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The capillary break-up of a polymer solution evolves via a series of stages. After
the initial instability a long-lived cylindrical filament is formed, which thins expo-
nentially in time, while the flow is purely extensional. During the final stages of the
thinning process, at which the polymers are stretched sufficiently for the filament
to become unstable to a Rayleigh–Plateau-like instability, a complex flow pattern
develops, which we describe here. Achieving a high spatial resolution well below
the optical Rayleigh limit, we describe both the formation of individual droplets
as well as that of periodic patterns. Following the periodic instability, a blistering
pattern appears, with different generations of smaller droplets. At sufficiently high
polymer concentrations, the filament does not break at all, but a solid polymeric fiber
with a thickness well below a micron remains. The experiments were performed
for various polymer and solvent systems, all of which showed the same qualitative
behavior for most of the observed features. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3684750]

I. INTRODUCTION

When a droplet of a simple liquid is placed between two plates which are drawn apart gently,
the liquid bridge becomes unstable to the Rayleigh–Plateau instability. The final stages of pinch-off
are governed by self-similar laws,1, 2 and the minimum neck diameter decreases linearly in time, at
least if viscous forces dominate inertial ones. An alternative experiment is that of a droplet detaching
from a faucet. As the pinch-off phenomena reported here are local in character, both experiments
yield similar results.

The addition of a small amount of flexible high molecular weight polymer does not alter the
primary Rayleigh–Plateau instability significantly. But when the flow becomes strong enough,3 the
polymer chains are stretched, and the effective viscosity of the solution increases dramatically,
slowing down the pinching.4 The experiment using a polymeric liquid can be repeated by the reader
quite easily, by placing a droplet of saliva between two fingers and separating them (see Fig. 1). One
observes the formation of a cylindrical filament, while the bulk of the fluid collects in two “main”
droplets at the upper and lower end. The reason for the formation of the filament is that any localized
pinching produces a corresponding extensional flow, by which polymers are stretched. Thus the
viscosity increases, and further pinching is inhibited.

The flow inside the filament is purely extensional, and polymers are stretched continuously,
resulting in a strong increase of the viscosity. This leads to thinning of the filament according to an
exponential law,4–11 as opposed to the finite time singularity found for a Newtonian liquid.2 At the
end of stretching process, the polymer solution possesses an elongational viscosity several orders of
magnitude greater than that of the solvent. The polymers in the main drop remain in an essentially
relaxed state. Both the experimental and the theoretical determination of the elongational viscosity
of complex liquids remain a challenging task, and capillary break-up experiments are a common
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FIG. 1. The final stages of the break-up of a droplet of human saliva (for t ≤ 92 s images are 0.21 × 1.37 mm, the last three
images are 0.42 × 3.1 mm). Its behavior is representative of other model polymer solutions described here, but note the slow
time scale, which is in the order of a minute. Time is counted from the formation of a cylindrical filament, which is shown
in the first panel. The filament is bordered by a large “main” bead at the bottom, only a small part of which is shown, to
accommodate a sufficient number of images. At t = 26 s a constriction forms above the lower drop, and a small bead becomes
visible just above it. From about t = 38 s, the filament is unstable to the formation of a periodic array of droplets, akin to a
Rayleigh instability. Subsequently, a blistering pattern of droplets of very different sizes is formed. The filament remained
stable for several minutes, and final rupture was initiated by agitating the system. This is shown in the magnified last three
images on the right. They illustrate the stiffness of the (solid) polymeric fiber that is formed between the remaining droplets
and which remains essentially straight.

method of deducing extensional rheological properties of a liquid sample. A commercial version of
this capillary break-up rheometer is also available (CaBER, Thermo Fisher Scientific, Karlsruhe,
Germany).

A highly stretched filament is shown in the first panel of Fig. 1, near the lower main drop. In
the next two panels, an isolated droplet grows at the lower end of the filament, followed by the
formation of a periodic structure. Since any localized pinching is stabilized by a further increase
of the polymeric viscosity, we conclude that the instability of the cylindrical filament is associated
with the polymer strands having reached nearly full stretch. We will refer to all structures resulting
from the instability of a highly stretched polymer strand as a “blistering” pattern. From the 5th to the
8th panel, the periodic structure becomes increasingly nonlinear, leading to the formation of smaller
drops of widely varying sizes.12, 13 Eventually a solid nano fiber is formed as a long-lasting remnant
of the fluid filament,14 shown in the last three panels of Fig. 1. As illustrated in Fig. 1, only strong
mechanical perturbations can break the fiber.

There exist two fundamentally different physical mechanisms leading to the formation of drops
(or beads) of different sizes on a polymeric filament. The first is associated with the “beads-on-
a-string” structure,3, 5–8, 11 and refers to the formation of a drop pattern out of an initially relaxed
state. Essentially, this pattern is closely related to the drop and satellite drop structure produced by
the Newtonian solvent alone. Inside a drop the polymer remains relaxed, but in the fluid necks in
between the polymer becomes stretched, leading to the formation of cylindrical filaments. The result
is a pattern which alternates between almost spherical drops and thin filaments, which thin at an
exponential rate.6, 10

If the solvent viscosity is small, the beads-on-a-string mechanism can lead to more compli-
cated patterns including smaller satellite drops between main drops,15 which are a remnant of the
corresponding structure observed for Newtonian liquids. This correspondence was analyzed exper-
imentally and theoretically in Ref. 3, where it was shown that the formation of satellites depends on
the relation between the polymer timescale and the timescale of the initial inviscid Rayleigh insta-
bility. More detailed experimental16 and computational17, 18 studies have investigated the conditions
under which more complicated beads-on-a-string structures may be formed. Note that from a point
of view of theoretical modeling, the beads-on-a-string structures should be well described by the
Oldroyd-B model, which allows for unlimited stretch of polymers. As a result, polymeric filaments
will never break in this description, but continue to thin exponentially.

Downloaded 14 Feb 2012 to 137.222.10.58. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



023101-3 The final stages of capillary break-up Phys. Fluids 24, 023101 (2012)

FIG. 2. The final stages of the breakup of a droplet of 2000 ppm PEO in 60/40 wt% glycerol/water. Images are 0.11
× 0.93 mm, and the time interval between images varies between 5 and 20 ms. The solvent viscosity is about 10 times that
of water. One observes the growth of isolated beads at the bottom and at the upper end, as the growth of a coherent pattern.

The blistering mechanism investigated here, by contrast, starts from a highly stretched filament,
and proceeds to a structure of partially relaxed states, composed of very small droplets, joined by
filaments. As explained above, this instability is related to polymer strands reaching full stretch, and
can only be described theoretically with models which include the finite extensibility of polymers,
such as the Giesekus or FENE models.19 In Ref. 20, it was shown that finite extensibility leads to
a transition from exponential to localized linear thinning, as expected for a Newtonian fluid. The
solvent viscosity, on the other hand, is unimportant, as illustrated in Fig. 2, using a solvent 10 times
more viscous than the pure water used elsewhere in this study. Yet essentially the same phenomena
of isolated and coherent bead growth are observed. This is to be expected, since the extensional
viscosity of polymer solution is far greater than that of the solvent.

In Ref. 21, the formation of a hierarchy of thinner and thinner filaments out of an initial,
highly stretched polymeric filament was predicted on the basis of a sequence of instabilities. The
mechanism for the instability, however, remained unclear since the calculation was performed in the
framework of the Oldroyd-B model, for which a filament should be stable.10, 20 The formation of a
hierarchy of beads and connecting filaments from a highly stretched polymeric fiber was investigated
experimentally in Refs. 12 and 13. The process was found to be self-similar, but the scaling laws
were different from those predicted by Ref. 21.

The current paper is an extension of an earlier study.14 We focus on the blistering instabilities
suffered by the thin filament containing a solution of highly stretched polymers. We find that the
sequence of instabilities suffered by the polymeric filament is considerably more complicated than
reported earlier, and consists of both localized and period patterns. We try to gain insight into the
physical properties of each type of instability investigated. At the end a solid fiber is formed,14 whose
properties and instabilities we investigate in detail.

II. EXPERIMENTAL SETUP AND SAMPLE SOLUTIONS

A. Experimental setup

Capillary break-up was studied using both the CaBER setup and drops falling from a faucet.
For the former a well defined quantity of the sample liquid is placed with a pipette between two
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steel discs with a diameter of 2 mm. The lower disc is fixed and the upper disc can be drawn apart
with a linear motor (P01-23x80, Linmot, Spreitenbach, Switzerland). For the latter, the liquid was
driven quasi-statically with a syringe pump through a nozzle of a diameter of 3 mm. Both protocols
lead to very similar results, but with the CaBER setup it was easier to obtain high optical resolution
data while with the droplet experiment it was easier to obtain good statistics as the nozzle could be
feed continuously and one could observe many droplets in a row.

A 100 W halogen lamp with an infrared shield is used to produce a shadowgraph image of the
capillary bridge. The cylindrical filament is optically almost identical to a cylinder lens. Light that
passes through the center of the filament is not diffracted and produces a bright line in the middle
of the filament (cf. Fig. 1). Light that passes through the outer regions is diffracted, so these parts of
the filament appear dark. The filament is filmed by a 10bit high speed camera (X-Stream XS-5, IDT,
Tallahassee, USA) at 1 kHz frame rate and 1 ms shutter time. The camera has 1280x1024 pixels
with a size of 12×12 μm. Microscope objectives with different magnifications of 4, 10, and 20 fold
were used. The latter is a Nikon long working distance objective (WD = 7 mm) with a numerical
aperture of NA = 0.45. At the shortest light wave length with reasonable sensitivity of the camera
of � ≈ 450 nm, this yields a diffraction limited resolution of δ=0.6 μm.

To observe the growth of very small perturbations on the polymeric filament, the resolution has
to be improved far below this value. In Ref. 14, we showed that we could resolve the amplitude of the
sinusoidal deformation of the cylindrical filament down to a resolution of 80 nm. This was achieved
by fitting the data to a model profile of a sine function with wave number, phase, and amplitude as
free parameters over many wavelengths. This method that is often referred to as super-resolution is
thus nonlocal in character. To be able to observe localized objects with an equally high resolution,
we have developed a completely different technique, which is based on intensity data along a cut
perpendicular to the filament axis alone, see Fig. 3. The details will be published in a separate
publication.22

The idea is to calculate the light intensity near the edge of a long and perfectly absorbing
object of a given thickness, using Fresnel theory. We then model our light source as a black body
of temperature T = 3000 K and perform the convolution of the diffraction pattern for a given wave
length with the energy density distribution of a black body. As a result, most of the oscillations
presented in the Fresnel diffraction pattern go away and only a single maximum remains, see Fig. 3.
The resulting theoretical curve can be fitted to the experimental grey scale data, using the filament
thickness as an adjustable parameter. Using this technique, we were able to bring down the achievable
spatial resolution to a precision of 30 nm. The accuracy of this method is not as good and could be
estimated to 1 μm. We are mostly interested in relative deformations of our filament and then the
reproducibility is the more relevant quantity.

The depth of field of our optical setup was 5 μm, which made it very difficult to obtain sharp
images at the last stages. Filaments with a thickness of d ≈ 10 μm near the end of the thinning

FIG. 3. Right: Grey level image of a viscoelastic filament. The black line indicates the position where the intensity distribution
for the left graph was determined. Left: Measured (square symbols) and simulated (black line) intensity distribution around
the viscoelastic filament. The theoretical data are obtained by calculating the Fresnel diffraction from an object of thickness
19μm, and convolving it with the energy distribution of black body radiation.
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TABLE I. Samples used in this study.

Abbreviation Polymer Solvent cp(ppm) ηs(mPas) pv,25◦C (kPa)

PEO1k−w Poly(ethylene oxide) Water 1000 1 3.17
PEO2k−w Poly(ethylene oxide) Water 2000 1 3.17
PEO2k−x Poly(ethylene oxide) Xylol 2000 0.61 1.11
PEO2k−gl Poly(ethylene oxide) 40 wt% water + 60 wt% glycerol 2000 0.59 10.7
PAAA2k−ws Poly(acrylamide-co-acrylic acid) Water + 10 wt% sugar 2000 1.17 2.85
PS2k−dep Polystyrene Diethylphthalate 2000 8.75 0.00022
PS2k−dm f Polystyrene Dimethylformamide 2000 0.796 0.493

process were very sensitive to slightest distortions by air currents or showed non-reproducible
lateral movements in the order of several microns even when air currents were mostly suppressed
by an additional glass box around the capillary bridge. Only one in a hundred tries yielded images
that were sharp enough to allow a quantitative analysis with the sub-diffraction limited resolution
discussed above.

Still, all other measurements could be used, e.g., to determine the distribution of the final sizes
of the secondary droplets. The study of the very final stages was possible with the CaBER setup
only and by performing a protocol that differs from that of other groups,23 who try to pull the discs
apart as quickly as possible. However, this introduces additional oscillations on the capillary bridge,
which are prohibitively large for the observation of the final nano fiber regime. Instead, we used a
protocol described in Ref. 24, in which the two plates were moved apart slowly up to a distance of
l = 2.5 mm first, then held for several seconds to allow the liquid to fully relax. Then the plates
were drawn to l = 3.5 mm within 40 ms, only slightly exceeding the elongation necessary to initiate
the Rayleigh–Plateau instability leading to break-up. The release of capillary tension in the two
remaining half drops at both ends of the capillary bridge also lead to oscillations, but they were
sufficiently small to have vanished by the time the nano fiber was formed.

B. The sample solutions

Most of our quantitative measurements were performed with polyethylenoxide (PEO, Mw

= 4 × 106 g/mol) solutions in water, which is a model system for studies of capillary break-up of
polymer solutions. PEO is a very flexible polymer that is available at high molecular weights. To test
the general validity of our findings, especially of the final phase separation process and the formation
of the solid polymeric nano fiber, a series of measurements on very different polymer and solvent
systems have also been performed. In choosing other systems, we varied the solvent viscosity ηs,
as well as the polarity and the vapor pressure pv of the solvent (see Table I). These other systems
were 2000 ppm PEO (Mw = 4 × 106 g/mol) in Xylol, 2000 ppm polystyrene (Mw = 8 × 106 g/mol)
in diethylphthalate and in dimethylformamide, 2000 ppm poly(acrylamide-co-acrylic acid) (PAAA,
Mw = 5 × 106 g/mol) in a 10 wt% sugar water solution and human saliva, which has been obtained
from a healthy donor.

The PEO solutions were characterized by steady shear rheology. The PEO2k−w is shear thinning
in the range 0, 1 < γ̇ < 2000 s−1. The zero shear viscosity is η0 ≈ 50 mPas, and the stationary value
at high shear rates η∞ ≈ 4 mPas.10, 12, 25, 26 The surface tension as determined by the pendant drop
method is γ ∼60.9 mN/m. The characteristic time constant evaluated from the exponential thinning
regime was very sensitive to aging. For example, the time constant of the PEO sample decreased
from 130 ms to 40 ms after four days.

III. OVERVIEW

The main stages of the evolution of a polymeric filament are illustrated in Fig. 4. The filament
has formed from a relaxed state owing to the stretching of polymers by the extensional flow inside
the filament. The flow is driven by the capillary pressure difference between the thin thread and the
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FIG. 4. Inset: The minimum radius hmin(t). First the primary Rayleigh–Plateau instability evolves until at t = 0 ms the
polymers arrest the flow and a cylindrical filament is formed. The full line is an exponential fit to hmin(t) with time constant
τ ≡ ε̇ = 130 ± 30 ms. This study focuses on the final stages only which is shown in the main graph. The full line is the
same exponential fit as in the inset. From t = 200 ms, the filament becomes unstable to first a “breathing instability” and
then to the growth of droplets. The arrows indicate the times corresponding to the growth of droplets of the types shown in
Fig. 5. We observed single drops at the upper end (1), at the lower end (2) and in between along the filament (3), and the
periodic structure (4). At later stages, the time dependence of hmin(t) turns from exponential to linear (dashed line), with
slope α ≈ 6 × 104 m/s.

neighboring drops, which are at a much lower pressure. The pressure inside the thread is p = γ /hmin,
where γ is the surface tension and hmin the thread radius, which is very nearly constant during the
initial stages of thinning. The capillary pressure 2γ /R (R being the drop radius) inside the drop is
negligible by comparison. As a result, the fluid contained in the filament is emptying into the drops,
producing an elongational flow with elongation rate,

ε̇ = ∂t hmin

hmin
. (1)

On one hand, polymers are being stretched by the flow at a rate ε̇, leading to exponential increase
in the stress,

σzz = σ0eε̇t , (2)

supported by the polymers. Throughout, we will be concerned with solvents of low viscosity, whose
contribution to the total stress is negligible except at the very first stages of break-up, not considered
here. On the other hand, the stress (2) is being balanced by the capillary pressure difference, which
implies that the drop radius has to decrease like

h = h0e−ε̇t , (3)

consistent with a constant ε̇, defined by Eq. (1).
The value of ε̇ is set by the balance between stretching and polymer relaxation, which leads to

Ref. 6 ε̇ = 1/(3λp), where λp is the polymer relaxation time. Typical values for our experiment are
λp ≈ 50 ms. The growth of polymeric stress is often reported in terms of the extensional viscosity
ηE ≡ σzz/ε̇. To compute ηE, the flow in the crossover region between the thread and the drop has to
be evaluated,10 giving

ηE ≡ σzz

ε̇
= 3λpγ

hmin(t)
. (4)

For the case of our model system PEO2k−w (see Table I), the extensional viscosity reaches
ηE ≈ 300 Pas at t = 0.2 s, counted from the formation of the filament. This is five orders of magnitude
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FIG. 5. We observed four different kinds of instabilities leading to the formation of small droplets, which comprise the
“blistering” phenomenon. On the left, we sketch the location at which they appear, on the right the droplet formation is shown
on a thinning filament of PEO2k−w solution. Single growing droplets are distinguished according to their axial position on
the filament: at the upper end (1), at the lower end (2), and in the middle (3) of the thread. The fourth type is a sequence of
beads growing coherently (4). The black bar indicates a length of 100 μ.

larger then the elongational viscosity of the solvent, given by ηE (water) = 3ηshear = 3 mPas. As
long as the polymers continue to stretch, the filament is very stable: any local acceleration of its
thinning rate leads to greater stretch. But increased stretch enhances the polymer stress, inhibiting
further pinching. This observation explains the uniformity of the filament. However, at t = 200 ms
in Fig. 4, the polymers become fully stretched and the filament becomes unstable to a variety of
instabilities.14, 20 Based on this idea, Fontelos and Li.20 have argued that the dynamics of these
instabilities proceeds as if the fluid possessed an effective Newtonian viscosity ηeff ≈ ηE. At this
time, the thinning also ceases to be exponential.

The first instability that is usually observed in low viscosity solvents has been described in
Ref. 14 as “breathing”, which consists of periodic constrictions of the end of the filament. During a
constriction, the flow into the end drop is blocked, and as a result the extensional flow in the thread
stops. This is seen most clearly in the motion of tracer particles inside the thread, illustrating very
nicely the coupling between the interior of the thread and the crossover region toward the drop.
During the phase in which the flow stops, the thread ceases to thin, which is seen as small plateaus
in the minimum radius, plotted a function of time in Fig. 4.

Next we observe a variety of instabilities leading to the formation of tiny beads, illustrated in
Fig. 5. In earlier work of us and others,12–14 the focus was on instabilities leading to the growth
of periodic arrays of droplets, denoted by Eq. (4) below. As expected for a linear instability, the
shape of the sequence of beads is sinusoidal, and the amplitude grows exponentially. We termed
this phenomenon “blistering”,14 to emphasize the fact that it results from the partial relaxation of
polymer stress from a highly extended state, during the last stages of pinching. The well-known
“beads-on-a-string” structure,10 by contrast, originates from a relaxed state in the earliest stages of
pinching, leading to a periodically stretched and relaxed state.

In the present paper, we observe that apart from type (4) periodic beads there are three more
distinct types of instabilities, leading to the formation of isolated droplets. The isolated droplets are
well fitted by a Gaussian profile. For simplicity, we will refer to all instabilities, born out of a highly
stretched state, as “blistering”. Droplets can appear at the upper end of the thread (1), the lower
end of the thread (2), or in the middle of the thread (3), see Fig. 5. All beads grow exponentially at
first, once more indicating a linear instability. The beads at the lower end of the thread (2) and in
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the middle of the thread (3) then continue to grow like a power law, a fact we will explain below.
The growth of all types of beads eventually saturates and the bead size reaches a plateau. Note that
gravitational draining appears to be important, in that the instability observed at the upper end of the
filament is different from that observed at the lower end. Figure 4 shows a detail of the minimum
radius, illustrating the sequence of events in a particular case.

After the beads have reached their final, constant size, a second nonlinear phase is observed,
during which beads interact. This leads to the creation of successively smaller beads, which has
some aspects of self-similarity. We will refer to them as successive generations of beads. Ultimately,
one would expect the filament between two beads to thin further and break. However, it is usually
observed that the filament does not break at all, but persists permanently. Instead, a solid nano fiber
is formed, which will be described in Sec. VI.

IV. THE LINEAR INSTABILITY

All data presented in this section were taken on the PEO2k−w solution in a CaBER experiment.
We found that once the cylindrical filament was sufficiently stretched, it became unstable to four
different types of surface distortions, illustrated in Fig. 5. In the following, we will characterize the
amplitude-time law of the different types of beads. The timing of the measurements is illustrated in
Fig. 4. The profile of the deformed filament was fitted either with a Gaussian for single beads or a
sine function for the coherent forms.

A. Isolated beads

The form of the isolated droplets is well approximated by

h(z, t) = h0(t) + a(t)

w(t)
√

π/2
e
−2

(
z−zc (t)

w(t)

)2

, (5)

see Fig. 6. Here h0(t) is the radius of the filament outside the drops and a(t), w(t), and zc(t) are the
amplitude, width, and position of the perturbation.

Droplets at the lower end and in the middle of the filament (type (2) and (3)), grow on conical
portions of the filament, whose conical shape is essentially undisturbed, apart from the outward
bulge of the drop. By contrast, droplets near the upper liquid reservoir (type (1), see Fig. 5), exhibit
an inward bulge at their lower end, which interrupts the conical shape of the filament. Droplets of
type (1) grow in parallel to the “breathing” instability at the edge of the filament, described in more

FIG. 6. Radial profile of the single drop (3) shown in Fig. 5 with a Gaussian fit according to Eq. (5).
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FIG. 7. Temporal evolution of the amplitude of beads of type (1), which appear at the upper end of the filament (see Fig. 5).
Experimental data from four different runs agree well with the exponential growth law (6).

detail in Ref. 14. Their amplitude increases exponentially over a period of 15–20 ms, obeying the
functional form

ae(t) = a0 + a1 exp(ωt), (6)

shown in Fig. 7. After the time of exponential growth the radius remains constant, and the drops
remains at constant volume. The growth rate ω obtained from the fit is reported in Table II. There is
no theory that describes the Rayleigh–Plateau instability on a highly stretched viscoelastic filament,
but the linear stability of a viscous fluid thread of effective viscosity ηeff

2 predicts

ω = γ

6h0ηe f f
, (7)

TABLE II. The inverse rate of growth ω−1, the filament radius hmin at the beginning of
the growth of the respective droplets and the effective elongational viscosity ηeff calcu-
lated according to Eq. (7) for the different types of beads (indicated by numbers in brack-
ets). Below, the elongational viscosity as estimated from the exponential thinning of hmin,
cf. Eq. (4), and according to the linear law (9). The values for the growing beads refer to all
our measurements with resolution good enough to allow for quantitative analysis.

Type ω−1 [ms] hmin [μ m] ηeff [Pas]

(1) 6.3 8.6 7.6
(1) 9.8 8.6 11.6
(1) 6.9 8.6 8.4
(1) 6.9 8.0 9.0

(2) 1.6 11.5 1.4

(3) 1.1 10.3 1.1
(3) 1.2 9.2 1.3

(4) 3.6 7.0 5.3
(4) 1.9 7.0 2.8
(4) 2.1 8.6 2.5
(4) 4.2 8.6 5.1
(4) 3.1 8.0 4.0
(4) 9.0 12.0 9.0

Eqs.
(4) 300 ± 15
(9) 8 ± 2
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FIG. 8. (a) Temporal evolution of the amplitude of beads of type (2) and b) (3) (see Fig. 5). Data are fitted with the exponential
law (6) for early times, and with the algebraic law (11) for late times.

if h0 is the radius of the filament at that point when the respective droplets start growing. Using
Eq. (7), we have converted the observed growth rates into an effective viscosity, to be compared to
the extensional viscosity reported in Table II.

The temporal behavior of beads of type (2) and (3) (see Fig. 5) is more complicated, as it
shows two different growth regimes, see Fig. 8. At first their growth is exponential, as described by
Eq. (6), but with growth rates ω smaller than type (1) beads. After a period of 5 to 7 ms, the time
dependence of the amplitude changes from convex to concave (Fig. 8). In this second stage, the
amplitude increases much faster, as a result of pumping by the connecting filament, as we will
argue now. The radius of the filament is much smaller than the radius of the droplet and thus the
Laplace pressure is higher. Volume conservation describes how the volume of the drop VS increases
as that of the volume of the filament VC decreases,

dVS

dt
= −dVC

dt
. (8)

We model the drop as a sphere of radius rS, giving VS = 4
3πr3

S , while the filament is described
as a cylinder of length l and radius h0: VC = πh2

0l. For the regime where the polymer chains have
become fully stretched, the filament radius is expected to follow a linear law,20

h0(t) = α
γ

ηe f f
(t0 − t) . (9)

Here t0 is the extrapolated time of break-up, and the prefactor α = 0.07 is a numerical constant
appropriate for the similarity solution describing viscously dominated break-up. The data are not
sufficiently accurate to identify the crossover from viscous to viscous-inertial pinching,14 so we only
use a single linear law. Note that in actual fact break-up does not occur, but the filament is ultimately
stabilized as a solid thread is formed, as described in Sec. VI.

Inserting Eq. (9) into Eq. (8) and calculating the time derivative, one gets

dVS

dt
= 2πl B2 (t0 − t) , (10)

with B = αγ /ηeff. Integrating and solving for VS one finds that the amplitude a(t) = rS(t) − rC is

ap(t) =
[
�

(
t0t − 1

2
t2

)
+ r3

C

]1/3

− rC , (11)

where we have put � = 3lB2/2 = 3l(αγ /ηeff)2/2, and rC is the radius of the cylindrical filament.
Figure 8 shows that this power law well describes the data in the second growing regime. The only
fitting parameter is � from which we get l ≈ 800 μm which seems a reasonable estimate for the
length from which the droplet is pumped.
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FIG. 9. Radial profile of several droplets growing collectively, with a sinusoidal fit according to Eq. (12).

B. Periodic perturbations

The fourth type of linear instability is the growth of sinusoidal perturbations on the filament
(type (4), see Fig. 5). As illustrated in Fig. 9, the deformation of the interface is fitted by

h(z, t) = h0(t) + s(t)z + a(t) sin

(
2π

z − z0(t)

λ(t)

)
, (12)

r0(t) is the radius of the unperturbed cylindrical filament. The linear piece s(t)z accounts for the
slightly conical shape of the filament. The wavelength λ(t) is allowed to change in time, and a(t)
is the amplitude of the perturbation. Figure 9 shows how Eq. (12) is fitted to a perturbation at the
limit of the pixel resolution of our system. In Ref. 14, we describe how this method can be used to
achieve spatial resolution of 80 nm.

Figure 10 shows the growth of the amplitude of the sinusoidal pattern. We observe exponential
behavior until smaller beads start to grow between the primary beads, making the dynamics nonlinear.
This phenomenon will be discussed in Sec. V. Lacking a complete stability theory for this highly

FIG. 10. Temporal evolution of the amplitude of coherent beads (4), using Eqs. (6) and (12).
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FIG. 11. The reduced wavelength λ/h0 for the perturbation (12) for four different experimental runs.

stretched state, we once more use Eq. (7) to deduce an effective elongational viscosity ηeff; the values
are listed in Table II.

As seen in Fig. 11, the wavelength remains constant to a good approximation over the growth
of the sinusoidal perturbation. This is consistent with the assumption of a linear instability. There
is some scatter in the numerical value, but λ/h0 is generally between 9 and 12, just above the
value generally accepted for the Rayleigh–Plateau theory of inviscid pinch-off.2 This is surprising,
since the effective viscosity has risen to much higher values. Indeed, once we have determined ηeff,
we can estimate the wavelength of the most unstable perturbation according to Ref. 2,

λ

h0
= 2π

√√√√2 + ηe f f

√
18

ρh0γ
. (13)

This yields typical values of λ/h0 ≈ 175, much larger than what is observed in experiments.
A possible explanation is that a solid core as formed at the center of the thread, a scenario that

will be explored further in Sec. VI. A linear stability analysis of a Newtonian fluid thread with a
cylindrical solid core has been investigated in Ref. 27. In the absence of inertia, the effect of the solid
core is to shift the most unstable wavelength to much smaller values, even if the radius of the
solid core is smaller than that of the thread by orders of magnitude. If we estimate the radius of
the solid core as hc ≈ 50 nm, as suggested by Fig. 15 below, and the radius of the thread as h0

≈ 10 μm, we find a ratio of hc/h0 ≈ 5 × 10−3. Then in the limit large viscosities (inertial effects are
negligible), Fig. 2 of Ref. 27 predicts a wavelength λ/h0 ≈ 4π , which is consistent with Fig. 11.

Table II summarizes estimates for the effective viscosity ηeff, as calculated based on the various
instability mechanisms described above. It is clear that there are considerable discrepancies between
the different results. First, using the estimates based on the various types of linear instabilities, values
vary between 1 Pas and 12 Pas. These differences might be caused by the different flow histories: the
base solution on which a bead at the upper end, exhibiting an inward bulge, is quite different from
that at the lower end. Clearly, there is an influence of gravitational sagging. The effective viscosity
deduced from the final linear thinning behavior via Eq. (9) yields ηe f f ≈ 8 Pas, which is roughly
consistent.

However, strong disagreement exists between the effective viscosities estimated from instabili-
ties, and that calculated from exponential thinning, as observed earlier.14 According to the standard
picture, the extensional viscosity resulting from stretching should set the effective viscosity scale.20

Once polymers have become fully stretched, the viscosity can no longer increase, and the fluid once
more has Newtonian behavior, but with a much elevated viscosity. However, according to Table II,
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the extensional viscosity based on polymer stretching is about two orders of magnitude greater. In
other words, the linear instabilities evolve on a time scale that is much too fast. We do not yet have
a conclusive explanation for these discrepancies. However, in Sec. VI, we will argue that a phase
separation between fluid and solid components takes place. This would rationalize that the fluid
component contains fewer polymers than in a uniformly mixed state, and thus possesses a lower
viscosity than predicted by the standard model.

V. THE NEXT GENERATIONS

The data in this chapter are taken using the PEO1k−w and the PEO2k−w solution. After the
formation of a periodic array of beads, further generations of beads start to grow (Fig. 12). First
the form of the periodic deformation becomes nonlinear and a pattern of beads of equal size on a
straight filament is formed. In between these filaments, a new generation of smaller droplets starts
to grow. The data did not allow to extract any growth rates for these droplets, but eventually the size
of the second generation beads also saturates,12 and a third generation of beads is formed between
the first and the second one. We were able to resolve separate beads up to the fourth generation,
but we found that only the first three generations of secondary beads appeared in a well defined
chronological order.

As described in the Introduction, the formation of secondary beads on a polymeric filament
has been investigated theoretically in Ref. 21. In particular, Chang et al.21 propose a recursive
mechanism for the radius of the consecutive filaments of number n of the form

hn/h0 =
√

2(hn−1/h0)3/2. (14)

However, this power law could not be reproduced by Refs. 12 and 13, but a power law exponent
closer to m = 2 was found, instead of m = 3/2.

Instead of the thread radii, we decided to measure the distribution of the final, stationary sizes
of beads of different generations, which can be measured with higher resolution than the thread
diameters, owing to their greater size. If the process of bead formation is iterative, the final bead
sizes are also expected to be self-similar, and their size ratios to correspond to that of the threads. We
have however not tested for this latter fact. More than 130 droplets from different experimental runs
were measured, and the results summarized in a histogram (Fig. 13). The histogram clearly shows
preferred sizes for the different droplet generations.

FIG. 12. Growth of secondary droplets on a regular array of primary beads. Three generations of beads are visible.
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FIG. 13. Histogram of the distribution of the final diameters of the droplets that are formed on the filament (cf. Fig. 12) of a
PEO1k−w solution in a CaBER experiment. More than 130 droplets have been evaluated. The lines are Gaussian fits with a
background offset to determine the mean diameters.

From the peak values, mean diameters of D = 32.1, 23.4, 9.8, and 5.3 ±0.1 μm for the first four
generations of droplets can be estimated. However, the distribution shows a significant background
signal for droplet sizes below 10 μm and it was not possible to distinguish more different sizes. A
possible iterative character of the process of secondary bead formation is investigated in Fig. 14. We
have plotted the size of beads of generation n + 1 as function of the size of the previous generation in
a double logarithmic plot for a similar solution as in Ref. 12. Toward larger bead sizes there is some
indication of self-similarity, and an exponent 3/2 can be fitted. This is consistent with the scaling
found by Ref. 12, if indeed the scaling of beads and threads correspond.

VI. FORMATION OF NANO FIBERS

In Ref. 14, it was shown that the final long lasting filament of a PEO2k−w solution with the
remaining droplets could be carefully transferred on a metallic carrier and placed in a scanning
electron microscope, as seen in Fig. 15. The nano fiber shown here has a thickness of 80 nm and it
is reasonable to assume that the polymers are fully elongated and partially crystallized.

FIG. 14. The droplet diameter Dn + 1 of a PEO2k−w solution plotted as function of the preceeding generation Dn, in a double
logarithmic plot. The line has a slope of 3/2.
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FIG. 15. (Color online) (a) Shadowgraph image of a typical beads-on-a-string pattern (taken from Ref. 14). The droplets
are arranged off-axis relatively to the thread. (b) Scanning electron microscopy image of two beads, connected by a thread
(intermediate resolution). The structure was caught and dried upon the substrate. (c) Another example of the structure. (d)A
close up of (c) at high magnification.

A. Optical in situ indications

The scanning electron microscopy (SEM) images in Fig. 15 show the existence of a solid nano
fiber, but we would like to present its first indications which we found on our shadowgraph images
(Figs. 16 and 17). The fiber itself is too thin to be resolved in the images, but often a pattern as
shown in Fig. 15(a) was formed. What is remarkable is that most beads are off-center with respect to
the filament. Comparison with the problem of fluid droplets on a fiber28 shows that there must be a
finite contact angle between the droplets and the filament for such a symmetry breaking to occur. In
other words, the thin filament must have formed a (solid) phase different from that of the droplets.29

FIG. 16. (Color online) The coalescence of droplets at later stages of the blistering process reveals the existence of a nano
fiber. The numbers 1–3 indicate three different coalescence events at time t= 325 ms (1), 333 ms (2), and 338 ms (3). The
merging of droplets leads to stress that is released in an oscillatory manner. The droplets move up and down along the fiber
that gets wetted and becomes darker in the images (see the magnification at the lower right hand site).

Downloaded 14 Feb 2012 to 137.222.10.58. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



023101-16 Sattler et al. Phys. Fluids 24, 023101 (2012)

FIG. 17. (Color online) The late stages of the blistering process of an aqueous solution of a PEO1k−w solution. The first
image is at t = 250 ms after the formation of the cylindrical filament. Subsequent images are taken every 30 ms. The images
show that a thin fiber with the small beads is drawn out of the large droplet. The online movie shows a high speed video of a
200 ms sequence at a 40 times slower rate (enhanced online) [URL: http://dx.doi.org/10.1063/1.3684750.1].

A second indirect indication was observed when the droplets on the filament did merge. This
led to an abrupt increase in stress which was released in an oscillatory manner. The droplets then
moved up and down, or rather slide up and down over the thin filament which are wetted as one can
see in Fig. 16.

Another estimate of the size of the remaining nano fiber could be deduced from Fig. 17 (see online
movie available at http://dx.doi.org/10.1063/1.3684750.1 for the image sequence). Apparently, the
thin filament that was connected to the larger bead was not a simple polymeric solution anymore,
but showed properties of a purely elastic fiber. This fiber is under large tension and it pulled out
more material from the larger droplet, just as in the case of fiber spinning.30, 31 The filament becomes
longer by pulling out material and in all experiments it was observed that if this happened it was
always the largest droplet from the cascade of droplets from which the material was drawn. We used
this pattern to estimate the size distribution of the smaller droplets (Fig. 18). The size of the larger
droplets could be measured directly and the sizes of the smallest beads are arranged linearly. We
do not have any explanation for this, but we used this linear regime to extrapolate the sizes of the
smallest droplet of which the positions could be detected optically, but not the sizes. This approach
might be very simple, but it should be taken as an estimate only. We found that the smallest droplets
are probably only 300 nm in size and the surrounding fiber has to be significantly thinner. Otherwise
their positions deduced from their diffraction patterns could not have been separated from the overall
diffraction pattern of the connecting cylindrical filament.

FIG. 18. Sizes of the droplets of different generations. Open symbols indicate droplet sizes that could be measured directly
and full symbols indicate droplets that were to small for a size estimation, but a position determination was still possible
(cf. Fig. 17). The line is ar linear fit.
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B. The effect of evaporation

In order to clarify whether evaporation was responsible for the formation of the solid fiber,
we performed experiments in a liquid–liquid system. A small glass cell was built and silanized to
prevent wetting of the glass by the aqueous phase. The cell was filled with a low viscous silicone oil
(Dow Corning 200, η= 5 mPas) and we added a fluorescent dye (Rhodamin 6 G) to our PEO2k−w

solution. The polymeric sample was pumped slowly through a nozzle (diameter d = 2 mm) into
the surrounding silicone oil. The experiment was illuminated with a green laser (Quantrum, power
= 150 mW) and a dichroic filter that passed the fluorescence signal was placed between the
microscope lens and the camera. Droplets detaching from the nozzle fell to the bottom plate that was
1 cm apart. The formation of the cylindrical thread, the characteristic time constant and the blistering
process did not differ qualitatively from our observations at the free surface. Most importantly, at the
position where the filament should be, there was always a very thin line to see that remained for many
seconds until bleaching of the dye occurred. The signal was too weak to allow for a quantitative
evaluation, but was sufficient to be observable on the screen. Thus, we can exclude that evaporation
which plays a significant role in the phenomenon discussed above, and the phase separation is rather
flow induced.32

C. Other polymer solutions

PEO is known to have a limited solubility in water and the solutions described above might have
been close to the cloud point. Four more solutions (see Table I) were tested to verify the generality
of our observation of a solid nano fiber. Furthermore, we chose two systems with very low vapor
pressure, again to verify that evaporation does not play a key role in our experiments.

The blistering pattern and the formation of the nano fiber could be reproduced for all solutions.
First a c = 2000 ppm PEO solution in xylol (PEO2k−x ) was investigated (Fig. 19). Some differences
in the substructures of the dried remains of the droplets compared to the PEO in water solutions
are apparent, but besides this the SEM images look very similar. The solutions of polystyrene in
dimethylformamide represent a completely different class of polymer-solvent systems. The SEM
images of the dried remains look qualitatively different and the nano fiber is considerably thicker.
A transition from a smooth and well ordered fiber to a less ordered state is apparent (Fig. 20), the
former being the remainder of the thread, the latter that of the droplet.

FIG. 19. SEM images of the dried remains of a polymer solution, showing the blistering pattern on a nano fiber for
2000 ppm PEO in xylol. The images are successive magnifications.
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FIG. 20. Images of the dried remains of a solution of polystyrene in dimethylformamide, which show a blistering pattern.
The images are different magnifications of different samples.

For the experiments with poly(acrylamid-co-acrylic acid) (PAAA) the solvent was a sugar
water solution, see Fig. 21. These experiments are also very illustrative because the sugar in the
dried filament stabilizes the blistering pattern enough to allow the formation of very stable structures
of a length of many centimeters that can easily be carried around. Note that it is also possible to
draw thin sugar fibers without the help of any polymers as it is used for cotton candy.

FIG. 21. Blistering pattern of a solution of PAAA in sugar water. The right image is a magnification of the left image.
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FIG. 22. SEM images of a blistering pattern of a sample of saliva. The consecutive images are different magnifications.

Finally, we performed experiments with saliva from one healthy donor and we could reproduce
the SEM images for droplets of saliva as well (Fig. 22). In saliva, glycoproteins such as mucin are
suspected to be responsible for the polymeric effect.

VII. CONCLUSIONS

In conclusion, we have presented a study on the final stages of the capillary break-up of
semi-dilute polymer solutions. For some of our measurements we could evaluate the light intensity
distribution of the Fresnel diffraction around the filament. This allowed us to improve the spatial
resolution down to an precision of 30 nm. We found that the droplets that formed along the filament
at the final stages of the thinning process could be separated into four classes: droplets at the lower
and the upper end of the filament, droplets growing in the interior of the filament, and droplets
growing coherently. The growth of droplets is always exponential at first, demonstrating a linear
instability of the polymeric filament.

We have presented plenty of evidence that the formation of small beads investigated by us results
from the instability of a highly stretched state, a process we termed “blistering”. The alternative
“beads-on-a-string” process15, 18 relies on the inertia imparted on the system from the primary
instability. As a result, the solvent viscosity is an important parameter for the formation of the
“beads-on-a-string” structure, while it is unimportant for the bead formation investigated in the
present paper. To summarize, we have found that bead formation:

(i) proceeds from a uniform filament, which is thinning exponentially,
(ii) is independent of solvent viscosity,

(iii) only starts when the polymers have reached almost full stretch, as indicated by the extensional
viscosity having reached saturation,

(iv) is associated with a crossover from exponential to linear in the thinning rate,
(v) is associated with exponential growth relative to the uniform state.
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Subsequently, we investigated the nonlinear stages of the instability. Some of the droplets are
pumped by the surrounding filament, leading to power-law growth. Eventually, the size of all droplets
reaches a plateau value. Owing to interaction between beads or droplets, a hierarchy of bead sizes
is produced, showing a limited degree of self-similarity. Finally, we described the formation of a
solid nano fiber out of the liquid-polymer solution. The formation of the solid fiber is the result
of a flow induced phase separation, as evaporation does not play a significant role. The formation
of the nano fiber has been confirmed using scanning electron microscopy for a variety of different
polymer-solvent systems.
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