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Balancing a cylinder on a thin vertical layer of viscous fluid
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We analyze recent experiments that show that a cylinder can be suspended in a stable position by placing it on
a vertically moving belt that is covered by a thin layer of very viscous oil. The weight of the cylinder is supported
by viscous forces in the fluid layer, and the cylinder rotates with respect to its axis in the direction of the belt
motion. We propose a simple model for stable suspension of the cylinder, based on lubrication ideas.
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Introduction. The experiment we propose to analyze is
shown schematically in Fig. 1. A smooth, steel reinforced
polyurethane engine belt (375 mm long and 26.5 mm wide) is
driven by a pair of 38-mm toothed pulleys that were matched
to the teeth on the inside of the belt. The rotation rate of the
drive was monitored using an optical shaft encoder to produce
a belt speed Uw. The lower part of the belt turns inside a bath
of silicone oil of density ρ = 970 ± 10 kg/m−3, kinematic
viscosity μ/ρ = 13,740 ± 140 cSt, and surface tension γ =
21.5 mNm−1. A constant film thickness h between 0.1 and
1 mm is maintained by adjusting a scraper as the belt leaves the
pool; viscous draining is found not to be significant. Our setup
could serve as a model problem for the interaction between
solids through a liquid film, as it arises, for example, in coating
flows [1,2].

Cylinders of radii R between 4 and 16 mm and variable
density were brought into contact with the liquid layer and
were found to remain stuck to the layer. Cylinders remained in
an orientation perpendicular to the belt motion and were found
to move up and down the belt at a constant speed. Repeating
the same experiment many times, it was found that up to small
fluctuations, cylinders established themselves at a given speed
Ur relative to the belt speed. This speed could be measured
either by tracking the cylinder’s motion or by adjusting the
belt speed until the cylinder remained at a fixed height.

At the same time, the cylinder’s angular frequency was
measured; typically, slip velocities between the belt and the
cylinder were between 0.3 and 0.65 Ur . It was found that
results were independent of the length of the cylinder, indicat-
ing that the flow phenomenon is essentially two-dimensional.
Experiments similar to ours were performed in Ref. [3], using
spheres instead of cylinders; attempts with cylinders lead
to a three-dimensional, unsteady, zigzag motion [3]. Since
no data were reported, we can only speculate that this was
because experiments were performed in a different parameter
regime. At least for a vertical belt, or when up to 12◦ from the
vertical, we always observed steady motion. Downstream of
the cylinder (i.e., above it), we noticed the classical printer’s
instability [4], but this did not appear to have a significant
effect on the motion of the cylinder.

Since inertial effects are small, this means that a steady state
is specified completely by the fluid properties μ,γ , geometrical
parameters h,R, the weight Mg of the cylinder per unit length,
and the corresponding weight ρhR of the fluid column per unit
length. Assuming that the weight of the fluid is inconsequential
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FIG. 1. (Color online) (a) Schematic diagram of the apparatus;
(b) a side view of a hollow Aluminum cylinder (radius 4 mm) on the
upward-moving vertical belt showing the converging belt and cylinder
fluid layers upstream (below the cylinder) and diverging downstream
(above the cylinder).

compared to that of the cylinder (ρhR/M � 1), the two
remaining dimensionless control parameters are [3]

Bo = Mg

γ
, hR = h

R
. (1)

In a laboratory frame of reference, in which the cylinder is at
rest, the relative speed of the cylinder Ur = Uw, the vertical
speed of the wall. The wall speed and the relative speed of
rotation can be represented in dimensionless form as

U = μUw

Mg
, � = Rω

Uw

, (2)

respectively. This means that the distance between the cylinder
and the wall establishes itself at Rε, and we have

ε = F (Bo,hR). (3)

Submerged cylinder. As a first approximation, let us
consider the case that the cylinder is surrounded entirely by
the liquid, solved in Ref. [5], which in some sense corresponds
to hR = ∞. We expect the viscous forces to be dominated by
the contribution from the narrow gap between the cylinder and
the wall, a lubrication problem also treated in Ref. [5]. We
adopt a Cartesian coordinate system (x,y) with x̂ pointing
vertically upwards (cf. Fig. 2) (so the acceleration due to
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FIG. 2. Notation for theoretical model.

gravity g = −g x̂), ŷ pointing toward the cylinder, and the
origin defined as the nearest point on the wall to the cylinder.

Let the fluid velocity be u = u(x,y)x̂ + v(x,y) ŷ and the
fluid pressure be p(x,y); we confine ourselves to stationary
situations in which the cylinder is a rest in the laboratory
frame. Standard lubrication scalings motivate the following
stretched coordinates:

X := x√
εR

, Y := y

εR
, (4)

and rescaled flow,

(u,v) := Uw(U,V
√

ε), (5)

and pressure fields,

p = μUw

ε3/2R
P. (6)

The surface of the cylinder is then defined by

Y = H (X) := 1 + 1
2X2, (7)

and the appropriate boundary conditions are

(U,V )|Y=0 = (1,0), (U,V )|Y=H = �(1,X). (8)

After these rescalings, the governing equations

∇p = μ∇2u − g x̂, ∇ · u = 0 (9)

become to leading order

∂P

∂X
= ∂2U

∂Y 2
,

∂P

∂Y
= 0, (10)

∂U

∂X
+ ∂V

∂Y
= 0. (11)

It follows that P = P (X) and the equations are easily
integrated to

U = 1

2

dP

dX
(Y 2 − YH ) + (� − 1)

Y

H
+ 1, (12)

with solution

P = 3(� + 1)

[
X

H
+

√
2 tan−1

(
X√

2

)]

− 3Q

[
X

H 2
+ 3X

2H
+ 3√

2
tan−1

(
X√

2

)]
+ P0, (13)

where

Q =
∫ H

0
UdY (14)

is the dimensionless flux in the frame of reference of the
moving cylinder, which must be X-independent.

In the limit that the cylinder is covered completely, the
boundary condition for X → ±∞ is for the pressure to go
to zero. This ensures that the pressure just outside of the gap
remains finite in the limit ε → 0. This leads to the condition
Q = 2(� + 1)/3, and a pressure distribution

P = −2(� + 1)
X

H 2
,

which is antisymmetric about the cylinder. As a result, the force
perpendicular to the wall vanishes. Therefore, the cylinder
remains in an indifferent equilibrium position at a fixed
distance εR from the wall.

The total force on the cylinder parallel to the wall is

Fx :=
∫ ∞

−∞
x̂ · σ · n̂

∣∣∣∣
Y=H

dx − Mg = 4π
μUw√

2ε
− Mg. (15)

Here, n̂ is the unit normal vector to the cylinder (cf. Fig. 2),
and σ is the fluid stress tensor. Finally, the net torque around
the center of the cylinder is

T := R

∫ ∞

−∞
t̂ · σ · n̂

∣∣∣∣
Y=H

dx = 4π
μωR2

√
2ε

. (16)

The cylinder will not be rotating (ω = 0) as the viscous torque
counteracts any rotation [5]. From a balance between the
viscous upward force and the weight of the cylinder, we have
in dimensionless form

U =
√

2ε

4π
. (17)

Here, ε is arbitrary and cannot be determined by the dynamics
as suggested by Eq. (3): there is no selection in the limit
hR = ∞. Instead, we must model the thin film present in the
experiment, so that some input from the meniscus region is
necessary. Another feature that is missing so far is that the
cylinder is predicted not to rotate, if it is completely immersed
in fluid.

Thin film solution. To remedy this situation, we introduce
conditions at the upstream and downstream menisci, which
account for the following experimental observations (see
Fig. 2): (i) as the belt film approaches the cylinder, it meets
the very thin film (< 0.1 mm) on the cylinder and both are
sucked underneath the cylinder in a smooth fashion. Therefore,
we assume that the position of the upstream meniscus is
determined geometrically as the locus where the film meets
the cylinder and will neglect the very thin film on the cylinder.
(ii) On the other hand, as the fluid emerges downstream of
the cylinder and separates into films on the cylinder and belt,
fluid piles up to a larger scale: see Fig. 1(b). We assume that
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FIG. 3. A typical pressure distribution underneath the cylinder
plotted over [Xmin, Xmax], with P (Xmax) = 0 by construction.

surface tension does not play a leading role (μUw/γ ≈ 7.4 for
a typical value of Uw = 10 mm/s) and, therefore, that the film
pressure at the downstream meniscus is the ambient pressure,
which we can take as zero. In terms of the rescaled variables,
this leads to the two extra conditions:

Xmin = −
√

2 (hR/ε − 1), (18)

P (Xmax) = 0. (19)

To get a new solution, we are forced to assume a scaling in
which the film only extends to finite values of Xmin and Xmax;
otherwise, we would fall back on the same pressure distribution
as before. Now the constant P0 in the pressure distribution
Eq. (13) is determined by the downstream meniscus condition.
The flux Q follows from the condition that the mass influx from
the film must equal the mass flux underneath the cylinder;
it follows that Q = hR/ε. This leads to a new pressure
distribution as shown in Fig. 3. The pressure is pushed up
toward larger positive values in the upstream part, so as to make
the integral over the pressure vanish. However, the asymmetric
distribution of pressure allows for the torque to vanish at a finite
frequency of rotation.

To determine the steady state of the system, we have to solve
for the conditions of equilibrium Fx = Fy = T = 0, which can
be written as

U√
ε

∫ Xmax

Xmin

XP dX = −1 (20)

∫ Xmax

Xmin

P dX = 0 (21)

∫ Xmax

Xmin

[
H

2
P ′ + � − 1

H

]
dX = 0. (22)

For a given value of U/
√

ε, the set of Eqs. (22) is to
be solved for hR/ε, �, and Xmax. Thus, in particular, the
nondimensional cylinder velocity is

U = f (hR/ε)
√

ε. (23)

FIG. 4. (Color online) Predictions of the theoretical model as a
function of ε/hR . All have an upper and lower branch with solid and
dashed lines, indicating the two types of solution. The dotted line is
Eq. (17) for the submerged cylinder.

The state of the system is determined by the value of
ε/hR , which itself depends on the initial condition. The
translation speed, relative rotation rate, and position Xmax of
the downstream meniscus are shown in Fig. 4. Note that there
are two branches of solutions, of which only the lower one
(� < 1) describes the cylinder being driven by the belt. The
upper solution (� > 1) has the cylinder driving the belt, which
seems unphysical and is, therefore, ignored hereafter. What is
still missing is a mechanism for the selection of one particular
value of ε/hR—the fractional size of the gap compared to the
belt film thickness. In other words, within our thin film model,

FIG. 5. (Color online) Comparison of theory with data on a plot
of U/

√
ε vs. �. All the data has � < 1, indicating that the lower

(solid) � branch is the physically relevant one. Data are collected
in sets defined by a specific belt film thickness (see key). Data with
h � 0.3 mm may have been affected by belt roughness; note the
improved collapse if these data are excluded.
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the cylinder is in neutral equilibrium with respect to changes
in the gap size.

Comparison with data. In Fig. 5, experimental data is
plotted on a U/

√
ε versus � plot, where now the theory

is represented by a line parameterized by ε/hR . A choice
has to be made for ε to generate an ordinate from the data,
but fortunately ε is constrained to lie in the narrow range
between the bifurcation point ε = 0.71 hR and ε = hR , for
which the cylinder just touches the layer. For Fig. 5, we took
the midpoint ε = 0.855 hR , but results are rather insensitive to
this particular choice. Figure 5 supports the conclusion that the
simple lubrication model presented here captures the essence
of the viscous force and torque balances. Reassuringly, the
model admits solutions that have � < 1 so that the belt drives
the cylinder through the lubrication layer rather than the other
(unphysical) way around (indicated by the “upper” dashed-line
solution in Fig. 4). However, the belt speed is underestimated
substantially.

Beyond the mismatch in the predicted and measured belt
speeds, the model also requires both an unrealistically large
value of Xmax (i.e., one which exceeds 1/

√
ε so extending

downstream beyond the cylinder!) and a high pressure at
Xmin (see Fig. 3). Simple estimates of the pressure differ-
ence across a concave-outwards meniscus at this upstream
location fail to accommodate this pressure difference by
over an order of magnitude. Undoubtedly, a more complete
2D (numerical) treatment is needed of this interesting re-
gion instead of the simple-minded 1D lubrication presented
here.

To summarize, we have presented a simple lubrication
model of how a cylinder is able to balance against an
upward-moving, viscous-film-covered belt. This model cap-
tures the gross features of the phenomenon but also has
clear deficiencies. In particular, it seems necessary to include
surface tension into a more realistic model, which explains the
selection of a particular value of ε. Taking the next step to
generate a numerical solution seems the only way to unravel
the intricacies of how the belt film and the cylinder film
meet upstream and then subsequently separate downstream,
a recurring issue in these types of flows [6–10].
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