, (8)

and the interface is given by (2), with arbitrary c. The dependence of u0 on σ , u0 ∼ − ln(σ )/π ,
corresponds to the flow generated by an upward force of strength 2γ , located at the tip of the cusp,
as suggested by J. Hinch, see the Appendix to [2].
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III. THE TIP REGION

To investigate the tip, we hold ψ1 constant and let ε → 0; the interface is described by (1). We
obtain for the left-hand side of Eq. (3):

v
2

= u0(ψ1)
(1, ψ1)

2
√

1 + ψ2
1

, (9)

so for both components, the leading order is O(ε0). Expanding the integrand f ≡ κJ · n̂|x/y into a
power series in ε [and similarly for the K integral in Eq. (3)], we obtain an inner expansion

f ≈
Q∑

n=0

fn(ψ2)εn ≡ IQ f , (10)

using the notation of, e.g., Eq. [40].
However, the integrals over f1(ψ2) (as well as higher-order coefficients) are divergent for ψ2 →

∞, indicating a nonuniform behavior of the integrand as ε → 0. Thus, we have to combine Eq. (10)
with an outer expansion [41],

f ≈
Q+1∑
n=1

F±
n (φ2)εn ≡ OQ+1 f , (11)

where now ψ2 = φ2/ε, with φ2 held constant. In the outer expansion, we have to go to higher order
than in Eq. (10), to guarantee a contribution of the same order to the integral, considering that the
integration variable is now φ instead of ψ . The two signs ± correspond to expansions for φ2 > 0 and
φ2 < 0, respectively. Since ψ1 only appears in the combination ψ2 − ψ1 = φ2/ε − ψ1, the leading
order contribution F±

1 (φ2) is independent of ψ1.
From the two expansions (10) and (11) one can construct a composite solution f ≈ IQ f +

OQ+1 f − IQOQ+1 f , using that IQOQ+1 f = OQ+1IQ f [42]. Since we only want to solve (3) to leading
order O(ε0), we only have to consider the case Q = 0; it turns out that the overlap integral O1I0 f
vanishes for both components of the J and K integrals, so we compute∫ ∞

−∞
f (ψ2, ε)dψ2 ≈

∫ ∞

−∞
f0(ψ2)dψ2 +

∫ 0

−∞
F−

1 (φ2)dφ2 +
∫ ∞

0
F+

1 (φ2)dφ2, (12)

remembering that dφ2 = εdψ2, so both inner and outer expansions contribute at leading order.
However, the outer expansion only contributes a ψ1-independent constant (which vanishes for the
x component), but which only sets the curvature κ = ε−2 as we will see. Also note that the outer
solution (scale φ2) is no longer universal, but depends on the individual problem. In other words, on
the tip scale we have

u0(ψ1)

2
√

1 + ψ2
1

= −J (in)
x (ψ1) − K (in)

x (ψ1) (13)

u0(ψ1)ψ1

2
√

1 + ψ2
1

= −J (in)
y (ψ1) − K (in)

y (ψ1) + J (in)
y (0) + K (in)

y (0), (14)

where in Eq. (14) we have subtracted the integrals for ψ1 = 0, so the aforementioned constants
drop out, and both sides vanish for ψ1 = 0. The superscript (in) refers to the integral over the inner
expansion, the first integral on the right-hand side of Eq. (12).

The important insight of our asymptotic analysis so far is that in the limit ε → 0, the boundary
integral equation (3) reduces to a closed equation for the tip of the cusp, of size κ−1 = ε2. The
inner expansion (13), (14) does not contain any parameters, and is thus guaranteed to be satisfied by
virtue of the global exact solution [2]. In Appendix B 1, we have confirmed this result by evaluating
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the integrals appearing in Eq. (13) for any ψ1. This establishes that a tip of the form y = x2/(2ε2),
together with the tangential velocity (7), is a universal feature of any sharp tip in viscous two-
dimensional Stokes flow, regardless of the geometry or external driving.

Addressing the constants appearing in Eq. (14), which have been subtracted, we evaluate the y
component of Eq. (3) at ψ1 = 0, which for ε → 0 has the form

v(ext )(0) = J (in)
y (0) + K (in)

y (0) + J (out )
y (0) + K (out )

y (0), (15)

where the superscript (out) refers to the integral over the outer expansion, the second and third
integrals on the right-hand side of Eq. (12). The right-hand side of Eq. (15) has the form a + b ln ε,
whose origin lies in the integrand of J (in)

y (0). Its dominant contribution is [cf. Eqs. (3) and (6)]

κ0

4π
xψ ln r = ε−2

4π (1 + ψ2)3/2 ε22 ln
√

ε,

so that its integral over ψ2 becomes J (in)
y (0) = ln ε/π [cf. Appendix B 2, Eq. (B9)]. This means that

the velocity has a contribution proportional to ln ε, and thus the K-integrals, which contain u0, in
general will have such a contribution as well.

In Appendix B 2 we show, using Jeong and Moffatt’s exact solution, that Eq. (15) is indeed
satisfied exactly (in particular, the left-hand side of Eq. (15) is also of the form a1 + b1 ln ε).
While the contributions from the inner expansions, J (in)

y (0) and K (in)
y (0), are universal numbers,

the contributions J (out)
y (0) and K (out)

y (0) come from an integral over the entire surface. They are
therefore not universal, and will be different, depending on the problem at hand.

Another way to look at the same statement is to define the capillary number in terms of the
external flow, i.e. the y-component of the external velocity, which would be generated in the absence
of an interface. In that case Ca = v(ext)(0) (in units of the capillary speed), evaluated at the position
of the cusp. If now the integrals on the right-hand side of Eq. (15) are of the form a + b ln ε, and
remembering that ε = √

κ in units of the distance between free surface and the dipole, then one
obtains

κ = e−2a/be2Ca/b. (16)

Thus, one finds exponential growth of the curvature with flow strength [2], but the coefficients are
not universal. In the particular case treated in Ref. [2], one finds [cf. Eq. (B8)]

a = 9

16π
ln

√
3

16
, b = 9

16π
,

so that

κJM = 3

256
e32πCa/9. (17)

If the capillary number is measured instead in terms of the strength α of the vortex dipole driving
the flow, namely Cad = ηα/(γ d2), then we have Ca = 9Cad , and Eq. (17) agrees with the result of
Ref. [2]; here d is the distance of the dipole from the unperturbed interface.

A more universally applicable way to define the capillary number is to include the effect of

the interface. Following Ref. [2], we consider the limit lim
|x|→0

lim
ε→0

u0

ln ε
, which (in units of vη ln ε)

measures the speed of the fluid sweeping past the cusp. In our language, this corresponds to taking
the limits ε → 0 at constant φ, then φ → 0. As can be seen from Eq. (7), putting ψ = φ/ε, in the
limit ε → 0 we obtain

lim
φ→+0

lim
ε→0

u0

ln ε
= 1

π
. (18)

Indeed, Eq. (18) is confirmed by considering the uniformly valid approximation (A8) of the tangen-
tial velocity, with a correction O(φ2) in the limit φ → 0. Keeping in mind that α ≈ − ln ε/(16π ),
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this is consistent with the limit of ±16, found by Ref. [2]. In accordance with Eq. (7), the capillary
number based on the actual flow speed along the cusp face is Cacusp = − ln ε/π + C, where the
constant C is arbitrary. Remembering that κ ∝ 1/ε2 we find that

κ ≈ κ0e2πCacusp , (19)

where the prefactor κ0 depends on the chosen units of length, and therefore cannot be universal.

IV. THE CUSP REGION

The above calculation on the scale of the tip only applies to the inner region for which ψ = O(1),
where in the limit ε → 0, y = x2κ/2. Now we turn to the scale of the cusp, for which ψ = σ/

√
ε

in Eq. (1), with σ fixed as ε goes to zero. We will see that evaluating J and K integrals requires
different approximations, so we treat them separately.

A. J integrals

The J integrals can be evaluated in a similar fashion to that of the tip scale, but on account of
the scaling ψ = σ/

√
ε, we now expand in powers of

√
ε. To represent the integrand to a required

order, in addition to the previous inner and outer regions, we require a third intermediate region,
so that the three different regions are defined on scales ψ2 (inner), ψ2 = σ/

√
ε (intermediate), and

ψ2 = φ/ε (outer).
Thus, if f is the integrand, then we consider three different expansions to represent the integral

to a given order:

f ≈
Q−1∑
n=0

fn(ψ2)εn/2 ≡ IQ−1 f , f ≈
Q∑

n=1

f n(σ )εn/2 ≡ MQ f , f ≈
Q+1∑
n=2

Fn(φ)εn/2 ≡ OQ+1 f .

The outer expansion is not universal, and therefore cannot be computed from the universal cusp
solution. Note, however, that it only contributes a constant and therefore does not need to be
considered, except for the calculation of κ .

We can now define inner and outer composite solutions by proceeding in two steps. First we
construct two composite solutions using the inner and intermediate expansions, and the intermediate
and outer expansions, respectively, which results in the intermediate composite solutions

IQ−1 f + MQ f − IQ−1MQ f ≡ Ic f , MQ f + OQ+1 f − MQOQ+1 f ≡ Oc f . (20)

The resulting two expansions are then combined to find a composite solution for the integral I valid
everywhere:

I ≈ Ic f + Oc f − MQIc f , (21)

where MQIc f = MQOc f , to any order of
√

ε, set by Q.
Beginning with the left-hand side of Eq. (3),

v
2

= 1

4π
ln

(
ε

4σ 2
1

)(
1 + cσ 2

1

σ1

√
ε + O(ε3/2), 1 + O(ε)

)
, (22)

so we need the x component to O(
√

ε) and the y component to O(1). Analysis of the composite
solution for the integrand of the J integral shows that the leading order O(1) contribution cancels
owing to symmetry; at the next order O(

√
ε), only IQ−1 f contributes to the composite solution with

Q = 2. This yields [with corrections of O(ε)]∫ ∞

−∞
κJ · n̂|xdψ2 =

∫ ∞

−∞
I1 f dψ2 = −√

ε
1 + cσ 2

1 /3

2πσ1

∫ ∞

−∞

dψ2(
1 + ψ2

2

)3/2 = −√
ε

1 + cσ 2
1

/
3

πσ1
, (23)
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the leading order contribution coming from the inner integral, corresponding to a point forcing by
the tip curvature.

As for the y component of the J integral, the only contributions are from the inner and the outer
expansions. This yields, putting Q = 1,∫ ∞

−∞
κJ · n̂|ydψ2 =

∫ ∞

−∞
I0 f dψ2 +

∫ 0

−∞
O−

1 f dφ2 +
∫ ∞

0
O+

1 f dφ2 + O(
√

ε).

Here the outer expansion only contributes a (σ1-independent) constant, which is not universal. In
fact, since the cusp scale is much smaller than the outer length scale, the outer contributions must
be exactly the same as those found for the tip region. Thus, performing the inner integral, we find∫ ∞

−∞
κJ · n̂|ydψ2 = 1

4π

[
ln

(
εσ 2

1

2

)
− 1

] ∫ ∞

−∞

dψ2(
1 + ψ2

2

)3/2 = 1

2π

[
ln

(
εσ 2

1

2

)
− 1

]
+ J (out)

y (0),

(24)
where J (out)

y (0) has been calculated in Appendix (B 2) for the case of the Jeong-Moffatt solution.

B. K integrals

To compute the x and y components of the K integral, another asymptotic region has to be
considered, which comes from the factor r4 in the denominator of the K integral [cf. Eq. (4)],
becoming small as a function of ψ2. Using Eq. (1) one finds r2 = (ψ1 − ψ2)2ε4D/9, where

D = c2(ψ2
1 + ψ1ψ2 + ψ2

2 )2ε2 + 6c(ψ2
1 + ψ1ψ2 + ψ2

2 )ε + 9ψ2
1 /4 + 9ψ2ψ1/2 + 9ψ2

2 /4 + 9.

The factor (ψ1 − ψ2)2 in r2 comes from the “local” contribution, where the integration variable
equals the position along the interface where the velocity is computed. This does not lead to a
singularity, since at the same point n̂ · r ∼ (ψ1 − ψ2)2, t · r ∼ ψ1 − ψ2, and r ∼ ψ1 − ψ2, so the
zeros of numerator and denominator of the integrand cancel.

Instead, the main contribution to the K integral comes from a region of size �ψ2 = O(1) around
the minimum of D, instead of around the origin; the location of the minimum we denote by
ψm. Putting ψ1 = σ1/

√
ε, ψm is found from dD/dψ2 = 0. To leading order as ε → 0 this yields

9(σ1/
√

ε + ψ2)/2 = 0, so that ψm = −σ1/
√

ε + O(
√

ε). To perform the integrals, we write the
integrand IK of the K integral in the form IK = N/D2. This means that putting � = ψ2 − ψm, we
can expand the integrand in the form

IK = N

D2
, D = D0 + �2

Dm
+ O(�3). (25)

From the definition of D, the functions D0, Dm, and ψm can now be calculated in a power series
in ε. Higher powers in � contribute a subleading contribution to the integral. Specifically, solving
dD/dψ2 = 0 iteratively, we find

ψm = − σ1√
ε

+ 4cσ1

9
s
√

ε + O(ε3/2).

Neglecting contributions of order ε, we find (using the abbreviation s = 3 + cσ 2
1 ) D0 = s2 + O(ε),

and Dm = 4/9 + O(ε).
Beginning with the x component of the K integral, the numerator can be expanded as N (ψm +

�) = N0(�) + N1(�)
√

ε + . . . , where N0 is linear in �, and therefore gives a vanishing contribu-
tion. The next order in

√
ε is

N1 = s4

2π2σ1
ln

(
2σ1√

ε

)
+ 9s

4π2σ1

[
cσ 2

1 ln

(
2σ1√

ε

)
+ s

]
�2,
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so that using ∫ ∞

−∞

d�

D2
= π

3s3
,

∫ ∞

−∞

�2d�

D2
= 4π

27s
,

we obtain∫ ∞

−∞
v · K · n̂|xdψ2 ≈ √

ε

∫ ∞

−∞

N1(�)

(D0 + �2/Dm)2 d� =
[

1 + cσ 2
1 /3

πσ1
+ 1 + cσ 2

1

2πσ1
ln

(
2σ1√

ε

)]√
ε.

(26)
To check the size of the remainder, we expand

v · K · n̂|x − N1

D2

√
ε

in ε, using the outer scale ψ2 = φ2/ε. The first nonvanishing contribution to this remainder is of
order ε5/2, and thus subdominant.

In the same way, one can calculate the dominant contribution to the y component of the K
integral, which is of the form (25) but with

N = N0(�) + O(
√

ε) = − 27s

8π2
ln

(
2σ1√

ε

)
,

so now we have∫ ∞

−∞
v · K · n̂|ydψ2 ≈

∫ ∞

−∞

N0(�)

(D0 + �2/Dm)2 d� = 1

2π
ln

( √
ε

2σ1

)
+ K (out)

y (0). (27)

As before, the outer contribution to the integral on scale φ2/ε must be the same as that for the cusp
expansion of Sec. III. This constant K (out)

y (0) has been calculated in Appendix B 2 for the special
case of the Jeong-Moffatt geometry.

We can now verify that the interface shape (2), together with the tangential velocity (8), satisfies
the integral equation (3) on the scale of the cusp. In the limit ε → 0 the external flow is once more

v(ext) =
(

O(ε3/2),
9

16π
ln

√
3ε

16
+ O(ε)

)
. (28)

Thus, for the x component we have using Eqs. (22), (23), and (26) that

1

4π
ln

(
ε

4σ 2
1

)
1 + cσ 2

1

σ1

√
ε = √

ε
1 + cσ 2

1 /3

πσ1
−

[
1 + cσ 2

1 /3

πσ1
+ 1 + cσ 2

1

2πσ1
ln

(
2σ1√

ε

)]√
ε,

which is satisfied for any c. This confirms that locally the cusp is determined up to a free constant c
only, which then is set by the external flow and the boundary conditions.

As for the y-component, the corresponding balance is, using Eqs. (22), (24), and (27), that

1

4π
ln

(
ε

4σ 2
1

)
= − 1

2π

[
ln

(
εσ 2

1

2

)
− 1

]
− J (out)

y (0) − 1

2π
ln

( √
ε

2σ1

)
− K (out)

y (0) + 9

16π
ln

√
3ε

16
.

It is easy to check that the universal dependence on σ1, which comes from the inner contribution
to the integrals, is satisfied identically. The remaining constant is not universal, but it is easily
confirmed that with the constants calculated in Appendix B 2, the equation is satisfied identically
for the Jeong-Moffatt geometry.

V. CONCLUSIONS

In conclusion, we have shown that two-dimensional flows exhibiting free-surface cusps in the
limit of strong driving, previously found using exact methods, have a universal structure that
applies to any flow geometry. First, we have shown that the tip of the cusp, where the interface has a
parabolic profile, is in itself an exact local solution to Stokes’ equation, resulting from a balance of
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viscous stresses and surface tension. This inner solution consists of the leading order expression of
Eq. (1) for the interface shape, x = ε2ψ and y = ε2ψ2/2, together with the tangential velocity (7).
Such a flow was considered already in the exact solution of Hopper [43], and suggests that the same
type of local solution applies to the merging of cylinders [34], allowing for uniform translation
[30,44].

Second, the intermediate self-similar solution (2) is driven by the point forcing exerted from the
cusp tip, and the tangential velocity is described by Eq. (8). Third, the curvature of the tip of the
cusp grows exponentially with the strength of the driving. If this strength of driving is described by
the external velocity at the position of the cusp, as in Eq. (16), the both the exponent, as well as the
prefactor, are nonuniversal, and depend on the details of the outer flow.

This is illustrated by another exact solution of the flow equations, describing an extensional flow
around a two-dimensional “bubble” [11]. The external flow (C1), apart from the flow strength λ,
contains a nonlinearity of amplitude c. As a result, the character of the flow can be varied, and the
effect on cusp formation be studied. The calculation of the cusp curvature is described in detail
in Appendix C. It is shown that in the asymptotic limit of large curvature, the tip curvature once
more grows exponentially, cf. Eq. (C8). However, both the prefactor and the exponent depend on
the parameter c, and hence cannot be universal. However, as demonstrated in Eq. (19), the exponent
becomes universal if the capillary number is defined suitably as a flow speed in the presence of the
cusp interface.

The advantage of having a local solution, as derived in the present paper, is that it may serve
as a building block of a more complicated solution, for example containing several singularities,
or existing in dimensions higher than two. As concerns the first possibility, out of two cusp
singularities, a singularity of higher order can be constructed [22], which we expect can be shown
to be a solution of free-surface Stokes flow using the same method as used here. As for higher
dimensions, in practice no flow will be exactly two-dimensional. Instead, the flow intensity may
vary in the third direction along the cusp line, as a result of which the two-dimensional solution
“unfolds” [1] into the third dimension. Another interesting question concerns the transition between
two-dimensional cusps (treated here), and three-dimensional, near conical tips [38], which one
should be able to address with an understanding of the local cusp solution.

APPENDIX A: THE JEONG-MOFFATT SOLUTION

1. The free surface

In the exact solution of Ref. [2], the free surface is given by the complex mapping

w(ζ ) = a(ζ + i) + (a + 1)i
ζ − i

ζ + i
, (A1)

where ζ = eiθ . Taking the real and imaginary parts yields

x = a cos θ + (a + 1) cos θ

1 + sin θ
, y = a(sin θ − 1), (A2)

where the y coordinate has been shifted so that (x, y) = (0, 0) at the cusp θ = π/2. Putting a =
−1/3 + ε̄, where ε̄ is called ε in the notation of Ref. [2], the singularity is reached for ε̄ → 0. The
mapping (A2) first becomes noninvertible for θ = π/2, so to describe the neighborhood of the cusp,
we put θ = π/2 − ϕ and expand in ϕ. Then the curvature, in units of the distance d between the
double dipole and the free surface, is κ = 4/(27ε̄2); thus, ε̄ = (2/

√
27)ε.

Expanding in ε̄ and ϕ, where we take ϕ = O(
√

ε̄), we have

x = 3ε̄

2
ϕ + ϕ3

12
, y = ϕ2

6
.

To bring that into the form (1), we substitute ϕ = √
3εψ , from which we find c = 33/2/4.
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2. The tangential velocity

We use the exact solution to find the velocity field in the limit of vanishing ε, which we then
demonstrate to be part of a local solution to the integral equation (3). Since the interface is stationary,
we only need the tangential velocity u0. According to Ref. [2], Eq. (3.11), if α is the dipole strength
driving the flow, this is

u0 = − α

H (a)
(1 + sin θ ) cos θ |w′(eiθ )|I (sin θ ; a), (A3)

where (a < 0)

H = − a(3a + 2)2

1 + a + √−2a(a + 1)
K (m)

and

I (ζ ; a) = 4

(t1 − ζ )
[
a + 1 + √−2a(a + 1)

](
K (m) − t1 + 1

ζ + 1
�(n, m)

)
,

with

t1 = −a(2a + 1) + (a + 1)
√−2a(a + 1)

a(3a + 2)
, n = 2(ζ − t1)

(ζ + 1)(1 − t1)
,

m = 2(− 2a
a+1

)1/4 + (− a+1
2a

)1/4 ,

where K (m) and �(n, m) are the usual elliptic integrals of the first and third kinds, respectively, as
defined in Ref. [45]. According to Ref. [2], Eq. (2.38), α/vη = H (a)/4π , where vη = γ /η is the
capillary velocity, and so in units of vη:

u0 = − 1

4π
(1 + sin θ ) cos θ |w′(eiθ )|I (sin θ ; a). (A4)

For ζ real between −1 and 1, �(n, m) has to be interpreted as a principal value. To avoid this,
we first express �(n, m) through

RJ (x, y, z, p) = 3

2

∫ ∞

0

dt

(t + p)
√

(t + x)(t + y)(t + z)
,

as defined in Ref. [46], and then use identity (6.11.21) of Ref. [46] to arrive at

�(n, m) = K (m) + n

3
Rj (0, 1 − m2, 1, 1 − n) = m2

m2 − n
K (m) + nm2(1 − m2)

3(m2 − n)2
Rj (0, q, 1, p),

where q = 1 − m2 and p = n(1 − m2)/(n − m2) > 1. To obtain an approximation to �(n, m) that
is uniform in θ , we rescale and then split the integral into two pieces:

Rj (0, q, 1, p) = 3

2

∫ ∞

0

dt

(t + p)
√

t (t + q)(t + 1)
= 3

2q3/2

∫ ∞

0

ds

(s + r)
√

s(s + 1)(s + q−1)

= 3

2q3/2

(∫ q−1/2

0
ds +

∫ ∞

q−1/2
ds

)
,

where r = p/q = n/(n − m2). Since q = (3/16)ε2 + O(ε3), for ε → 0 we can make the uniform
approximations s + q−1 ≈ q−1 in the first integral, and s + 1 ≈ s in the second, which results in
integrals which can be performed analytically to give

Rj (0, q, 1, p) ≈ 3

2q
I1(q−1/2) + 3

2
I2(q1/2), (A5)

124001-12



VISCOUS FREE-SURFACE CUSPS: LOCAL SOLUTION

FIG. 3. The exact solution for the tangential velocity (A4), for ε = 0.1 (solid line). The dashed line is the
uniform approximation (A7).

where

I1(s) =
arccoth 2rs+r−s

2
√

r
√

r−1
√

s
√

s+1√
r
√

r − 1
, I2(t ) =

2arccoth
√

t+1√
p−1

+ ln
√

t+1−1√
t+1+1

√
p − 1

p
√

p − 1
.

With these simplifications, we can now compute a series expansion of u0 in ε at constant ψ ; this
yields Eq. (7) at leading order.

3. Matched asymptotic description

It is instructive to represent the tangential velocity, using the expansions implied by Eqs. (10)
and (11), to obtain a uniformly valid expression. The inner expansion is given by Eq. (7), the outer
expansion follows from taking the limit of Eq. (A4) as ε → 0 at constant φ, using the approximation
(A5). The result is

u(out)
0 (φ) = s

√
5 − 3c2 − 2c

4π (1 − c)
ln ε + s

π
√

1 − c2(1 − c)

×
[

1 − c

2
arccoth

(
9 − 7c2 − 2c

4s
√

5 + 3c
√

1 − c

)
−

√
5 − 3c2 − 2c

√
1 − c2

(
ln 2 − ln 3

8

)]
,

(A6)

having put c = cos(
√

3φ) and s = sin(
√

3φ) for brevity. Expanding the inner expansion (7) for large
φ, and the outer expansion (A6) for small φ, one obtains the description (8), valid in the overlap
region. In other words,

u0(φ) ≈ − 1

π
ln

(√
1 + (φ/ε)2 + φ/ε

)
+ u(out )

0 (φ) + 1

π
ln

2φ

ε
(A7)

is a uniform approximation, valid in the limit ε → 0. As seen in Fig. 3, it already works quite well
for ε = 0.1; for ε = 0.01 the two curves are virtually indistinguishable. In the limit of small φ,
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expanding u(out)
0 (φ), Eq. (A7) becomes

u0(φ) ≈ − 1

π
ln

(√
1 + (φ/ε)2 + φ/ε

)
− 21

32π
φ2 ln ε + 168 ln 2 − 21 ln 3 − 13

64π
φ2 + O(φ4).

(A8)

APPENDIX B: CALCULATION OF INTEGRALS

1. Inner integrals

In the following, we focus on the x component, but the y component can be treated in a similar
fashion. In the inner expansion, for the integrand of the J integral we find to leading order in ε that

κJ · n̂|x =− ψ2

8π
(
1 + ψ2

2

)3/2 ln
[(

(ψ1 + ψ2)2 + 4
)
(ψ1 − ψ2)2

]

+ 1

2π

ψ2 − ψ1(
1 + ψ2

2

)3/2
[(ψ1 + ψ2)2 + 4]

+ ψ2 ln(2/ε2)

4π
(
1 + ψ2

2

)3/2 (B1)

and

κJ · n̂|y = ln(ε2/2)

4π
(
1 + ψ2

2

)3/2 + ln
[(

(ψ1 + ψ2)2 + 4
)
(ψ1 − ψ2)2

]
8π

(
1 + ψ2

2

)3/2

+ ψ2
2 − ψ2

1

4π
(
1 + ψ2

2

)3/2
[(ψ1 + ψ2)2 + 4]

. (B2)

The K-integral, however, yields for the inner expansion:

v · K · n̂|x = 4u0(ψ2)

π

ψ2(ψ1 + ψ2) + 2(
1 + ψ2

2

)1/2
[(ψ1 + ψ2)2 + 4]2

(B3)

and

v · K · n̂|y = 2u0(ψ2)

π

(ψ1 + ψ2)(ψ2(ψ1 + ψ2) + 2)(
1 + ψ2

2

)1/2
[(ψ1 + ψ2)2 + 4]2

. (B4)

We focus on verifying Eq. (13); Eq. (14) is treated similarly. To this end we split Eq. (13) up in
the form

−arcsinh(ψ1)√
1 + ψ2

1

= −Jx1 + Jx21 + Jx22 + Kx, (B5)

where

Jx1 =
∫ ∞

−∞

ψ2 − ψ1

(1 + ψ2
2 )3/2[(ψ1 + ψ2)2 + 4]

dψ2,

Jx21 =
∫ ∞

−∞

ψ2 ln((ψ1 + ψ2)2 + 4)

4
(
1 + ψ2

2

)3/2 dψ2,

Jx22 =
∫ ∞

−∞

ψ2 ln |ψ1 − ψ2|
2
(
1 + ψ2

2

)3/2 dψ2,

Kx =
∫ ∞

−∞

8arcsinh(ψ2)

π

√
1 + ψ2

2

ψ2(ψ1 + ψ2) + 2

[(ψ1 + ψ2)2 + 4]2
dψ2.
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The contribution Jx1 is of the form ∫
P(x)

Q(x)
√

1 + x2n dx, (B6)

where P(x) and Q(x) are polynomials, so that primitives can be found using a method described in
Ref. [45]. We calculated the definite integral Jx1 in terms of elementary functions, using MAPLE.
The contributions from Jx21 and Jx22 are simplified integrating by parts, the result is

Jx21 =
∫ ∞

−∞

(ψ1 + ψ2)

2[(ψ1 + ψ2)2 + 4]
√

1 + ψ2
2

dψ2,

which MAPLE integrates in terms of elementary functions. To calculate Jx22, we note∫
ψ2 ln |ψ1 − ψ2|(

1 + ψ2
2

)3/2 dψ2 =
∫

dψ2

(ψ2 − ψ1)
√

1 + ψ2
2

− ln |ψ1 − ψ2|√
1 + ψ2

2

= −
arcsinh 1+ψ1ψ2

|ψ1−ψ2|√
1 + ψ1

− ln |ψ1 − ψ2|√
1 + ψ2

2

,

from which we find

Jx22 = −arcsinhψ1√
1 + ψ2

1

,

which cancels the left-hand side of Eq. (B5).
Finally, Kx, whose integrand has branch points at z = ±i, can be simplified using contour

integration. We choose branch cuts that extend from ±i to infinity along the imaginary axis, so
that for z = it , √

1 + z2 = ±i
√

t2 − 1, arcsinh(z) = iπ

2
± ln

(√
t2 − 1 + t

)
,

to the right and left of the upper branch cut, respectively. Further, the integrand has a pole at ψ2 =
2i − ψ1. Thus, choosing as the contour the real axis, plus a circle at infinity, avoiding the upper
branch cut, one finds

Kx = −8

{∫ ∞

1

2 + it (ψ1 + it )dt√
t2 − 1[(ψ1 + it )2 + 4]2

}
− 2π
{Res( f , ψ2 = 2i − ψ1)},

where f (ψ2) is the integrand of Kx.
The integral over t can again be performed in terms of elementary functions, using MAPLE,

which shows that indeed

Kx = Jx1 − Jx21,

which demonstrates Eq. (B5) and thus Eq. (13).

2. Constants in the integral equation

In the y component of the integral equation (14), we have computed integrals up to constants only,
since the constants depend on the particular problem at hand. However, as a test of our method, it is
instructive to calculate all constants based on the exact solution [2], and to verify Eq. (15).

Beginning with the left-hand side of Eq. (15), the external flow is

u − iv = − iα

(z + i)2
= −vη

iH (a)

4π (z + i)2
, H (a) ≈ ln(32/(9ε̄))/4 = ln(16/(

√
3ε))/4, (B7)
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and the tip of the cusp is at z = 2ai = (−2/3 + 2ε̄)i. Thus, to leading order, in units of vη, the y
component of the external velocity is

v(ext) = 9

16π

(
ln ε + ln

√
3

16

)
. (B8)

The integrals on the right-hand side of Eq. (15) go from ϕ = −π to ϕ = π , so with θ = π/2 −√
3εψ and the inner/outer expansion f (ψ2) = f0(ψ2) + F1(φ2)ε we have

∫ π/(
√

3ε)

−π/(
√

3ε)
f (ψ2)dψ2 =

∫ π/(
√

3ε)

−π/(
√

3ε)
f0(ψ2)dψ2 +

∫ π/(
√

3ε)

−π/(
√

3ε)
F1(φ2)dψ2

=
∫ ∞

−∞
f0(ψ2)dψ2 +

∫ π/
√

3

−π/
√

3
F1(φ2)dφ2,

having taken the limit ε → 0 and substituting ψ2 = φ2/ε in the second step. The inner expansion
f0 for both J and K integrals is universal, and determined by the cusp tip alone. Thus, the inner
integrand for the J integral is

f (Jy)
0 = ln(ψ2

2 (ψ2
2 + 4))ψ2

2 − 2 ln(2)ψ2
2 + 2ψ2

2 + 4 ln(ψ2
2 (ψ2

2 + 4)) − 8 ln(2)

8(ψ2
2 + 1)3/2(ψ2

2 + 4)π
+ ln ε

2π (ψ2
2 + 1)3/2

,

see Eq. (23). However, for the K integral:

f (Ky)
0 = −

2 ln
(√

2 + ψ2
2 + ψ2

)
ψ2(ψ2

2 + 2)

π2
√

1 + ψ2
2 (4 + ψ2

2 + 4)2
.

Next, in the outer expansion, to compute F1, the full expressions for the shape, and Eq. (A4) for
the tangential velocity, using the approximation (A5), are evaluated in the limit ε → 0 at constant
φ. The results are

F (Jy)
1 = 6

√
3s(1 + c)

π
√

5 + 3c2 + 8c(24c + 40)

×
[

2 + c

2
ln

(1 + c)2

(1 − c)s2
+ (1/2 − ln(2)/2 + ln(3))c − ln(2) + 2 ln(3) + 1/2

]
,

and

F (Ky)
1 = − 3(3 + c)s

4π
√

15 − 9c2 − 6c
u(out)

0 (φ),

for the J and K integrals, respectively; here u(out)
0 is the tangential velocity given by Eq. (A6). We

have once more abbreviated c = cos(
√

3φ) and s = sin(
√

3φ). For a numerical evaluation, it is
useful to note that the K integrand has an expansion for small φ that reads

F (Ky)
1 = (ln 2 + ln φ)

√
3

2π2
−

√
3(198 ln 2 + 30 ln φ − 13 − 21 ln 3)φ2

128π2
+ O(φ4).

Coming to the integrals, the contributions proportional to ln ε are

2
∫ ∞

0

ln ε

2π
(
1 + ψ2

2

)3/2 = ln ε

π
(B9)
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FIG. 4. A two-dimensional “bubble” in the flow (C1), as described by Eq. (C2). Parameters are β = 0.22
and c = 1, from which follows α = 1.090155464, λ = 0.3252008219, and κ = 1171.7 . . . .

for the inner J integral, and

−3 ln ε

8π2

∫ π/
√

3

0
(c2 + 4c + 3)dφ ln ε = − 7

16π
ln ε (B10)

for the outer K integral. Since the numerical values of the remaining constants are not very
significant for our purposes, we have not attempted to calculate them analytically. Numerically,
we find for the inner integrals that

J (in)
y (0) = −0.06130418454 + ln ε/π, K (in)

y (0) = −0.4288041588;

these are universal numbers, in view of the universal nature of the inner expansion. For the outer
integrals, a numerical evaluation of integrals yields

J (out)
y (0) = 0.2112196778, K (out)

y (0) = −0.119188 − 7 ln ε/(16π ).

It is easy to check that this satisfies Eq. (15) to the precision at which the integrals were computed,
as required.

APPENDIX C: THE ANTANOVSKII SOLUTION

Following Ref. [11], we consider a two-dimensional “bubble” of undeformed (circular) radius R
in the nonlinear extensional flow

u(ext) = λ

2

[
x + cx(x2 + 3y2)

]
, v(ext) = −λ

2

[
y − cy(3x2 + y2)

]
; (C1)

We take units of length to be R, and Rη/γ to be units of time. The bubble is described by the
complex mapping

z = α + βζ 2

ζ (1 − γ ζ 2)
, ζ = eiθ , (C2)

where α, β, γ are real parameters. It has been shown [11] that

α =
√

2(1 + β2)

Ac(β ) + [
A2

c (β ) − B2
c (β )

]1/2 , γ = cαβ, (C3)

where Ac(β ) = 1 − cβ2[2(1 − c) + cβ2] and Bc(β ) = 4c2β2(1 + β2)[3 + c(2 + c)β2]. Then the
strength of the flow is given by

λ = β

πα

∫ π

0

dθ

|α(1 − 3γ eiθ ) − βeiθ (1 + γ eiθ )| . (C4)
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An example of a bubble shape is shown in Fig. 4, which develops near cusps at either ends.
Expanding about θ = 0, one finds to leading order the generic cusp

x = a0 + a2θ
2, y = b1θ + b3θ

3, (C5)

with a0 = (α + β )/(1 − γ ) the position of the cusp tip, and

a2 = (9α + β )γ 2 + (6β − 2α)γ + α + β

2(γ − 1)3
, b1 = (β + 3α)γ + β − α

(γ − 1)2
,

b3 = (−β − 27α)γ 3 + (−23β − 17α)γ 2 + (−23β − 5α)γ − β + α

6(γ − 1)4
.

Thus, the formation of the cusp is once more associated with the interface self-intersecting. The
curvature κ diverges for b1 → 0, and its value is

κ = −2a2

b2
1

= [(9α + β )γ 2 + (−2α + 6β )γ + α + β](1 − γ )

�2
, (C6)

with � = α − β − γ (3α + β ).

1. The curvature

We want to calculate the curvature as a function of flow strength. To this end we evaluate the
integral (C4) in the limit � → 0. Writing the integrand in the form f (θ,�) and expanding in �,
one finds f = F0(θ ) + O(�), with

F0 = 3α + β√
8 cos(θ )2α2β2 − 2(3α2 + β2)2 cos(θ ) + (12α3β − 4αβ3) sin(θ )2 + 2β4 + 4α2β2 + 18α4

.

But F0 diverges like 1/θ for small θ , so we need an inner expansion in �, but at constant ξ = θ/�:
f = f−1(ξ )� + . . . . The inner limit of the outer expansion

O1 = 1

�

3α + β

(α + β )(3α + β )

coincides with the outer limit of the inner expansion, which is

f−1 = 3α + β√
(3α + β )2 + (α2 + β2)2(3α − β )ξ 2

.

Thus, we can write

λ = β

πα

[∫ π

0
(F0 − O1)dθ +

∫ π

0
f−1dξ

]
,

which results in

λ = �0 ln

[
4(α + β )(3α − β )(π + √

π2 + a)

π (3α2 + β2)a

]
≈ �0 ln(d1/�), (C7)

where a = (3α + β )�/[(α + β )(3α − β )], and

�0 = β(3α + β )

πα(α + β )(3α − β )
, d1 = 8(α + β )2(3α − β )2

[(3α2 + β2)(3α + β )]
,

expanding in �. Hence, finally, in the limit of large curvatures,

κ =
(
3α2 + β2

)2

2(3α − β )3(α + β )(3α + β )
exp

{
32πα2

(3α + β )2
Ca

}
, (C8)
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FIG. 5. The logarithm of the curvature as a function of Ca for Antanovskii’s solution, holding c = 1 fixed.
The solid line is a numerical solution of Antanovskii’s solution using Eqs. (C6) and (C4); the dashed line is the
approximation (C8), with α = 1.101072 . . . and β = 0.2253872 . . . , leading to κ ≈ 0.011245756e9.789Ca.

where Ca is the external velocity (C1), in units of γ /η, evaluated at the position of the cusp.
Here α, β are to be evaluated for fixed c, with � = 0. Figure 5 demonstrates that this captures
the exponential asymptotics of the curvature exactly. Clearly, the coefficients appearing in Eq. (C8)
are not universal but depend on c (and they differ from those of Jeong and Moffatt’s solution [2]).
For example, for c = 0.1 the result is κ ≈ 0.01265e7.79547Ca, while for c = 1, κ ≈ 0.01246e9.7887Ca.
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