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Asymptotic analysis of the dewetting rim
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Consider a film of viscous liquid covering a solid surface, which it does not wet. If there is an initial hole in
the film, the film will retract further, forming a rim of fluid at the receding front. We calculate the shape of the
rim as well as the speed of the front using lubrication theory. We employ asymptotic matching between the
contact line region, the rim, and the film. Our results are consistent with simple ideas involving dynamic
contact angles and permit us to calculate all free parameters of this description, previously unknown.

DOI: 10.1103/PhysRevE.82.056314

I. INTRODUCTION

The dynamics by which a surface, previously covered by
a fluid film, dries up is of fundamental importance [1,2]. The
driving force for the dynamics of drying is provided by sur-
face energy. If the equilibrium contact angle 6,, between the
fluid and the substrate is greater than zero (or the spreading
coefficient is negative [2]), the dry solid is energetically fa-
vored over one covered by a macroscopic film. However, for
the system to harvest this energy, an initially dry region has
to be produced.

A lot of attention has focused recently on the case of
ultrathin films [3—6], whose thickness is in the range of a few
nanometers. For them to become unstable, intermolecular
forces have to be considered [7]. In addition, it has been
argued that slip [8] or non-Newtonian effects [9,10] may be
important for describing the film profile, even away from the
contact line. However, macroscopic films are equally rel-
evant, into which a hole can be made either mechanically
[11] or by instability, driven, e.g. by evaporation.

We focus exclusively on the rapid dynamics that ensues
and on Newtonian fluid dynamics dominated by viscosity, as
is usual for thin films. The phenomenology of the dewetting
process can be summarized as follows [1,12]. As the contact
line bordering the film retracts over the solid, the liquid in-
side the film is collected into a rim, which grows slowly in
time, as sketched in Fig. 1. The height and half-width of the
rim are denoted by %, and w, respectively, and will become
large compared to the film thickness i Even though the
problem may be axisymmetric initially (a circular hole), the
radius of this hole is soon much larger than the rim, in which
case the contact line may be considered straight and the
problem becomes two dimensional. It was found experimen-
tally that the speed of retraction U of a viscous film is con-
stant [12]. The goal is to identify U and to compute the shape
of the rim, characterized mainly by the associated apparent
contact angle 6,, (cf. Fig. 1).

The first experiments indeed reported a constant speed of
dewetting, which depends on the equilibrium contact angle
as U~ ng [12], which is a scaling common for wetting dy-
namics. The apparent contact angle was found to be
04! 0,,~0.7. However, a later study [11] found a much
smaller value of 6,,/6,,~0.15. This is troubling since the
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value of the apparent angle is very important for the selec-
tion of the speed. As described, e.g., in [1], the problem
consists essentially of the dynamics of a receding front at the
contact line (forming the front of the rim), coupled to an
advancing front (forming the back of the rim). The dewetting
speed is determined by equating 6,, for both fronts. Note
that most wetting problems are dominated by an isolated
advancing or receding contact line, in which case no unique
speed can be identified [13].

The present problem has been analyzed before
[1,12,14-16], but the required matching procedure has never
been carried through. Indeed, we identify an error present in
many of the earlier treatments [1,12,14,15], which are based
on a simplified description of moving contact lines devel-
oped in [17]. The observation underlying the present paper is
that the entire structure of both fronts, including the quasi-
static central part of the rim, can be described by a single
equation in the lubrication limit. Moreover, this equation
possesses an exact solution [18], which simplifies the analy-
sis tremendously and makes the calculation of all required
constants feasible.

II. PROBLEM FORMULATION

We treat the profile as two dimensional, assuming that the
size of the hole is large with respect to the rim. For small
contact angles, 6,,<1, the interface profile i(x,7) can be
computed from the two-dimensional lubrication approxima-
tion in the frame comoving with the contact line [2]:

Gh—Udh+ %ax[hZ(h +3N)d,.h] =0, (1)
n

where 7 and 7y denote viscosity and surface tension, respec-
tively, while U is the speed of dewetting. We further intro-
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FIG. 1. Sketch of the dewetting rim profile /(x). A liquid film of
thickness Ay is invaded by a moving rim of height 4, and width w.
The apparent contact angle 6,, is defined as the intersection of the
solid surface and a parabolic fit of the rim (dashed line).
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duced a slip length N\, necessary to relieve the moving con-
tact line singularity [2,19]. This quantifies the scale, typically
a few molecular sizes, at which the no-slip boundary is vio-
lated. Boundary conditions at the contact line at x=0 are

h(0,1)=0, (2)

9:h(0,1) = 6,,, 3)

while on the other side of the rim, the profile should ap-
proach the thickness of the prewetted film,

h(x — o,1) = hy. 4)

Since the rim grows in time, the solution is intrinsically
time dependent. Based on volume conservation, however,
one finds that there is a separation of time scales between the
growth of the rim and the dynamics of retraction. Thus, the
problem can be treated as quasisteady. Namely, the area of

the rim is of order A(f)~h,w, and thus grows at a rate A
~h,w. This growth is due to liquid inside the film that is
swallowed by the advancing rim, occurring at a rate ~Uhy
(Fig. 1). Hence, one finds

] 5)
U n,
which becomes asymptotically small in the long-time limit.
This illustrates that changes in the geometry of the rim are

slow with respect to U, allowing us to drop d,i in the lubri-
cation equation (1). Integrating once, Eq. (1) takes the form

~Cah+3h2(h+3N)dh=0, (6)

where we introduce the capillary number Ca=U7/y and Q is
a constant of integration representing the flux of liquid (vol-
ume per unit time per unit length). We note that within the
lubrication approximation both 6,, and Ca'”? are small and of
similar magnitude.

Note that form (6) appears to be inconsistent with the
boundary conditions of the problem. On one hand, the con-
tact line naturally gives a vanishing flux, Q,=0, since 2=0.
By contrast, one finds d,,,2=0 in the film region, yielding
Qy=—Ca hy. This apparent inconsistency can be traced back
to the slow dynamics of the rim, making the steady ansatz
not an exact solution of the problem. Rather, terms of order
hy/ h, have been neglected, as implied by Eq. (5).

The strategy of our analysis is to treat the domains near
the front and the back of the rim separately and match their
asymptotic behaviors. We take the respective values of Q
explained above and define h(x) by

3 Ca .
W= ——" for 0=x<x*, (7)
h(h+3\)
3Ca h
h"’=7<1——hf>, for x* <ux, (8)

with boundary conditions (2)—(4). The solutions of the two
equations should be matched in an overlap region around x*
where the thickness 7 is sufficiently large for Egs. (7) and (8)
to be identical. Note that in deriving Eq. (8) we have also
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FIG. 2. Schematic representation of the matching procedure.
The contact line and rim are described by the solid line, from Eq.
(7). The dashed line represents the profile in the film region, from
Eq. (8). The profiles are matched at the advancing side of rim
around x”.

taken the film thickness to be much larger than the slip
length. In summary, the problem can be characterized by the
relations

N<hp<h,~ fw. )

This simplifies the problem since both equations now contain
only a single length scale.

III. MATCHING

The strategy of our analysis is outlined in Fig. 2. The
profile of the contact line and rim, described by Eq. (7), can
be solved analytically and is shown as the solid line. Owing
to this solution one avoids having to match the receding
contact line to a rim of negative curvature, which is a subtle
problem [13]. This solution does not connect to the film, but
instead reaches a minimum value and behaves as ~x? for
large x. However, the intermediate asymptotics just before
the minimum is reached (around x*) can be matched to the
solution of Eq. (8), which is shown as the dashed line. Below
we work out the asymptotic expansions and find the speed of
the dewetting rim from the matching.

A. Contact line and rim solution

The only length scale appearing in Eq. (7) is the slip
length A\, suggesting a rescaling

h(x)=37\H<);—6;i‘z>, §=xs—6;i‘l. (10)

Here, we have chosen the horizontal and vertical scales to

differ by a factor 6,,, which ensures the boundary condition

H'(0)=1. Inserting this scaling into Eq. (7) provides the
equation for the dimensionless profiles H(£),

=2 (11)
THA+H

where we introduced a reduced capillary number,
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5=3Ca/0;,. (12)

We anticipate that 6 will turn out small. At distances much
larger than the slip length, the equation reduces further to

1
y’” = _2 9 (13)
y
where we have put H(&)=6"3y(£). This equation has an ex-
act solution, whose properties have been summarized in [18].
In parametric form, the solution with a contact line y(0)=0
reads

‘e 2137 Ai(s)
AN BBO | por
Y= [a Ai(s) + B Bi(s)

where Ai and Bi are Airy functions [20]. The limit £—0
corresponds to s— o0, while the opposite limit é— o corre-

sponds to s — s, where s, is a root of the denominator of Eq.
(14):

a Ai(s)) + B Bi(s;) = 0. (15)

Since the solution extends to s=%, s; has to be the largest
root of Eq. (15).

The solution y(¢) is thus characterized by «, B, and s,, but
only two of these parameters are independent due to Eq.
(15). As detailed in [13], the constant 8 can be determined by
matching Eq. (14), which is valid only for £= 1, to a solution
of Eq. (11), which includes the effect of the cutoff and is thus
valid down to the position £€=0 of the contact line. It was
found that

B = mexp[- 1/(38)]2%2 + 0(9), (16)

which eliminates one of the two free parameters. The re-
maining parameter will be eliminated below by matching
y(&) to the film solution.

The exact solutions presented by Duffy and Wilson [18]
behave as y~ & for £&— o with a positive curvature. Note
that this asymptotics cannot be matched directly to a rim of
negative curvature. As can be seen from the solid line in Fig.
2, however, some of the exact solutions exhibit a regime
where the interface displays a pronounced maximum Yy,
that can be identified with the rim. As such, the matching of
the rim to the contact line is implicitly taken care of in the
Duffy-Wilson solution. After this maximum, the shape devel-
ops a minimum y,,;, before the solution diverges as y ~ & for
&— o0, We will show below that the size of the rim, charac-
terized by ¥4/ Y min. becomes arbitrary large in the limit that
the parameter s; approaches the rightmost zero of the Airy
function sy=-2.338.... This is indicated in Fig. 3. We there-
fore introduce an expansion parameter

€E=S81—350, (17)

which will give a diverging ratio y,,,./ i~ (=In €)'/ € for
small values of e It will turn out that y,../y,.,~w/hy,
which corresponds precisely to the asymptotic limit we in-
tend to analyze.

PHYSICAL REVIEW E 82, 056314 (2010)

, T T T T Sn‘ (gm'ln) T
04r B
o 02r B

= g

L 80 Sr (gma'r)A
024 _
04r -

| | . | |
-6 -4 2 0 2 4

S

FIG. 3. The Airy function Ai(s) and the values of s that are
relevant in the analysis. The solution runs between s=c (the contact
line £€=0) and s=s; (infinitely far from the contact line é=). In
particular, we define sy=-2.338... as the rightmost zero of Ai, and
s1=so+€. The rightmost maximum of Ai is defined as s,=
—1.088..., which corresponds to the minimum at the neck behind
the rim (£,,;,). The value s,~ (=In €)*3 corresponds to the maxi-
mum thickness of the rim (§,,,,).

We now identify the relevant asymptotic properties of
v(&) for small values of €, for which it is convenient to in-
troduce

z(s) = a Ai(s) + B Bi(s). (18)

First, one can compute « from Eq. (15), i.e., z(s,)=0, in the
limit of small € by expanding Ai(s) around s,. Since Ai(s,)
=0, B is of order € and

2(s1) = B Bi(sy) + €a Ai'(sy) + O(€%) = 0.

Thus,
a=£+0(60), (19)
ce

where the constant is
¢ =—Ai'(s9)/Bi(sg) = — 1.544 710 482. (20)

Now since B is known from Eq. (16), we have succeeded in
computing the entire solution in terms of the single param-
eter €. Next we connect € to the various geometrical proper-
ties of the rim.

Extrema of y(§) correspond to z'(s)=0, and can thus be
found from solving

Ai'(s) + ce Bi'(s) =0. (21)

For small €, Eq. (21) has two zeros (cf. Fig. 3):

(i) one zero at s, 1, corresponding to the maximum of y
at the rim, denoted as y,,,, and

(ii) near s,, defined by Ai’(s,)=0, there is a minimum of
v, which corresponds to the neck of thickness y,,;, behind the
rim.

The value of s,, which corresponds to the rim height, can
be computed by expanding the Airy functions for large s:
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4yyéﬂ( 5
A 1+——57%+0 -3),
="\ 1+ 5 (s7)
6(2/3)9’2(
B l+—s+0 —3>. 22
="\ 1+ 5 (s7) (22)
Thus, we find

Ai'(s) 1 ( 453’2> (1 7s;”) 23)
-—— T — — + s
cBi'(s) 2¢ P\7 73 24

or equivalently
32

7
eI = 2ce<1 + —) (24)
18 In(2ce)

which is the condition for the zero near the rim. The position
of the maximum can now be determined from Egs. (14) and

(23):
1/3 —-3/2
£ = 2 776_(4/3)_Y3/z(1 . s, ) _ cme (l . 1 )
max ,32 24 22/3ﬁ2 3 1n(2ce) ’
(25)
12 -3/2 1/3
7 3
Ymax = ZSBZ e (4/2)33/2<] + _52;«4 ) = 2_7;;<_ Zlﬂ(ZCE))
{1 +O0(In[2c€])?}. (26)

From Eq. (21) it follows that the zero corresponding to
the neck is s,=—1.088... up to corrections of higher order in
€. Inserting s=s,, into Eq. (14), and using Eq. (19), we find

1/3
gmin C2 Uk -5  + 0(62) (27)
B
c2é
Vimin = & Ais)? +0(€). (28)

These scalings imply that y,,,./ Vi~ (=In €)3/ €, which in-
deed is asymptotically large.

An important observation is that in the limit of small €,
&nin=2& 00 Showing that the large-scale structure of the rim
is symmetric in this limit. One also verifies that the rim takes
a parabolic shape,

_ 2
y(g) ymax|: _<%) :|’ (29)

for large values of y, i.e., away from =0 and §,,;,. This
corresponds to the equilibrium shape of an interface that is
unaffected by viscous forces. However, note that owing to
logarithmic corrections to &,,,, and y,,,., the approach to the
equilibrium shape is quite slow. In Fig. 2, for example, de-
viations from a parabola remain quite pronounced. In addi-
tion, one recognizes that &, sets the width of the rim as

3, 3
K - @ — 2/3C7T€ (30)
N 26, 26,8

We have based this definition on the total width of the rim
rather than its half-width to avoid the logarithmic corrections
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in Eq. (25). These subtle differences will have a small effect
on the definition of the apparent contact angle, as we will see
below.

Upon approaching &,,;,, however, the solution develops a
logarithmic dependence that is crucial for matching to the
film region. To identify this “Voinov” behavior, we analyze
the intermediate asymptotics for y,,;, <y(&€) <Yuar- In terms
of s, this corresponds to s, <<s<<s,. It is convenient to intro-
duce, consistent with Egs. (27) and (28),

gmin - é
62 9

.
- =
=

(31)

Y= (32)

.l

The scaling with € ensures that Y,,, becomes independent
of €, while Y,,,, is pushed to infinity for small €. The inter-
mediate asymptotics can thus be assessed by first taking the
limit €e—0 for finite s, and then consider large s. The
leading-order expansion in € becomes

i ¢ 21834 Ai(s,) 2187 Ai(s)

""" Bla Ai(s,) + BBi(s,)]  Bla Ails) + B Bi(s)]

21837 (Bi(s) Bi(s,

ST BB o),
Ai(s)  Ai(s,)
Bi(s,)

Ai(s,,)

and thus

I

21352 ( Bi(s)
B8 \Ai(s)

Similarly, we have

> +0(e). (33)

L . 22/3Zr(s)_ 22/3Ai'(s)
Vi=oy =m TSR am T 0. (34

Now we consider the limit of large s:

Y3 4 3 4
T = 553/2<1 + 4s_3/2) = gsS/z +1, (35)
24/3 2 ;
= /;;C I, (36)

In terms of the slope Y'(Z), this yields the Voinov scaling

[21]

2,
y?=3 ln(%» (37)

where e=exp(1).

B. Film solution

We now show how the back of the rim connects to the
film, which is at around x,=2w. This crossover region, in-
cluding the film, is described by Eq. (8) for which /4, pro-
vides the length scale. We therefore analyze the back of the
rim by introducing another similarity function
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B (x —xp)Ca'”?

_ 13
(x —xp)Ca >, : . 38)
f

h(x) = th( hy

which transforms Eq. (8) into the famous Landau-Levich

equation [22]
3 1
G"=—|1-—/1. 39
Gz( G) (39)

The boundary condition for our problem reads G—1 as ¢
— 0, This solution was previously analyzed by Tuck and
Schwartz [23] and below we closely follow their analysis.

For {— -, solutions of Eq. (39) generally grow qua-
dratically [24]. To match to the Voinov solution (37), we are
interested in solutions which only grow linearly (with loga-
rithmic corrections). These solutions are characterized by the
fact that the curvature vanishes at infinity. This eliminates
one degree of freedom and gives

G"”=-91In(al¢- 2D, (40)

for {— —o. The parameter (, is the remaining degree of
freedom and reflects the translational invariance of the solu-
tion.

The asymptotic behavior (40) has to be compared to Eq.
(37). Therefore, our main interest is to determine the con-
stant a inside the logarithm, which has to be determined by
solving Eq. (39) numerically. Note that Tuck and Schwartz
[23] numerically solved for G(£), but did not report the value
of a. We do this following standard procedure [23]: “shoot-
ing” from the film to the negative { direction and adjusting a
constant so as to satisfy the boundary condition for {— —.
Linearizing around the film G=1 using

G=1+¢ee’, (41)

one finds three eigenvalues: o=3"3, -33(1+i)/2, and
—-313(1-i)/2. We are only interested in the two eigenvalues
with negative real part, which grow as { becomes more nega-
tive. The third decays as one shoots from inside the film.

Because of translational invariance, one of the two re-
maining degrees of freedom can be absorbed into a phase
factor, so the initial condition for the shooting procedure be-
comes

G=1+ge3"82 cos(3'3¢/2), (42)

where ¢ is the only free parameter. Using Eq. (42), Eq. (39)
is integrated backward to large negative values of (. The
amplitude ¢ is adjusted, so that the curvature goes to zero as
{— -, fixing the solution uniquely. The resulting profile is
shown in Fig. 4. Comparing the asymptotics of this solution
to Eq. (40), we find a=1.094....

C. Matching

We now match the logarithmic variations of the slope
observed for the solutions containing the contact line and
film, respectively. In original variables Eqs. (37) and (40)
become

lgzeae ()C 'n_x)
h'?=-9Cal (—‘1’"— , 43
cl am 3 X 2*3 72N (43)
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FIG. 4. The similarity solution G({) near the flat film that has to
be matched to the rim. This curve was also computed in [23].

130, _
a Ca"(x x)>’ (44)

hy’=-9Ca 1n<
' hy

so the two solutions indeed match. Apart from the trivial
Xo=Xin» this gives the matching condition
113 2
aCa _ 0,,8¢
hy 3 X 23 meteN

(45)

For given values of h; and A, this equation contains three
unknown parameters, namely, €, B8, and the capillary number
Ca. Eliminating € between Egs. (45) and (30), we find

3eh N\

28/3a Cal/3 W2 aeq .

BZ

Using Eqgs. (16) and (12) this gives the central result of the
paper:

AN A
Ca=-“|In( —af,, Ca» || . (46)
9| "\3e Ny

This equation determines the speed of a dewetting contact
line with equilibrium angle 6,,, for given values of \, hy, and
w. The dependence of the speed on the cube of the equilib-
rium angle, characteristic for all wetting problems, has been
predicted in [14,15]. For completeness, we express the ex-
pansion parameter € in terms of the physical parameters of

the problem, by multiplying Egs. (30) and (45):
ety

=—-1L 47
4ac Ca'®w “47)

D. Numerics

To test the accuracy of our predictions, we performed nu-
merical simulations of the fully time-dependent lubrication
equation (1). We use a finite difference scheme very similar
to that employed in [25], splitting Eq. (1) into two lower-
order equations

dh=Udh-dv, (48)
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FIG. 5. A numerical simulation of Eq. (1), showing the growing
rim. The frame of reference is chosen such that the tip of the reced-
ing front remains at the origin. The slip length is )\=10‘4hf and
00q=0.3.

v = L[R2 (h + 3N)d ). (49)
3n

The nodes for the velocity v are defined at the midpoint
between two nodes for the profile /. At the end of the liquid
film we use a local expansion of the profile on the basis of
the leading balance (7), which gives

a In x)xz. (50)
20, \

h(x) = 0,,x + (az +

eq
Here, a, is a free parameter used to interpolate the profile. At
the right the profile is held at a fixed value h, corresponding
to the film thickness. Both at the end of the film and in the
neck region, our grid is highly refined to ensure that the
highest derivatives are properly represented.

A typical result of a simulation run is shown in Fig. 5.
Owing to our choice of reference frame, the rim remains in
place, but grows slowly according to estimate (5). The speed
of retraction is recovered from Eq. (50). The slip length is
chosen to be smaller than i by a factor of 107, The rim
width is allowed to grow to more than 1000 times the film
thickness. In Fig. 6, the speed of retraction is plotted against
the increasing rim width; it decreases logarithmically, as pre-
dicted by Eq. (46). The inset demonstrates the remarkable
agreement between simulation (full line) and theory (dashed
line). This is possible only because all the numerical factors
inside the logarithm have been captured.

IV. DISCUSSION

Previous analyses [1,16] have considered the present
problem from the point of view of dynamic contact angles.
The idea is to equate the dynamic contact angles on both
sides of the rim (advancing and receding). To obtain an ex-
plicit prediction for the speed, one needs to close to problem
by a relation between the contact angle and speed. It is in-
teresting to review this interpretation from the perspective of
our matched asymptotic analysis.
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FIG. 6. A numerical test of our theoretical prediction (46) for
the speed of retraction, using the simulation shown in Fig. 5. As the
rim width w increases, the speed decreases. The full line comes
from the numerical simulation of Egs. (48) and (49), while the
dashed line represents Eq. (46). The inset shows the difference be-
tween theory and simulation.

At large scales, the rim takes the equilibrium shape of a
parabola with an apparent contact angle 6,,:

2]

The angle at which this parabola intersects with the substrate
is defined as the apparent contact angle

O,p =20, IW. (51)

Using rescalings (10) and (12), one thus finds that

_ 1/3 Ymax
O =40 0(,,]—5 =,

remembering that our definition of w is based on half the
total width of the rim. Inserting expressions (26) and (27),
we find

6,,=-9 Caln(2ce). (52)

Note that had 6,, been based on the half-width of the rim as
defined by the position §,,, of the maximum, the result
would have been

2ce

# =-9Ca 1n<i>, (53)

ip e

since §,,, has its own logarithmic correction. This is a
subtlety absent, for example, from the analysis of a spreading
drop [26].

Now using Egs. (46) and (47) one finds that

20 &
In(2ce) = In=24 _ Zea
3N 9 Ca

and thus

056314-6



ASYMPTOTIC ANALYSIS OF THE DEWETTING RIM

i
)
h
T
|

o
N
e
|

0 P S RS N
0 0.0001 0.0002

Ca

0.0003

FIG. 7. Apparent contact angle 6,, for the receding and advanc-
ing fronts (solid and dashed lines, respectively) for 0.,=0.3. Length
scales were chosen as A=10"° m, hf= 10 m, and w=10"* m.
The intersection of the curves provides the selection of angle and
speed.

20,,w
6,,=0,,—9 Ca =2 (54)

which can be interpreted as the Cox-Voinov relation for the
receding contact line [2,21,27], with A and w as the inner and
outer length scales. The analysis of [16], however, does not
permit us to calculate the prefactors inside the logarithm, but
merely identifies the argument inside the logarithm as a ratio
of w/A\.

Similarly, using Egs. (52) and (47), one derives an alter-
native expression for 6,,:

2a Ca'®w

ehf

@ =9Caln

ap ’ (5 5 )
which contains the characteristic scales /i, and w. Note that
the prefactors inside the logarithm are not universal and
originate from the details of the matching. As usual for a
vanishing contact angle [28], there appears a speed-
dependent factor inside the logarithm, which is Ca'? in our
case, as derived from the scale transformation (38).

Equating the advancing and receding angles indeed se-
lects the dewetting velocity (46). This is illustrated in Fig. 7,
where we plot the apparent contact angles for 6,,=0.3 and
representative values for the length scales (see caption). For
large rims, the resulting apparent angle can be approximated
as
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26 W -1/3
9 L
=1+ 15 . (56)
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This result can be interpreted as a competition between the
dissipation in the advancing part, tending to increase the
angle, and the receding part, tending to lower the angle. Note
that this result is manifestly different from the analysis of
[1,15], which incorrectly predicts a power of 1/2 instead of
1/3 in Eq. (56). This can be traced back to the approximation
used by [1,15] for the evaluation of the energy dissipation,
which only holds in the linear regime, where 6,, is close to
0., 2]

On the basis of this simplified dissipation argument [1],
arrive at the approximation 6,,~ 6,,/4 for the apparent con-
tact angle. However, this result contradicts the analysis of the
stability of a receding wetting line, performed on the basis of
the same theory [17], which predicts instability for angles
Oap < 04/ 3. In other words, the rim would not recede leav-
ing behind a dry solid, but rather would once again leave a
film. We stress that this inconsistency is not the result of the
principles used in its derivation, but simply results from an
inadequate approximation for the dissipation taking place
close to the contact line.

Finally, we comment on the experimental situation, which
is unsatisfactory at present. Experiments on macroscopic
films were performed by [12] and were taken up again by
[11,29]. The dependence of the speed of retraction on the
cube of the equilibrium contact angle was confirmed by [12].
Measurements of the apparent contact angle were performed
by [12], giving 6,,~0.76,. On the other hand, detailed mea-
surements based on the method of refraction of a mesh un-
derneath the film gave much smaller angles, closer to 6,,
~(.156,. In neither case it was made clear where exactly the
angle was measured. The only way of finding a unique angle,
consistent with theory, is to fit a section of a circle to the rim,
and then to determine the angle of intersection with the sub-
strate. To the best of our knowledge, a measurement of this
type remains to be done.
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