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We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and
topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of
the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish.
Topological charge conservation then requires that there is always an equal number of q = 1/2 and q = −1/2
charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the
parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within
this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also
provide an estimate for the critical density at which production and annihilation rates are balanced.
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I. INTRODUCTION

Topological defects are nontrivial configurations of a spa-
tially varying order parameter that are associated with localized
singularities [1]. They are topological because these singular-
ities can be classified into distinct groups whose members are
related by a homotopy [2]. The study of topological defects has
a long history: They have been widely studied, for example,
in liquid crystals [3,4] optics [5–7], and even more recently
in biological tissues [8,9]. In the past few years, there has
been a renewed interest from the point of view of topological
phase transitions [10,11]. Singularities play a crucial role in
determining the structure of many physical problems [12], and
it is therefore a tempting idea to describe the dynamics of the
system by the motion of its singularities. This program has
been followed extensively in describing the motion of vortices
in ideal fluid dynamics [13], in the Ginzburg-Landau equation
[14], or in Bose-Einstein condensates.

However, many such approaches are based on dilute approx-
imations in which the topological defects are (i) both widely
separated from each other and (ii) far from the boundaries [3].
The dilute approximation is equivalent to requiring that the
deformations induced by each defect to be vanishingly small
at the boundaries and in the vicinity of the other defects. If
either of these conditions are not satisfied, then these problems
become much more challenging as defects can no longer be
considered independently of each other or the boundaries.

This is because the field surrounding a single defect core is
characterized by a singular phase, which cannot in general be
matched to either to the field at the boundaries (at infinity) or
the field near the cores of the other singularities. In addition,
the topology of the space (defined by the Euler characteris-
tic) in which the vector field (e.g., liquid crystalline order)
lives imposes constraints on the number and charges of the
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defects via the Poincaré-Hopf theorem [2]. For example, a
consistent treatment requires one consider multiparticle states
with constraints on the number and charge of the defects,
such that the total charge adds up to the Euler characteristic
(zero for a flat plane with no holes). Recent experiments on
active liquid crystals [15] provide a motivation to address
these long-standing issues as under many conditions, activity
leads to “chaotic” states with a proliferation of defects [16–20]
which, consequently, are not widely separated from each
other or boundaries, requiring one to go beyond the dilute
approximation.

In this paper we characterize and study the dynamics of
topological defects in two-dimensional nematic liquid crystals,
though we believe the approach we develop to be more gen-
erally applicable to other geometric singularities in a variety
of physical systems. To be precise, here we will consider
only the lowest-energy defects consistent with nematic liquid
crystal symmetry, positive and negative half-integer defects or
disclinations [3] on a two-dimensional surface. For a plane with
no holes, this implies an even number of defects (particles) with
equal numbers of positive and negative charges [2]. Although
such particle pairs play an important role in many famous
physics problems, such as superconductivity (where positive
and negative particles form Cooper pairs), or the Kosterlitz-
Thouless transition [21] (which results from the disassociation
of vortex pairs), multiparticle states are usually not known
explicitly.

However, in the present paper we find explicit expressions
for many-particle states of singularities in nematic liquid
crystals, so-called disclinations [22], which have topological
charges of q = ±1/2. This is particularly exciting since we
are thus able to mathematically describe the creation of a
defect pair itself, where a pair of oppositely charged particles
are formed spontaneously out of a uniform state. Likewise,
we characterize the annihilation of pairs of defects, where
two particles come together to form a uniform state. We will
describe these singular events for an active suspension of
elongated particles [16,19] in a nematic liquid crystal phase.
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This is an example of active matter driven out of equilibrium
by constituents which consume energy, the study of which has
emerged recently as an exciting new field in soft condensed
matter [15]. In the experiment, a thin film of microtubules (MT)
is suspended on an oil layer. Molecular motors crosslink MT’s
and induce relative sliding, which induces motion, and pumps
energy into the fluid layer.

Without activity, the fluid is at rest, and the system relaxes
to a uniformly ordered nematic state, in which all particles
are oriented in the same direction. However, activity induces a
highly nonuniform state and in particular leads to the creation
of a “gas” of defects or disclinations. The random arrangement
of defects is due to constant pair-creation and annihilation
events. There have been a number of successful large-scale
numerical simulations of this system [23–27], based on a
standard continuum model of an active fluid [15]. This will
serve as a guide for our theoretical calculations.

Previous theoretical attempts at the problem [28–30] were
all based on the hypothetical dynamics of a single defect
[31,32]. This requires ad hoc assumptions on the form of the far
field and necessarily introduces a dependence on some length
scale, which serves to remove singularities. It is unknown how
to identify this length scale uniquely, based on the equations of
motion. Our aim here then is therefore to formulate a dynamics
for defects based on first principles, relying on the equations
of motion only.

II. STATICS: MULTIDEFECT STATES

Let us begin with a description of the equilibrium states
of a uniaxial nematic crystal, described by its director, n =
(cos θ, sin θ ), for which the Frank-Oseen free energy is [3]

FFO = K

2

∫
||∇n||2dr = K

2

∫
|∇θ |2dr. (1)

For simplicity, we have used the one-constant approximation
K ≡ K1 = K2 = K3. It is crucial to note that in a nematic
crystal, n is an axial vector, for which n ≡ −n. Similarly, the
orientation angle θ is defined only up to multiples of π . Points
of stationary variation δFFO/δθ = 0 define (possibly topolog-
ically constrained) equilibrium states, which are solutions of
Laplace’s equation

∇2θ = 0. (2)

However, (2) does not mean that equilibrium states are defined
by a simple linear equation; rather, nonlinearities arise because
of the equivalence θ ≡ θ ± π .

It was noted by Oseen [22,33] that (2) admits solutions
corresponding to the two-dimensional singularities,

θ
(m/2)
d (r) = m

2
φ, (3)

where m is an integer and r = r(cos φ, sin φ) is the position
vector. The two lowest-order disclinations m = ±1 are shown
in Fig. 1. Half-integer values of the prefactor are allowed in
(3), since θ = ±π is equivalent to θ = 0, so that the director
returns to is original state after a full rotation.

Inserting (3) back into (1), one finds the free energy of a
single defect to be F (q) = πKq2 ln(L/a). To make the result
finite, we had to introduce a small scale core size a and a large-

FIG. 1. The disclination (3) for m = ±1, with charge q = ±1/2.

scale cutoff L. Both scales will be described self-consistently
by the theory we are about to develop. However, it does follow
from this simple estimate that in a two-dimensional system the
excitations most likely to occur are the two nontrivial lowest-
energy states m = ±1.

The topological character of a defect is defined by its
topological charge q = 1

2π

∮
C dθ = 1

2π

∫ 2π

0
dθ
dφ

dφ, where C is
any closed loop around the defect. Clearly, for the singular
solution (3) the result is the charge q = m/2, which can take
half-integer values. For these half-integer defects, however,
there is associated to each defect an attached unbounded
singular line at which θ (equivalently n) jumps ±π (the
fact that n ≡ −n means that the singular line is an artefact
of the parametrization). This highlights the fact that n(r) is
insufficient to describe the singularity completely.

In order to rectify this problem, we use the well-known
expression for the nematic free energy, due to de Gennes [3],
which includes the additional physics necessary to describe the
structure of the core of a defect near its center and removes the
artificial singular line. The key is to instead of n, use as order
parameter the symmetric, traceless matrix

Q(r) =
(

Q1 Q2

Q2 −Q1

)
= Q0

(
2n2

x − 1 2nxny

2nxny 1 − 2n2
x

)
, (4)

thus defining Q1(r),Q2(r), which can also be expressed in
terms of the director n(r) and the degree of alignment Q0(r)
[34]. In particular, the symmetry of n is now built into the
description in that Q is invariant under the transformation
n → −n. In order to guarantee a smooth solution at the core,
we use the Landau-de Gennes (LdG) free energy,

FLdG =
∫ (

−A

2
|Q|2 + B

4
|Q|4 + K

2
|∇Q|2

)
dr, (5)

which allows the amount of nematic ordering to vary. The
truncated Landau power series expansion in the invariants of
Q is valid sufficiently close to the isotropic–nematic transition
and more and more terms are required as one goes deeper into
the nematic phase [35,36]. The transition from the isotropic
to the nematic phase occurs in the vicinity of the critical
value A = 0 (since in general the critical point is modified
by fluctuations). The expression above reflects the fact that the
isotropic–nematic transition is continuous in two dimensions
(it is first order in three dimensions) [3]. In the remainder of
this paper we consider the system in the symmetry-broken
(nematic) phase where A > 0.
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Furthermore, we note that there is no way a single defect
can be placed in a neutral environment (for example, a constant
director n = ex) without θ encountering a singularity. The
orientation of the constant (uniform) director, reflecting the
broken rotational symmetry of the nematic phase, is arbitrary
and is chosen here for convenience. Embedding defects into a
system with a uniform director requires that the total charge
vanishes, which means there must be an equal number of
positive and negative half-charges. Thus in any attempt to
construct singular solutions which decay to a uniform director
field at infinity, one must automatically contemplate many-
particle solutions, which incorporate charge neutrality.

At this point it is helpful to be more precise about how we
define a defect using the Q tensor. A defect is localized by
the position of the center of its core where there is a phase
singularity and Q1 = Q2 = 0. Its singular nature is indicated
by its nonzero charge which can be calculated by the integral
of the winding number

q = 1

2π

∫ 2π

0

dθ

dφ
(r,φ)dφ

= 1

4π

∮
Ca

d

dφ
[arctan (Q1(r,φ), Q2(r,φ))]dφ, (6)

calculated on a circle of radius equal to the core size. The value
of q allows us to differentiate between different disclinations.
Clearly, the integral is unchanged along any closed path
Cr>a which encompasses the core Ca and contains only one
singularity. This invariance of the charge to the variations in the
trajectory of the path is why the defects are deemed topological.
A path which encloses more than one singularity, e.g., a set of
defects with charges {qi}, will have a winding number which
is the sum of the charges of each of the singularities inside
it, q = ∑

i qi . Hence for a system with a uniform director
at infinity, this implies a topological constraint of zero total
charge,

∑
i qi = 0, e.g., obtained by integrating over a closed

circular path with radius R → ∞ (see Fig. 2).
The elementary disclinations q = ±1/2 now have the local

form,

Q(r) = Q0(r)

(
cos φ ± sin φ

± sin φ − cos φ

)
, q = ±1

2
. (7)

For Q to be smooth near the origin, Q0(r) must go to zero
for r → 0, consistent with its interpretation as a measure of
local order: At the center of defect, n points in all directions, so
there is no order. As a result, zeros of Q0(r) =

√
Q2

1(r) + Q2
2(r),

which are places where Q1(r) and Q2(r) vanish simultane-
ously, are most conveniently used to find the exact position
of a disclination. In the following we will embed the defects
into an environment with a uniform director field. From a
balance of the first two terms of (5), one finds a uniform
solution (so that the gradient term disappears) of the form
Q1 = Q0 cos ξ, Q2 = Q0 sin ξ , where ξ is the (constant)
orientation angle and Q0 = √

2A/B.
Once more, constrained equilibrium states (with defects

located at specified points) are found from the vanishing
variation of free energy, H = −δFLdG/δQ, which leads to the
pair of nonlinear equations

H = 0 ⇒ K∇2Q1,2 + [
A − 2B

(
Q2

1 + Q2
2

)]
Q1,2 = 0, (8)

FIG. 2. Director configuration (black bars) and order tensor mag-
nitude (contours) for a pair of oppositely charged half-disclinations.
The positive defect on the right was imposed for the solution of
equation (9), the negative “ghost” on the left emerges to satisfy the
constraint of zero charge. The parameters in Eqs. (13) and (14) are
D1 = 0.95, D2 = −0.95; all other parameters are zero. The winding
number of the imposed defect on the right obtained by integrating
along the loop 1 gives q1 = 1/2 while the winding number of the
ghost defect on the left integrating over loop 2 gives q2 = −1/2. The
winding number integral over the large loop 3 encompassing both
defects is q = q1 + q2 = 0.

where the constraints are imposed by the boundary conditions
on the outer surface of the core of the defect. It makes explicit
all the nonlinearities contained implicitly in the invariance
property of solutions of (2) and contains additional physics to
describe disclinations using smoothly varying fields Q1,Q2.
This variation is taking place on a scale of the elastic length
�Q = √

K/(2A), which follows from a balance of the first
and last terms of the free energy (5). The elastic length is
much larger than the core radius of the defect a, which is a
microscopic scale, set by the size of a molecule. Accordingly,
a is the lower limit of physically relevant length scales, below
which the continuum model in terms of Q(r) breaks down. We
are interested in solving (8) such that solutions locally describe
a q = ± 1

2 disclination yet have a uniform orientation far from
the disclination; without loss of generality we take ξ = 0, i.e.,
the nematic is oriented along the x axis.

We linearize (8) around the uniform state, which is given by
Q1 = Q0 = √

2A/B and Q2 = 0: Q1 = Q1 + δQ1,Q2 = δQ2.
Thus the linear equations become

∇2δQ1 − κ2δQ1 = 0, ∇2δQ2 = 0, (9)

where κ = �−1
Q . Thus the elastic length scale �Q sets the size of

a defect. In the liquid crystal literature this is also sometimes
referred to as the core length scale [34]. We emphasize that
this is not the same as the size of the defect core, a which here
is a truly microscopic length scale where a continuum theory
of the type studied in this paper is no longer valid. Denoting
the dimensionless inverse elastic length by 	 = κa, we are
interested in the regime for which 	 is small. Linearization
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FIG. 3. Comparison between the director configuration from a
numerical solution of the nonlinear equation (8) and an analytic
solution of the linear approximation (9) for different parameters D,	.
Distances are measured in units of a. The boundary of the defect core
at r = 1 is indicated by a vertical line. (a) Linear solution (dashed
lines) and nonlinear solutions (solid lines) for Q1(r,φ) for different
values of 	. (b) Linear solution (dashed lines) and nonlinear solutions
(solid lines) for Q1(r,φ) for different D1 = D2 = D (parameters of
the boundary conditions at r = 1 given in (10). (c) The difference
between the linear solution and nonlinear solutions for Q1(r,φ)
for different D1 = D2 = D; all other parameters are held fixed,
ζ1 = ζ2 = π/4.

of the Q equation makes this problem analytically tractable
by assuming variations in Q0 are small but retains all the
nonlinearities associated with the variation of the director n, in
that the nonlinear constraint n ≡ −n is included. This is a key
advantage over (2), typically used to describe defect configu-
rations, which assumes Q0 to be constant; the price we have
paid for this is having to solve two equations instead of one.

In Fig. 3, we show that our linearized solutions agree very
well with numerical solutions of the full nonlinear equations (8)
in the relevant parameter range, both for r ≈ a and r large.

In fact, the difference between exact solutions and the linear
approximation, shown in part (c) of Fig. 3, demonstrates that
the approximation works particularly well near the core r = a.
This demonstrates that our linearized description (9) contains
all the relevant nonlinear topological information implicit in
the Q-tensor representation. This is not surprising as this is
encoded in the gradient terms which are incorporated exactly
without any approximations.

Comparison with full numerical solutions of (8) have shown
that (9) represents a good approximation to the nonlinear
problem. In comparison with (2) (which is equivalent to
assumingQ0 constant), it still contains the nonlinearities which
encode the condition n ≡ −n; the price we have to pay for
this is having to solve two equations instead of a single one.
Once the solution is found in terms of Q1,Q2, the orien-
tation can be reconstructed by inverting the relations Q1 =
Q0 cos 2θ, Q2 = Q0 sin 2θ to find the orientation angle θ (r).

Now we solve (9) with boundary condition prescribed at
the smallest possible distance a from the origin, chosen so as
to impose a phase singularity; by construction, δQ1,2 have to
vanish at infinity, giving the other required boundary condition.
The order (topological characteristic) of the phase singularity
is specified on the microscopic scale a, much smaller than
the physical scale over which fields are varying. This ensures
that the macroscopic behavior is not affected by the manner in
which the singularity is implemented. The most general ansatz
is the Fourier series in φ, Qα(a,φ):

Qα(a,φ) = Eα +
∞∑

n=1

[
D

(n)
α cos

(
nφ + ζ (n)

α

)]
, (10)

where α = {1,2}. It is here that the topological charge of the
imposed defect is fixed by the lowest nonzero mode n of (10).

A solution to (9) for δQα(r,φ), α ∈ {1,2} is a superposition
of Fourier modes of the form [37]

δQα =
∑

n

hα,n(r)(A cos nφ + B sin nφ). (11)

Then h1,n(r) are solutions of a modified Bessel equation [38];
solutions which decay at infinity are

Kn(κr) =
∫ ∞

0
dt cosh(nt)e−κr cosh t .

This describes the solution for r > a, which is the only part of
physical interest. The function h2,n(r) ∼ rp(n) is a power-law
solution of the Laplace equation, with p > 0 for r < a and
p < 0 for r > a. We note that while our analysis does allow
us to calculate the solutions for Q1,2(r) inside the core (r < a),
they have no physical significance as the continuum theory is
not valid there.

We demonstrate below that only the constant and n = 1
terms of the Fourier series for the boundary conditions (10) are
required to obtain half-integer disclinations and that the free
parameters in (10) and (11) determine the number, locations
and orientations of the defects. Hence restricting our analysis
first to only the constant (zero mode) and the n = 1 mode
(easily generalized to higher modes), we require

Q1(a,φ) = E1 + D1 cos(φ + ζ1),

Q2(a,φ) = E2 + D2 sin(φ + ζ2),
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on r = a. The contribution E2 (n = 0 term for Q2) provides a
technical difficulty that indicates the topological nature of the
problem.

The Laplace equation for δQ2 only admits power-law
solutions which decay to zero as r→∞, while a constant
solution cannot satisfy both the conditions at the core δQ2(r =
1) = E2 and δQ2→0 as r→∞. Hence even if the boundary
conditions at the core have only 2 terms (n = 0,1), the Fourier
series solution for δQ2 cannot be obtained from a finite number
of terms. Instead, it can only be achieved by using an infinite
number of terms of the series. This illustrates that this solution
has global (topological) properties which cannot be captured
by local approximations (finite number of Fourier terms). To
obtain the solution, we note that rotational invariance implies
that the n = 0 mode must be constant only in a domain,
φ ∈ [−π,π ] of size 2π . We can represent it as a sum of Fourier
modes, noting the series for a square pulse between φ = −π

and φ = π is

E2 = 4E2

π

∞∑
n=0

(−1)n

2n + 1
cos

(2n + 1)φ

2
. (12)

Thus the n = 0 mode contribution to δQ2(r) can be written as
a sum of powers (a/r)n+1/2, whose coefficients are the terms
in the sum (12) which now satisfies the boundary conditions
both at r = 1 and as r→∞.

The resulting expression can be resummed, and if we rescale
δQ1 and δQ2 with Q0, and write r in units of a (such that r = 1
at the microscopic size of the defect), we obtain

δQ1 = (E1 − 1)
K0(	r)

K0(	)
+ D1

K1(	r)

K1(	)
cos(φ + ζ1), (13)

δQ2 = D2
sin(φ + ζ2)

r
+ E2f2(r,φ), (14)

where

f2(x,φ) = 2

π

[
arccot

( √
x

cos φ/2
+ tan

φ

2

)

+ arccot

( √
x

cos φ/2
− tan

φ

2

)]
.

Thus we have obtained for the first time an explicit analytic
closed form expression for a disclination pair embedded in
a uniformly aligned nematic. Getting a tractable, compact
expression for a defect-pair configuration is a significant
achievement as this can act as the basis for studies of many
defect states.

A couple of examples of typical director configuration are
shown in Fig. 4; apart from the imposed q = 1/2 defect,
a second “ghost” defect has appeared, whose position and
orientation depends on the parameters chosen. Thus the total
charge of the system is zero, and the director field is uniform
far away from the pair. Any solution of Eq. (9) which satis-
fies uniform boundary conditions must automatically satisfy
charge neutrality, to be consistent with the topological nature
of the problem.

We can thus characterize a pair of defects in terms of
six scalar parameters D1,2,E1,2, and ζ1,2. Two examples are
illustrated in Fig. 4. Choosing D > 0 or D < 0, corresponds

�4 �2 0 2 4

�4

�2

0

2

4

x

'ghost' defect imposed defect

� �8

�4 �2 0 2 4

�4

�2

0

2

4

x

'ghost' defect

imposed defect

� �2

FIG. 4. Director configuration (black bars) and order tensor mag-
nitude (contours) for a pair of oppositely charged half-disclinations.
The positive defect was imposed in the solution of Eq. (9), the negative
“ghost” emerges to satisfy the constraint of zero charge. Shown are
two typical two-defect configurations, as described by (13) and (14),
with D1,2 = 0.9,E1,2 = 0,ζ1,2 = π/8,π/4.

to charge q = 1/2 or q = −1/2 for the imposed defect, respec-
tively, and thus effectively interchange the imposed and ghost
defects. The angles ζ1,2 control the orientation of the imposed
defect relative to the order in the far field. The coefficients E1

and E2 can be written as E1 = E0 cos ξ and E2 = E0 sin ξ ,
where E0 controls mainly the degree of anisotropy, whereas
ξ is the angle between the two orientations. E1 and D are the
dominant parameters controlling the distance between defects.
The distance between the defects is found from solving the
simultaneous equations Q1 = Q2 = 0 for the x,y coordinates
of the ghost. This has to be done numerically, and the distance
may depend on all parameters. However, E1 and D are the
dominant parameters controlling this.

The six parameters explore the space of static solutions
subject to the constraint that a defect be present (without
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any constraint, the only only equilibrium solution would be
a uniform state). We have thus by construction built in the
topological constraint of zero total charge, satisfied by all static
solutions. Following the model of analytical mechanics, we
now study the defect dynamics, which takes place within a
reduced space, consistent with a constraint. Our strategy will
be to obtain a reduced model in terms of equations of motion for
the parameters and then to use the time-dependent parameter
values to calculate the time-dependent vortex configurations
once the parameter values have been obtained. Equations (13)
and (14) correspond to states with at most two defects. How-
ever, by including more modes, states with arbitrary number of
defects can be generated (see Appendix). Finally, we note that
we are also able to obtain explicit solutions for the variation
of Q(r) inside the cores (see Appendix) though these, as
mentioned above, are of limited physical relevance because
this core scale is comparable to the size of the individual
nematogens where our continuum theory is not valid.

III. DEFECT DYNAMICS: PAIR CREATION
AND ANNIHILATION

We study the temporal dynamics of disclinations using the
standard equations of nematodynamics at vanishing Reynolds
number in two dimensions augmented to include the possi-
bility of additional active stresses [15,23]. A key component
of nematodynamics are the Stokes equations describing the
motion of a viscous nematic fluid [15,23]. They are driven by
the active stress σ a = αc2

0Q, where c0 is the concentration of
active particles, and the elastic stress, which results from the
nematic not being at elastic equilibrium, H �= 0, as described
by (8). A nonvanishing H indicates an unbalanced elastic stress,
so σ el = −λQ0H + QH − HQ. If α < 0 (“pushers”), then
the active particles are extensile. The case α > 0 (“pullers”)
corresponds to contractile particles. The so-called alignment
parameter λ will be discussed below. Both extensile and
contractile cases lead generically to instability with increasing
α, depending on the parameter, λ. Thus Stokes’ equation for
an active incompressible nematic fluid ∇ · v = 0 becomes

η∇2v + ∇ · [σ el + σ a] = 0. (15)

To close the system of equations, we need the equation of
motion for Q:

DQ
Dt

= H
γ

+ λQ0V − αc0(∇ · Q) · ∇Q, (16)

where Vij = (∂ivj + ∂jvi)/2 and ωij = (∂ivj − ∂jvi)/2 are
the symmetric and antisymmetric parts of the velocity gradient
tensor ∇v, respectively. The corotational derivative DQ/Dt =
∂tQ + v · ∇Q + ωQ − Qω accounts for the fact that rodlike
particles move and rotate with the fluid. The first term on
the right of Eq. (4) describes the tendency of the nematic
crystal to relax to an elastic equilibrium state, for which H = 0;
this occurs on a time scale γ . The next term describes the
motion of an elongated particle in shear flow; the dimensionless
parameter λ measures the tendency of the particle to align with
the flow [39]. A value of λ = 1 implies total alignment, i.e.,
particles pointing in the direction of streamlines. Finally, the
last term on the right of Eq. (16) accounts for the tendency

of the activity to misalign the nematic, driving it away from
equilibrium.

We project the dynamics of Q, as described by (15) and
(16), onto the space of constrained static solutions found in the
previous section. Taking into account all Fourier modes would
result in an exact representation. To illustrate the approach
with a tractable example, we consider the six-dimensional
space of solutions contained in (13) and (14), corresponding
to restricting our analysis to the first two modes only. In a first
step, we linearize the equations in v, δQ1, and δQ2 to obtain

η(∇2)2ψ = −2[(α + λ	2) + λ∇2]∂x∂yδQ1 −α
[
∂2
x − ∂2

y

]
δQ2

+ [
(1 − λ)∂2

x + (1 + λ)∂2
y

]∇2δQ2, (17)

∂t δQ1 = λ(∂x∂yψ) + ∇2δQ1 − 	2 δQ1, (18)

∂tδQ2 = 2
[
(λ + 1)∂2

yψ + (1 − λ)∂2
xψ

] + ∇2δQ2, (19)

writing the velocity in terms of the stream function ψ [40] as
v = (∂yψ, − ∂xψ).

We expand in the small parameters λ and α, since for
λ = α = 0 the equations of motion reduce to the equilibrium
case, with no motion. At each order λnαm in an expansion in
the two variables, we can the derive an equation of motion for
the coefficients of the equilibrium solutions. First, we expand
each of the coefficients into a Taylor series in λ,α, which
results in a corresponding series for δQ1,2: δQ1,2 = λδQ

(λ)
1,2 +

αδQ
(α)
1,2 + · · · ; and the stream function ψ can be expanded in

the same way. As boundary conditions we impose that ψ (λ)

vanishes at infinity and satisfies the no-slip condition ψ (λ) =
∂rψ

(λ) = 0 on r = 1 [41], corresponding to the microscopic
defect core. This condition fixes a frame of reference in which
the imposed defect is at rest. We perform the expansion to order
λ2 and λα yielding equations of motion for the parameters,
E1,2(t),D1,2(t),ζ1,2(t),

Ė1(t) = (λ̄2 + αλ̄)
1 − E

(0)
1

4η
, Ė2 = 0, (20)

Ḋ1(t) = −D
(0)
1

4η

[
αλ̄ − λ̄2 sec

(
2ζ

(0)
1

)]
, (21)

ζ̇1(t) = λ̄2

4η
tan

(
2ζ

(0)
1

)
, (22)

Ḋ2(t) = D
(0)
1

4η

[−2λ̄ cos
(
ζ

(0)
1 + ζ

(0)
2

)
+α sec 2ζ

(0)
2 sin

(
ζ

(0)
1 − ζ

(0)
2

)]
, (23)

ζ̇2(t) =
2η

D
(0)
1

D
(0)
2

[
λ̄ sin

(
ζ

(0)
1 + ζ

(0)
2

)
−α sec 2ζ

(0)
2 cos

(
ζ

(0)
1 − ζ

(0)
2

)]
, (24)

whose time evolution determines the motion of defects to
be described below. We have introduced λ̄ = 	λ = κaλ as
the rescaled inverse length scale emerging from the interplay
of alignment and nematic elasticity. With this rescaling, all
explicit dependence on the microscopic cut-off parameter a

has dropped out, as it should: the dynamics should not depend
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FIG. 5. Dynamics of a passive nematic, α = 0. The three panels show the director and degree of order for λ = 0.1, during the gradual
annihilation of the two defects, that relax onto a state with uniform director n = ex . I(D1,D2E1,E2,ζ1,ζ2)(0) = (0.05,0.05, − 0.5,0.1,0,0) and
	 = 10−3.

on our choice of microscopic cutoff. To find the trajectory
of defects, one needs to find the position of their cores by
finding the regions where nematic order vanishes by solving
for Q1 = Q2 = 0 at each time step. Since our microscopic
scale is a, a pair of defects whose centers have a separation
less than a is equivalent to a composite defect whose charge
is the sum of the individual topological charges. For equal and
opposite charge defects this corresponds to pair annihilation.

A. Passive dynamics

We begin by describing the dynamics in the absence of
activity, α = 0, an example of which is shown in Fig. 5.
The initial condition is chosen that a pair of 1/2 and −1/2
defects is well separated. If only alignment effects are present,
which are described by terms proportional to λ, then the
systems relaxes to a uniform state. As seen in Fig. 5, the
two defects come closer, until they annihilate (the distance
between them becomes smaller than the core size) and the
orientation becomes uniform, which is the ground state or
equilibrium state. This shows once more that what is going on
below the microscopic scale a does not affect the macroscopic
behavior of the system. As a result of the merging, translational
invariance is restored.

In Fig. 6, we have also plotted the Landau-deGennes
free energy Eq. (5) as a function of time, which is seen to
decrease monotonically. As a uniform state is reached, the
Landau-deGennes free energy approaches a constant value.
The relaxation toward the uniform value becomes slower as
the alignment parameter decreases.

B. Active dynamics

Next we consider the case where both λ and α are nonzero.
Finite activity (α �= 0) pumps energy into the system, so we
expect defects to be created. On the other hand, there is
competition with the alignment terms, which cause defects
to annihilate. This is indeed seen in Fig. 7, where the two
defects are seen with their center of mass at the origin. In
fact, we can choose any origin, since the Stokes equation is
invariant under an arbitrary uniform translation. The initial

condition is marked by green squares. At first the two defects
move away from one another, but eventually they turn and
come closer to one another, and annihilate, as their distance
becomes smaller than the core size. However, a new pair is
created immediately and starts to move apart, and the process
repeats itself. This corresponds very well to what is observed by
Refs. [16,19,20,42], where typically annihilation is followed
immediately by creation of a new pair. These dynamics are
characterized by a rotational component (governed by ζ1,2)
and a radial one (governed by the parameters E1 and D1);
as they approach one another or move apart, pair of defects
trace spiral-like trajectories (shown in Fig. 7). The creation
and annihilation of defects will eventually lead to a steady-state
density of defects when the creation and annihilation balance
out. This implies an average distance between the defect cores,
� (the inverse of which determines the density of defects). We
estimate this distance by considering a pair of defects at varying
initial distances from each other and numerically finding the
critical initial distance for which the they neither approach nor
repel each other. At small values of α, we find a scaling law

�0.05

�0.1

�0.2

0 5 10 15 20
�1.0

�0.5

0.0

0.5

t

Fq, No activity

� 0

FIG. 6. The evolution of the Landau-deGennes free-energy func-
tion as a function of time is plotted for different values of λ. The
points indicated on the curve correspond to the three profiles plotted
above in Fig. 5.
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FIG. 7. Trajectory of a pair of defects (in the frame of reference
of their center of mass) in the presence of low activity, α = −10−3,
λ = 10−2. Circles represent −1/2 and squares +1/2 defects. As
the initial configuration (larger highlighted shapes) evolves, the
disclinations trace a spiral, annihilating and then creating a new pair
and growing further apart several times.

� ∝ α−1/2 which has been observed previously numerically
in Refs. [26,27].

It is possible to understand the scaling α−1/2 by examining
the equations for the dynamics of Q1, which is the field that
governs the distance between the two defects in a pair. Keeping
the terms with lowest-order gradients, the equations read

η∇4ψ = −2(α + λ	2 + λ∇2)∂x∂yδQ1 − α
(
∂2
x − ∂2

y

)
δQ2

∂t δQ1 = λ(∂x∂yψ) + ∇2δQ1 − 	2 δQ1.

It is evident that the balance among −α, λ∇2, and λ	2 in the
first equation sets a length scale �, defined by

α ∼ λ

(
1

�2
+ 	2

)
∼ λ

(
1

�2
+ 1

�2
Q

)
. (25)

In the regime where a = 1 
 � 
 �Q, this translates into the
scaling law

�c ∼ α−1/2 ∼ �α, (26)

which accounts for the behavior observed in Fig. 8 for small
α. As the active parameter increases, the relative distance
between defects becomes comparable to a = 1, this scaling
approximation breaks down (as the distance � plateaus to-
wards � = a = 1).

IV. DISCUSSION

We have formulated a theory for the evolution of the
macroscopic structure of a (possibly active) nematic liquid
crystal built on a first-principles description of its singularities
(topological defects). The dynamics are described principally
by the motion of the defects contained in a particular state;
however, our equations are for the coefficients of an expansion
in modes, and the position of the defects follow as a secondary

�5 10�3 �10�3
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10�5 10�4 10�3 10�2 0.1 1

10

100

1000

c
Q
�
1

FIG. 8. The average separation between defects plotted as a
function of activity. The value of λ is set to 0.1.

quantity. Our simplified dynamics allow for a theoretical
prediction of the defect areal density that characterizes the
chaotic states observed in Refs. [16,19]. Our result shows
a scaling that agrees with that derived by Refs. [26,27] via
numerical simulations of the same equations.

In view of experiments and simulations, it would be in-
teresting to describe states with many defects. Although, in
principle, by adding more modes in our expansion we can
describe states with an arbitrary number of defects, it remains
to be seen if this will be practical. An alternative might be
to construct superpositions of states made up of pairs of
equal and oppositely charged defects, which ensures that these
states can be matched to each other without encountering any
singularities in the fields. For the charge half-disclinations in
nematics studied here, our parametrization in terms of Q rather
than n appears to naturally provide a way for these defects
have an orientation and thus makes an important step torwards
understanding the possibility of defect orientational order as a
many-body collective phenomenom [19,43,44].

Most interestingly, the methods we have used can be
generalized to analyze groups of topological defects that can
be found in a variety of field theories whose dynamics can be
described by partial differential equations. Natural examples
would be vortices in XY models, polar liquid crystals, or
Newtonian fluids. Higher charge defects can also be studied by
specifying the appropriate boundary condition at the imposed
defect core. Another interesting direction is the study of popu-
lations of defects where the vector field lives on a topologically
nontrivial manifold such as a sphere [45].
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APPENDIX A: Q(r) INSIDE THE CORE

The explicit solution for the Q tensor inside the core (for
r < a) for an imposed defect whose center is at the origin is
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FIG. 9. Level lines Q1,2 = 0 (dashed black and solid red, respec-
tively) for a solution with three modes. The gray line indicates the
core boundary r = 1. The intersection points (black dots) represent
the positions of the topological defects. As the magnitude of the third
mode H increases, the level lines change shape and new pairs of
defects appear. In the central panel two extra pairs are produced at the
interface r = 1; on the right we see that by varying H the positions of
different pairs and of the single disclinations within pairs changes.
Here G1,2 = 0.1,E1,2 = 0, D1,2 = 0.9, ζ1,2 = 0 and H1,2 = H in
Eqs. (B1) and (B2).

given by

Q<
1 (r,φ) = E1

2
f1(r,φ) + D1

2

J1(	r)

J1(	)
cos(φ + ζ ), (A1)

Q<
2 (r,φ) = qD2r sin(φ + ζ ) + E2

2
f <

2 (r,φ), (A2)

where

f1(r,φ) =
∞∑

n=1

sin nπ
2

πn
cos

(
n

2
φ

)
Jn/2(κr)

Jn/2(κa)

and

f <
2 (r,φ) = 4

π

[
cot−1

(
sec φ

2

r1/2
− tan

φ

2

)

+ cot−1

(
sec φ

2

r1/2
+ tan

φ

2

)]
.

These solutions have the property that both Q1,Q2 vanish at
the defect center as expected.

APPENDIX B: GENERATING MORE DEFECTS

While the discussion in the manuscript has mainly consid-
ered a single nonzero, i.e., n = 1, mode only, the analysis can
be extended to higher modes. As an example, in Fig. 9 we
show the evolution of solutions that have three allowed modes
n = 1,2, and 3:

δQ1 = (E1 − 1)
K0(	r)

K0(	)
+ D1

K1(	r)

K1(	)
cos(φ + ζ1)

+G1
K2(	r)

K2(	)
cos(2φ + ζ1) + H1

K3(	r)

K3(	)

× cos(3φ + ζ1), (B1)

δQ2 = E2f2(r,φ) + D2
sin(φ + ζ2)

r
+ G2

sin(2φ + ζ2)

r2

+H2
sin(3φ + ζ2)

r3
. (B2)

Starting with two defects (amplitudes of modes n = 2,3 set to
zero), it shows the bifurcations leading to the production of
two more pairs of defects. Our analysis indicates that n defect
pairs can be created with n modes.
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