
PHYSICAL REVIEW FLUIDS 6, 044005 (2021)
Editors’ Suggestion

Theory of bubble tips in strong viscous flows

Jens Eggers
School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG,

United Kingdom

(Received 3 January 2021; accepted 29 March 2021; published 26 April 2021)

A free surface, placed in a strong viscous flow (such that viscous forces overwhelm
surface tension), often develops ends with very sharp tips. In Courrech du Pont and Eggers
[Proc. Natl. Acad. U. S. A. 117, 32238 (2020)] we have shown that the axisymmetric shape
of the ends, nondimensionalized by the tip curvature, is governed by a universal similarity
solution. The shape of the similarity solution is close to a cone, but whose slope varies with
the square root of the logarithmic distance from the tip. Here we develop the calculation of
the tip similarity solution to next order, using which we demonstrate matching to previous
slender-body analyses, which fail near the tip. This allows us to resolve the long-standing
problem, first raised by G. I. Taylor, of finding the global solution of a bubble in a strong
hyperbolic flow. We also calculate the tip curvature quantitatively, beyond the scaling
behavior of the leading-order solution. Our results are shown to agree in detail with full
numerical simulations of the Stokes equation.
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I. INTRODUCTION

There exist a wide range of applications, for example in the chemical industry [1,2], in which
bubbles are deformed by a variety of flows. G. I. Taylor [3] proposed to study the problem of
deformation systematically by placing drops or bubbles in a simple extensional or shear flow,
assuming low Reynolds number; another example is a bubble rising in a viscous fluid [5]. In all
of these cases, if the flow is sufficiently strong, and if the inner viscosity is much smaller than the
outer viscosity, the drop is elongated and terminates in an almost conical end whose tip is so sharp
that its radius of curvature is difficult to measure, as seen on the left of Fig. 1.

Later Taylor [6] developed an approximate theory using the slenderness of the drop, from
which he calculated the shape of the drop as well as its limits of stability. The same system
has subsequently been much studied theoretically [7–10], numerically [11,12], and experimentally
[13,14]. In particular, it was shown that Taylor’s theory can be derived in a systematic expansion for
large capillary number, which measures the strength of the flow in units of the capillary speed γ /η;
here γ is the surface tension and η the shear viscosity. An analysis of Taylor’s theory near the tip
position ztip [15] leads to the conical shape

h = ztip − z

2v
(ext)
z

, (1)

where the external axial velocity is taken in units of the capillary speed.
However, Taylor [6] noticed and Buckmaster [7] confirmed that cone-shaped bubble ends,

predicted by the leading-order slender-body theory, cannot be a solution of the full Stokes equation:
the theory breaks down near the ends. This is not surprising, since the drop shape at the very end
does not remain slender. Rather, the difficulty of dealing with an object’s ends is a problem shared
with the myriad of other applications of slender body theory, for example in Stokes flow around
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FIG. 1. On the left, a drop of low-viscosity fluid is stretched in Taylor’s “four-roller” machine [3]. Very
sharp tips form at the ends, while the drop remains stable. On the right, the air-liquid surface of a container
draining from a whole in the bottom [4] (silicone oil, η = 60 Pa s and flow rate q = 3.9 10−3 ml/s). In both
experimental images the ends are in fact not strictly conical but have an opening angle which depends on the
scale of observation.

particles [16], aerodynamics [17], or ship hydrodynamics [18,19]. Therefore, it is of fundamental
interest to develop a uniformly valid description of slender objects, and to demonstrate how it fits
into the classical theories of the bulk of the object.

To improve on Taylor’s theory, and to investigate its validity, the slender-body theory of drops
was extended to second order [7,9], revealing a logarithmic divergence as the tip is approached. This
only highlights the difficulty of describing the tip. First, it leaves open the question of the size of
the tips, or even whether the radius of curvature vanishes or remains finite. Second, the logarithmic
dependence has lead to the incorrect conclusion that Taylor’s leading-order theory fails only on a
scale exponentially small in the capillary number [7]. On the contrary, we find that the slope of the
interface in fact depends logarithmically on the distance from the tip, as illustrated in Figs. 2(b)–2(f).

On the top, we see the entire bubble as calculated numerically in [15], using a boundary
integral method (described in more detail below), which solves directly for the stationary shape.
The bubble is deformed by an external extensional flow as on the left of Fig. 1, such that it has
been stretched out to a total length of 2� = 9.952, in units of the undeformed drop radius. In the
five panels below in Fig. 2, we show the left-hand corner of the bubble with successively higher
magnification.

In the top left panel, we show a region of unit size from the tip, which is compared to the
asymptotic form of Taylor’s theory (1) (dashed line), where the tip position ztip was taken from
the simulation; good agreement is found. For each successive panel, the region shown is smaller by
1/100, giving an increasingly magnified view of the corner. While the dashed line remains invariant,
the slope of the actual interface increases. The fifth and last panel finally shows the corner on the
scale of the size of the tip.

This illustrates that when measuring the slope of conical ends, as seen for example in Fig. 1, the
result will depend on the scale of resolution at which the end is observed, somewhat similar to the
apparent contact angle of a spreading drop [20].

More recently, the pointed ends have turned out to be the most interesting part of the solution,
owing to the ’tipstreaming’ phenomenon noticed by Taylor [3]. Under flow conditions which are
not yet understood and often aided by surfactants, thin jets are ejected from the tip. This flow state
has been exploited systematically in microfluidics [21,22], where tipstreaming can be provoked
under controlled flow conditions. The subsequent Rayleigh decay of jets can produce drops of
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FIG. 2. On the top, the shape h(z) of an inviscid drop (or bubble) in the flow (3) at Ca = 0.4393, as
computed with the boundary integral code developed in [15]: (a). The curvature at the tip is κm = 2.54 × 108 in
units of the unperturbed drop radius Rd ; ztip is the position of the left tip, and the drop half-length is � = 4.976
in the same units. Panels (b)–(f) on the bottom show the corner of the drop (solid line) compared with the
conical approximation (1) of Taylor’s theory (dashed line). Starting from the upper left, for each panel we have
zoomed in by another factor of 1/100; the local slope of the interface is seen to increase at each step.

micron size and perhaps below [22]. The tipstreaming phenomenon has been addressed numerically
[23,24] and using slender body theory [25,26]; however the latter description suffers from the same
shortcomings as Taylor’s [6] original work.

Another geometry that has frequently been used to study conical tips as well as the ejection of
jets is that of the selective withdrawal experiment [4,15,27,28]. In this setup (see Fig. 1, right), one
fluid is extracted from near the interface between two fluids. Recently we have demonstrated [29]
that the tip similarity solution agrees well with the tip region of the selective withdrawal experiment.
However, selective withdrawal differs from the drop problem in that the geometry does not remain
slender far from the tip, and the interface slope in fact becomes large, as seen on the right of Fig. 1.
As a result, the theoretical description remains confined to a small region around the tip, as we are
not able to describe the transition toward the bulk of the flow, as we will do in the present paper for
the drop problem.

The (nearly) axisymmetric tip singularities to be investigated here complete our understanding of
the possible singularities of stationary free surfaces in viscous flows. Tips are superficially similar to
cusp singularities [30–33], but which form a line in three dimensions. Cusps are described locally
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by a two-dimensional flow in the plane perpendicular to the cusp line, while our new solutions
are fully three-dimensional. Complex variable methods have provided multiple examples for global
flow solutions with cusps [31,34,35]; now our second-order expansion will allow us to construct
global solutions with three-dimensional tips.

Numerical analysis of bubbles in a variety of flows, as well as of the interface in the selective
withdrawal geometry [15], indicates that the shape h(z) near the tip is a universal similarity solution
of the form [cf. Fig. 2(a)]

h(z) = κ−1
m H (ζ ), (2)

where ζ = (z − ztip)κm measures the distance from the tip in units of the tip curvature. Here κm is
the twice the three-dimensional mean curvature at the tip, and H (ζ ) is expected to be a universal
function, independent of the outer flow characteristics, or the geometry. In the particular case of a
bubble of length 2� [cf. Fig. 2(a)] we will consider the tip located at ztip = −�.

In the present paper, we calculate H (ζ ) theoretically, and demonstrate that the similarity solution
matches onto previous slender-body solutions, to second order in the slenderness parameter. While
the tip region is universal, the overall bubble shape depends on the external driving. Following
Taylor [3,6], we consider a bubble in the simplest external extensional flow:

v(ext)
z = Gz, v(ext)

r = −G

2
r, p(ext) = 0, (3)

where G is the local rate of extension. Conventionally, the capillary number is defined as Ca =
GRdη/γ , where Rd is the unperturbed drop radius. For simplicity, we assume that the entire problem
is axisymmetric, that the interior of the bubble has vanishing viscosity, and that the Reynolds number
of the flow is zero, so Stokes’ equation can be used. Since the outer flow sets a characteristic velocity
scale, we expect that on the small scale, near the tip, the Reynolds number will be small. However,
the global features of the flow will be different if the external flow is not axisymmetric [10], or the
Reynolds number is not small [9].

Our theoretical analysis is based directly on the boundary integral equations [11,36], which are an
exact formulation of the Stokes equation, and particularly suited to describing free surface motion,
as the integration is over the free surface only, without having to describe the entire flow. As far as
we are aware, boundary integral equations have chiefly been used as a numerical tool, since they
involve integration over an unknown surface in three dimensions, making them awkward to handle
in analytical terms. The key insight here is that the interface is almost conical, with an opening
angle which varies on a logarithmic scale only. This allows us to reformulate the equations as a local
problem on a logarithmic scale, where locally the surface is conical, so integrals can be evaluated
analytically.

In the next section, we develop the equations for the tip region, based on the boundary integral
equations. Since the interface slope decreases with the distance from the tip, we are able to develop
a perturbative approach, valid in the far field of the similarity solution H (ζ ), We solve the resulting
dynamical equation for the slope to leading order, expanding on the brief account in [29], and add a
“back-of-the-envelope”-type derivation, based on physical insight and previous exact flow solutions.

In Sec. III we develop the asymptotics to next order, crucial for matching to the bubble, proving
the consistency of the approach, and significantly improving the accuracy of our predictions. In
the following Sec. IV we briefly recall Buckmaster’s [7] slender body expansion, and calculate
the surface profiles and the velocity profiles to next-to-leading order in the slenderness parameter.
Then, in Sec. V we are able to match the inner similarity solution with the slender body expansion
to second order, providing us with a uniformly valid composite solution for the entire drop. As a
by-product, we calculate the tip curvature as function of the capillary number beyond the scaling
prediction of [29]. In the final discussion we mention possibilities for future investigations.
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II. SIMILARITY THEORY

A. Boundary integral equations

Our starting point is the boundary integral equation [37] for the velocity v at a point x1 on the
surface:

v(x1)

2
= v(ext)(x1) −

∫
S
κJ · n dσ2 −

∫
S

v · K · n dσ2, (4)

where, putting r = x1 − x2,

Ji j (r) = 1

8π

[
δi j

r
+ rir j

r3

]
, Ki jk (r) = − 3

4π

rir jrk

r5
. (5)

We have written (4) for the special case of vanishing viscosity inside the drop; the surface integrals
are over an entire closed surface, e.g. over the drop. Velocities have been written in units of the
capillary speed γ /η, so neither parameter appears. The idea of (4) is to write the action of surface
tension as a superposition of point forces over the free surface, which corresponds to the first integral
on the right of (4). The strength of each point force is proportional to (twice) the mean curvature
of the interface κ , n is the outward unit normal, and Ji j is the free-space Stokeslet, i.e., the velocity
field generated by a point force located at x2. The second integral on the right of (4) accounts for
the mismatch in stress produced by the jump in viscosity across the interface; Ki jk is the free-space
stresslet, the distribution of stress generated by a point force. The term v(ext)(x1) is the externally
imposed velocity field, for example, (3). In this paper, we are concerned exclusively with steady
states. In the numerical investigation [15], a steady state is found directly by requiring that the free
surface be a streamline of the flow, as described by (4), and the volume of the drop is constrained
to a given value. The resulting equations are solved using Newton’s method, which is much more
efficient than solving the time-dependent problem and waiting for the shape to converge toward a
steady state.

It can be advantageous, both numerically and for the analytical treatment below, to remove the
leading-order singularities in the K-kernels. To that end we use the exact relation [36]∫

S
K · n dσ2 = I

2
, (6)

where I is the identity matrix. This allows us to write (4) in the form

v(x1) = v(ext)(x1) + v(J )(x1) −
∫

S
[v(x2) − v(x1)] · K · n dσ2, (7)

where

v(J )(x1) = −
∫

S
κ (x2)J · n dσ2. (8)

Since the surface S is axisymmetric, we can perform the integration over the angle, which can
be done analytically, leading to elliptic integrals [36]. As a result, the three-dimensional Cartesian
vector Eqs. (7) and (8) become two-dimensional expressions for the axial and radial components
of a cylindrical coordinate system (z, r) alone. Thus we define, putting x1 = (y1, 0, z1), x2 =
(y2 cos θ2, y2 sin θ2, z2), ez = (0, 0, 1), er (θ2) = (cos θ2, sin θ2, 0), and n = (cos θ2, sin θ2,−h′(z2)),

j ≡ ( jz, jr ) = y2

∫ 2π

0
[ez · J · n, er (0) · J · n]dθ2. (9)

We choose the vector n as not being normalized. Since the line element dl = √
1 + h′2 dz, this

means we can replace dl by dz in the line integrals below.

044005-5



JENS EGGERS

Using the two-dimensional matrices

k =
(

k1 k3

k2 k4

)
, ks =

(
ks

1 ks
3

ks
2 ks

4

)
,

corresponding to v(x2) · K · n and the subtraction v(x1) · K · n, respectively, we put

k1 = ks
1 = y2ez ·

∫ 2π

0
(ez · K · n)dθ2, (10)

k2 = ks
2 = ks

3 = y2er (0) ·
∫ 2π

0
(ez · K · n)dθ2, (11)

k3 = y2ez ·
∫ 2π

0
[er (θ2) · K · n]dθ2, (12)

k4 = y2er (0) ·
∫ 2π

0
[er (θ2) · K · n]dθ2, (13)

ks
4 = y2er (0) ·

∫ 2π

0
[er (0) · K · n]dθ2. (14)

With these definitions, (7) becomes

v(z1) = v(ext)(z1) −
∫ �

−�

κ (z2)j(z1, z2) dz2 −
∫ �

−�

k(z1, z2) · v(z2) dz2 +
∫ �

−�

ks(z1, z2) dz2 · v(z1),

(15)

where the integrals are now over the axial variable alone.
To study the self-similar tip region, we use (2), writing (15) in units of the tip curvature κm, and

using the similarity transformation z = −� + ζ/κm; now ζ = 0 corresponds to the left tip of the
drop. Setting κ̂ (ζ ) = κ (z)/κm, (15) becomes

v(ζ1) = vtipez −
∫ 2R

0
κ̂ (ζ2)ĵ(ζ1, ζ2) dζ2 −

∫ 2R

0
k̂(ζ1, ζ2) · v(ζ2) dζ2 +

∫ 2R

0
k̂s(ζ1, ζ2) dζ2 · v(ζ1),

(16)

where the hat refers to local variables in units of κm. The dimensionless parameter R = �κm

measures the tip curvature in units of the drop length. In (16) we also approximated v(ext) = vtipez,
because on a scale of κ−1

m , the external flow can be taken as its value at the tip z = −�; otherwise
(16) is still exact.

Finally, anticipating that the slope near the tip varies on a logarithmic scale, we introduce
logarithmic scales l1 = ln ζ1, l2 = ln ζ2, and take everything as functions of l1 and l2. As a result,
(16) becomes

v(l1) = vtipez −
∫ ln(2R)

−∞
ζ2κ̂ (l2)ĵ(l1, l2) dl2 −

∫ ln(2R)

−∞
ζ2k̂(l1, l2) · v(l2) dl2

+
∫ ln(2R)

−∞
ζ2k̂s(l1, l2) dl2 · v(l1). (17)

Once more, the integration is over the entire drop. Note that the expressions ζ2k̂(l1, l2), ĵ(l1, l2),
and ζ2k̂s(l1, l2) remain invariant under a multiplication of all lengths by a constant. If all integrals
were convergent for R → ∞, this parameter could be eliminated and a local solution results. Thus
(17) would have a solution for a cone of constant slope, with v(l1) a constant. However, we know
from [7] that such a solution cannot exist. The reason is that the z-component of the J-integral is
logarithmically divergent for R → ∞, as we will see. Thus instead of a strictly conical solution, we
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look for a solution of the form

H (ζ ) = ζ s(ln ζ ), (18)

where s(ln ζ ) ≡ s(l ) is the slope of the chord to the tip. The full slope of the interface becomes

dH

dζ
= s(l ) + s′(l );

we will always use the prime to denote the derivative with respect to the logarithmic variable l . As
we will see below, far from the tip the slope becomes small like a power law, so that s′ � s, and one
can in fact approximate the slope to leading order as s(l ).

As a result of their scale invariance, the kernels ĵ(l1, l2) and ζ2k̂s(l1, l2) can be written in
terms of the variables s1, s2, s′

2, as well as the ratio ζ2/ζ1 alone; the dependence on s′
2 comes

from n. Since variables vary on a logarithmic scale, we introduce the logarithmic “distance” � =
l2 − l1 = ln(ζ2/ζ1), and use the self-evident notation ĵ(l1, l2) ≡ ĵ(s1, s2, s′

2,�) and ζ2k̂(l1, l2) ≡
ζ2k̂(s1, s2, s′

2,�) for the kernels as functions of the new variables. The curvature, multiplied by
ζ2, is also a function of s(l ) and its derivatives alone: ζ2κ̂ (l2) ≡ (ζ2κ̂ )(s2, s′

2, s′′
2 ).

B. Back-of-the-envelope calculation

Before we perform a systematic calculation based on the full boundary integral equations, we
show how the leading-order result can be obtained with a few simple arguments, using the fact that
the approximate slope s(l ) becomes small far from the tip. According to the kinematic boundary
condition, in a steady state the free surface must be a streamline of the flow, and so s ≈ vr/vz,
where vr and vz are the radial and axial components of the velocity, respectively, which also vary on
the scale l of the logarithmic distance from the tip. In the limit of small slopes, the drop looks like
a near-cylindrical cavity inside a viscous fluid, which collapses under the action of surface tension
[38]. Assuming a purely radial two-dimensional source flow, balancing surface tension with viscous
stresses, the radial velocity is obtained readily (cf. [39], p. 218) as vr = −1/2, so that vz ≈ −1/(2s).

Next we calculate vz(l ), which describes the translation of the interface as a result of the z-
component of the hoop stress (the squeezing) produced by surface tension, directed in the positive
z-direction, while the contribution vtip from the external flow points in the opposite direction. We
guess that a small amount of the same fluid inside the bubble would make little difference to this
translation, in which case we can calculate the surface tension contribution to vz from the J-integral
alone, which is the first integral on the right of (17).

For a given logarithmic scale l , we have to add up all the contributions coming from logarithmic
scale l2, lying between the scale of the tip (which is 0 = ln 1 in rescaled variables), and the scale of
the drop, which is ln R. The contribution from 0 < l2 < l is small, since it effectively comes from a
point, of vanishing surface area. In evaluating the contribution from l < l2 < ln R, we can assume
that the interface is approximated locally by a cone, at the tip of which vz(l ) is to be calculated. This
situation is very similar to that encountered in the breakup of a fluid drop inside of another fluid
[40,41], because the interface on either side of the break point approaches a cone. However, in the
present case the slope varies on a logarithmic scale, and vz has to be taken as the integral of local
contributions.

Since the slope is small, the contribution from the mean curvature is dominated by its radial
part, and ζ2κ̂ (l2) ≈ 1/s2. To compute ĵz, we have to integrate the three-dimensional kernel J · n
of (4) over the circumference of the cone. Since r in (5) is the vector from the tip of the cone to
a point on the surface, r · n = 0, and only the first term of J · n = n/(8πr) contributes. Since the
local circumference is ≈2πs2r, and the z-component of n is −s2, the result is ĵz ≈ −s2

2/4. Thus
ζ2κ̂ ĵz ≈ −s2/4, in agreement with what is found in the two-fluid breakup problem in the limit of
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small slopes (cf. [39], p. 181), and we obtain

vz(l ) ≈ vtip +
∫ ln R

l

s2

4
dl2.

Differentiating with respect to l , we have v′
z = −s/4, while from the previous expression for vz,

we obtain v′
z = s′/(2s2). The resulting equation s′ = −s3/2 is solved as s = 1/

√
l − l0, where l0 is a

constant of integration. This is exactly the result we will obtain more systematically in the following
subsection. It shows that the slope is indeed varying slowly as a power law of the logarithmic
distance from the tip. Balancing vtip against the contribution from the upper limit of the integral,
we obtain an expression for the curvature in terms of the strength of the outer flow. As we will see
below, this makes R exponentially large in the square of vtip.

C. The local approximation: Leading order

The idea for solving the integral Eq. (17) with the ansatz (18) is that on a logarithmic scale, the
kernels are peaked as function of the distance �. As a result, to some approximation, to be given
precisely below, we can write the integral Eq. (17) as a local equation for the variables s(l ) and
v(l ), which we then solve. The constant vtip has to be adjusted such that the R-dependent term in the
J-integral cancels, introducing a nonlocal coupling between the behavior near the tip and the outer
flow. We aim to solve (17) asymptotically as l1 → ∞; for a full solution at arbitrary l1 a numerical
treatment is necessary. Considering the integrals one by one, we begin by writing (17) in the form(

vz

vr

)
=

(
vtip + v(J )

z − K1 − K3

v(J )
r − K2 − K4

)
, (19)

where v(J )
r and v(J )

z are the two components of the first integral on the right of (17), and Ki

corresponds to the contributions coming from the ki-integrals.
We first perform the calculation to leading order as l → ∞ and s → 0, and calculate corrections

to this asymptotic in the following section. We begin with the integral v(J )
r , and look at the kernel

ĵr (s1, s2, s′
2,�), for which

ĵr ≈
⎧⎨
⎩

s1s2(2−s2
2 )s′

2

8(1+s2
2 )5/2 e−� � → ∞

−(s2+s′
2 )s1s2

4(1+s2
1 )3/2 e� � → −∞,

(20)

so that jr converges exponentially in �. The result (20) can be found by expanding the final
expression for ĵr (s1, s2, s′

2,�), containing elliptic integrals, for ζ2/ζ1 → ∞ and ζ2/ζ1 → 0, holding
s1, s2, and s′

2 constant; this is done easily with help of an algebraic manipulation package such as
MAPLE. Alternatively, the algebra can be simplified by performing the expansions in ζ2/ζ1 first
for the three-dimensional kernel J · n in (8). The angular integration then reduces to integrals over
cosi(θ ) for i = 0, 1, 2, which are trivial.

Now we can let ln(2R) → ∞, only incurring an exponentially small error of order 1/R, and
obtain

v(J )
r ≈ −

∫ ∞

−∞
ζ2κ̂ (l2) ĵr (l1, l2) dl2. (21)

The arguments of ĵr (s1, s2, s′
2,�) can be expanded in the form

s2 = s(l2) = s(l1) + s′(l1)� · · · , (22)

where each of the resulting integrals remains convergent. As we will see in more detail below,
higher order terms become progressively smaller both since s′ � s for l → ∞, and since the main
contribution to the integral comes from regions � ≈ s, where s becomes small. Thus to leading
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order, we put s2 = s1 and s′
2 = 0, so that

ĵr (s1, s2, s′
2,�) ≈ ĵr (s1, s1, 0,�) ≡ ĵr (s1,�),

which corresponds to the result for a perfect cone with slope s1 = s(l1). Expanding the curvature to
leading order (the details are given in the next section), we obtain ζ2κ̂ (l2) ≈ 1/s2. Thus expanding
s2 as in (22), we can approximate ζ2κ̂ (l2) ≈ ζ1κ̂ (l1) and find

v(J )
r ≈ (ζ1κ̂ )(l1)

∫ ∞

−∞
ĵr (s1,�)d� = 0, (23)

where we have used that ∫ ∞

−∞
ĵr (s1,�)d� = 0. (24)

This exact result will be demonstrated in Appendix A, and is confirmed by an expansion for small
s, as will be explained in more detail below.

Next we consider the integral v(J )
z . Its kernel ĵz does not decay for large �, which is the key to

the results of this paper. Instead, expanding for large |�| yields

ĵz ≈
⎧⎨
⎩

ĵe
z + (s2

2−2)s2s′
2

4(1+s2
2 )5/2 e−� � → ∞

−(s2+s′
2 )(s2

1+2)s2

4(1+s2
1 )3/2 e� � → −∞,

(25)

where

ĵe
z ≡

[ − (
s2 + s′

2

)(
2 + s2

2

) + s2
]
s2

4
(
1 + s2

2

)3/2 . (26)

Thus if we split the integral according to

v(J )
z = −

∫ ln(2R)

−∞
ζ2κ̂ (l2) ĵz(l1, l2) dl2 ≈ −

∫ ∞

−∞
ζ2κ̂

[
ĵz − H (l2 − l1) ĵe

z

]
dl2 −

∫ ln(2R)

l1

ζ2κ̂ ĵe
z dl2,

(27)

we can take the upper limit to infinity in the first integral on the right, since the integrand converges
exponentially according to (25); here H is the Heaviside function.

Now we can approximate the first integral on the right of (27) to leading order using the local
approximation s2 = s1, s′

2 = 0, starting from (27), which yields∫ ∞

−∞
ζ2κ̂

[
ĵz − H (l2 − l1) ĵe

z

]
dl2 ≈ (κ̂ζ )(l1)

∫ ∞

−∞

[
ĵz − H (�) ĵe

z

]
(s1,�) d� ≡ (κ̂ζ )(l1)Iz(s1). (28)

We will see below that Iz ∝ s2, so in the limit of s → 0, the local contribution does not have to be
considered. Turning to the second integral on the right of (27), in the limit of small slopes ĵe

z ≈
−s2

2/4 and ζ2κ̂ = 1/s2, and so ζ2κ̂ ĵe
z ≈ −s2/4, and we obtain

v(J )
z ≈ 1

4

∫ ln(2R)

l1

s(l2) dl2. (29)

Next we consider the Ki-integrals introduced in (19); The kernels k̂i scale like ζ−1
2 , so the ζ2k̂i

vary on a logarithmic scale; their behavior is as follows:

ζ2k̂1 ≈
⎧⎨
⎩

− 3s2s′
2

2(1+s2
2 )5/2 + O(e−�) � → ∞

3s2(s2+s′
2 )

2(1+s2
2 )5/2 e2� � → −∞,

ζ2k̂2 ≈
⎧⎨
⎩

− 3s1s2(s3
2+3s2

2s′
2+s2−2s′

2 )

4(1+s2
2 )7/2 e−� � → ∞

3s2s1(s2+s′
2 )

2(1+s2
2 )5/2 e2� � → −∞,

(30)
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ζ2k̂3 ≈
⎧⎨
⎩

− 3s2
2s′

2

2(1+s2
2 )5/2 + O(e−�) � → ∞

− 3s2
1s2

4(1+s2
2 )5/2 e2� � → −∞,

ζ2k̂4 ≈
⎧⎨
⎩

− 3s2
2s1(s3

2+2s2
2s′

2+s2−3s′
2 )

4(1+s2
2 )7/2 e−� � → ∞

3s3
1s2

2

4(1+s2
2 )5/2 e2� � → −∞,

(31)

ζ2k̂s
4 ≈

⎧⎨
⎩

− 3s3
2s′

2

4(1+s2
2 )5/2 � → ∞

3s2
1s1(s2+s′

2 )

2(1+s2
1 )5/2 e2� � → −∞.

(32)

In other words, for the upper limits of k̂1, k̂3, and k̂s
4, the asymptotic values k̂e

1, k̂e
3, k̂s,e

4 need to be
subtracted. However, since s′

2 → 0 to leading order, there still is algebraic decay, and in each case
the integrals remain finite.

Keeping track of algebraic corrections, we identify the entries in (19) as

K1 =
∫ ∞

−∞

[
ζ2k̂1 − H (�)k̂e

1

]
[vz(l2) − vz(l1)] dl2 +

∫ ln(2R)

l1

k̂e
1vz(l2) dl2 − vz(l1)

∫ ln(2R)

l1

k̂e
1 dl2,

(33)

K2 =
∫ ∞

−∞
ζ2k̂2[vz(l2) − vz(l1)]dl2, (34)

K3 =
∫ ∞

−∞

{[
ζ2k̂3 − H (�)k̂e

3

]
vr (l2) − ζ2k̂2vr (l1)

}
dl2 +

∫ ln(2R)

l1

k̂e
3vr (l2) dl2, (35)

K4 =
∫ ∞

−∞

{
ζ2k̂4vr (l2) − [

ζ2k̂s
4 − H (�)ks,e

4

]
vr (l1)

}
dl2 − vr (l1)

∫ ln(2R)

l1

ks,e
4 dl2. (36)

It is easy to perform the integrals to leading order, as all the dominant contributions come from
l2 ≈ l1, as we will see in more detail below.

Beginning with the first integral of K1, and anticipating that the second and third integral of (33)
are subdominant, we write k̂1(s1, s2, s′

2,�) ≈ k̂1(s1, s1, 0,�), and expand the result for small values
of s. It is straightforward to confirm that all angular integrals (9)–(14) can be written as a function
of a dimensionless combination c, which for a cone of constant slope s can be written as

c ≡ 2y1y2

y2
1 + y2

2 + (x1 − x2)2
= 2s2e�

(1 + s2)(1 − e�)2 + 2s2e�
.

In the limit of small s, and putting ξ = �/s, this becomes

c = 2

ξ
+ O(s).

We will confirm in more detail in the next section that to leading order for small s, the main
contribution to the integrals comes from the central region of size s. This part of the integral can be
captured by expanding in s at constant ξ :

ζ2k̂1 = K (−1)
1 (ξ )s−1 + K (0)

1 (ξ ) + · · · , (37)

where K (−1)
1 (ξ ) is an even function in ξ , and the remaining terms alternate between odd and even.

Expanding the velocity according to

vz(l2) = vz(l1) + v′
z� + O(�)2, (38)
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the leading contribution is vz(l2) − vz(l1) ≈ v′
z�. As a result, the first nonvanishing contribution to

the first integral in (33) is of order

K1 ≈
∫ ∞

−∞
ζ2k1(s1,�)�d� = O(s2), (39)

which will turn out to be of lower order than the contribution from v(J )
z , and thus can be neglected

at leading order.
Next, the leading contribution to K2 is

K2 ≈
∫ ∞

−∞
ζ2k2� d� = v′

zs
∫ ∞

−∞
ξK (−1)

2 dξ + O(s2) = −v′
z

s

2
+ O(s3), (40)

using that

ζ2k2 = K (−1)
2 (ξ )s−1 + K (0)

2 (ξ ) + · · · ,

where K (−1)
2 (ξ ) is odd, and we show in Appendix A that∫ ∞

−∞
ξK (−1)

2 (ξ ) dξ = −1

2
. (41)

In K3, the second, nonlocal integral is again subdominant, and since vr (l2) − vr (l1) = O(�) the
leading contribution comes from vr (l2) ≈ vr (l1). As a result,

K3 ≈ vr (l1)
∫ ∞

−∞
ζ2(k3 − k2) d� = vrs

∫ ∞

−∞
K0

3 dξ + O(s2) = vr
s

2
+ O(s2), (42)

where

ζ2(k3 − k2) = K (−1)
3 (ξ )s−1 + K (0)

3 (ξ ) + · · · ,

and K (−1)
3 (ξ ) is odd, so only K (0)

3 (ξ ) contributes at leading order.
Finally, to calculate K4 we once more approximate vr (l2) ≈ vr (l1) and consider only local

contributions. The local expansion of the kernel is

ζ2
(
k4 − ks

4

) = K (−1)
4 (ξ )s−1 + K (0)

4 (ξ ) + K (1)
4 (ξ )s + · · · ,

where K (−1)
4 (ξ ) and K (1)

4 (ξ ) are odd. Thus

K4 ≈ vr (l1)
∫ ∞

−∞
ζ2

(
k4 − ks

4

)
d� = vr

(∫ ∞

−∞
K (−1)

4 dξ + s2
∫ ∞

−∞
K (1)

4 dξ

)
=

(
−1 + s2

4

)
vr . (43)

Inserting this into (19), to leading order we obtain the system

vz = vtip + 1

4

∫ ln(2R)

l
s(l2) dl2 + O(s), 0 = s

2
v′

z − s2

4
vr + O(s4), (44)

which, apart from the integral, is the desired local formulation of the boundary integral equations.
The consistency of our calculation will be confirmed in the next section. From the kinematic
boundary condition, we have dH/dζ = s + s′ ≈ s = vr/vz. Differentiating the first equation of (44)
we get v′

z = −s/4 to leading order, and so from the second equation of (44) vr = −1/2, consistent
with the anticipated result of the preceding subsection.

Thus exactly as in Sec. II B we find s′(l ) = −s3/2. The solution of this equation is s = (l −
l0)−1/2, so we finally have

s = (l − l0)−1/2, vr = −1

2
, vz = −

√
l − l0
2

, (45)
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and the asymptotic shape of the similarity profile (18) is

H (ζ ) = ζ√
ln(ζ ) − l0

. (46)

The constant of integration l0 is to be determined from matching to the full integral formulation for
the similarity solution of the tip region.

To obtain the similarity profile H (ζ ) for any value of ζ , we have to solve the full integral equation
(16), written in inner variables. In order to take the limit R → ∞, to isolate the universal part of
the solution, we have to subtract the divergence of the J-integral by adjusting vtip. To leading order
s(l ) = 1/

√
l , and so (29) yields as R → ∞:

vJ
z ≈

√
ln R

2
+ O[(ln R)−1/2]. (47)

Thus in order to cancel the divergence for infinite system size R → ∞, we choose

vtip = −
∫ ln R

0

1

4(1 + ζ2)1/2 dζ2 = − 2(1 + ζ2)1/2

2

∣∣∣∣
ln R

0

≈ −
√

ln R

2
,

to obtain

v(ζ1) = −
∫ ∞

0

[
κ̂ (ζ2)ĵ(ζ1, ζ2) + ez

4(1 + ζ2)1/2

]
dζ2

−
∫ ∞

0
k̂(ζ1, ζ2) · v(ζ2) dζ2 +

∫ ∞

0
k̂s(ζ1, ζ2) dζ2 · v(ζ1). (48)

All integrals are now convergent, so we were able to take the limit R → ∞ in (48). The boundary
condition at the tip is that the curvature is κ̂ (ζ = 0) = 1; the velocity can be shifted so as to ensure
vz(0) = 0. Since we understand the asymptotic behavior of the solution of (48) as ζ1 → ∞ in detail
(we will calculate the next order in the next section), we don’t need the solution for large ζ . Instead,
we extract the similarity solution from the simulation of an entire bubble, and match it up with the
asymptotic behavior.

D. Leading-order matching

We have seen that the inner solution generates a velocity (47) which diverges with R → ∞. This
has to match the tip velocity vtip of the outer flow. In units of γ /η, −vtip is the local capillary number
Catip at the tip. In other words, we have Catip ≈ √

ln(R)/2. Solving for κm, this is equivalent to

κm ∝ �−1 exp
(
4Ca2

tip

)
, (49)

which agrees with the scaling law proposed earlier by us [15] on the basis of numerical data. There
the constant inside the exponential was found to be approximately 3.7, instead of 4 in (49). Our
calculation below, incorporating the next order in an expansion in 1/ ln R, will reveal that this
discrepancy comes from the fact that the prefactor in (49) contains a weak dependence on Catip.
Note that in [15], the constant was given incorrectly as 1.6, owing to a confusion between natural
logarithm and common logarithm.

Coming back to the approximation v(ext) ≈ vtipez in the step from (15) to (16), the exter-
nal velocity field v(ext) has z-component v(ext)

z ≈ −Catip with correction of order R−1, while

v(ext)
r ≈ −Catip

2R H (ζ ). On the other hand, from the kinematic boundary condition it follows that
vr ≈ −Catip

dH
dζ

, which is larger by a factor R ∝ exp (4Ca2
tip) than the radial component of the

external velocity. Thus the approximation is always valid in the inner region, as anticipated.
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III. THE LOCAL APPROXIMATION: NEXT ORDER

To check if the leading-order result (45) is consistent, and to be able to perform the matching to
higher order, we now calculate the next order of the inner similarity solution in the limit l → ∞. We
will see that individual entries in (19) contain either odd or even powers of 1/

√
l , so it is consistent

to assume an expansion of the form

s = l−1/2 + a1l−3/2 + · · · , vz = −l1/2/2 + b1l−1/2 + · · · , vr = −1/2 + c1l−1 + · · · , (50)

where the coefficients a1, b1, c1 will turn out to be logarithmically dependent on l . Since the leading
term in the vz-equation is ∝√

l , we now have to calculate terms of order s ∼ 1/
√

l , and in the
vr-equation terms of order s4 ∼ 1/l2.

We begin with v(J )
r and v(J )

z , as given by (21) and (27), and expand each term. First, the curvature
has the form

ζ κ̂ = 1

s
√

1 + (s + s′)2
− s′ + s′′√

1 + (s + s′)2
3 = 1

s
− 1

2s3
− s′ + O(l−3/2), (51)

while the kernels are treated by expanding about l = l1:

s2 = s1 + s′
1� + O(�2), s′

2 = s′
1 + s′′

1� + O(�2),

and where now s′
1 and s′′

1 are treated as small parameters. Hence any kernel can be expanded in the
form

ĵr (s1, s2, s′
2,�) ≈ ĵr (s1,�) + s′

1

(
�

∂ ĵr
∂s2

+ ∂ ĵr
∂s′

2

)
+ s′′

1�
∂ ĵr
∂s′

2

+ · · · ,

where all derivatives are evaluated at s2 = s1, s′
2 = 0, and

ζ κ̂ (l2) ≈ 1

s1
− 1

2s3
1

− s′
1 − s′

1

s2
1

�.

As a result, we obtain

v(J )
r ≈ −

(
1

s1
− 1

2s3
1

− s′
1

)[∫ ∞

−∞
ĵr (s1,�) d� + s′

1

∫ ∞

−∞
�

∂ ĵr
∂s2

d�

+ s′
1

∫ ∞

−∞

∂ ĵr
∂s′

2

d� + s′′
1

∫ ∞

−∞
�

∂ ĵr
∂s′

2

d�

]
+ s′

1

s2
1

∫ ∞

−∞
� ĵr d�

≡ −
(

1

s1
− 1

2s3
1

− s′
1

)
[I0 + s′

1I1 + s′
1I2 + s′′

1I3] + s′
1

s2
1

I4, (52)

where we want to calculate this expression to O(s4) or O(l−2). This means we need I0 to order s5,
I1 and I2 to order s2, I3 to order s0, and I4 to order s3.

As we have seen, the integrands are characterized by a central peak of characteristic width � ∝ s,
while there is exponential decay in the wings on a scale of unity; cf. (20). To compute the integral
from −∞ to ∞, we need a uniform approximation over the whole real line [16], which we find
by constructing a composite approximation using van Dyke’s matching rule [42,43]. Taking I0 as
an example, we write the inner and outer expansions by expanding in s, holding either ξ = �/s
constant (inner expansion) or � constant (outer expansion). Thus writing f (s,�) ≡ ĵr (s,�), the
inner expansion is

f (s,�) ≈ HQ f ≡
Q∑

n=0

fn(ξ )sn, (53)
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where HQ projects f upon its power expansion up to order Q. We can take Q as an even number,
since all f2i−1(ξ ) are odd functions [while the f2i(ξ ) are even], and do not contribute to the integral.
For large ξ , the functions fn either grow or decay like a power law.

On the other hand, the outer expansions are different for � > 0 or � < 0:

f (s,�) ≈ EQ+1 f ± ≡
Q+1∑
n=0

F±
n (�)sn, (54)

where EQ+1 is the corresponding projection of the outer expansion. It is sufficient to expand up
to Q + 1 for the contribution of the inner and outer expansions to the integral to be of the same
order. One can verify in each case that EQ+1HQ f = HQEQ+1 f , which according to the matching
rule implies that

f (s,�) ≈ EQ+1 f + HQ f − HQEQ+1 f (55)

is a uniform approximation to the integrand to the desired order.
To perform the integral, we split the overlap, which has the form

HQEQ+1 f =
n+∑

n=−n−

P±
n �n ≡ P±

+ + R± + P±
− (56)

into non-negative powers of � (i.e., P±
+ ), the power n = −1 (i.e., R±), and powers n < −1 (P±

− );
again, the upper index denotes the expansion for � > 0 (+), the lower index the expansion for � <

0 (−). Since the integral over P+ converges near the origin, while the integral over P− converges
at infinity (we for the moment disregard R, which leads to a divergence both at the origin and at
infinity) we regroup as follows to compute the integral:

I0 =
∫ ∞

−∞
f (s,�)d� ≈

∫ 0

−∞
(EQ+1 f − − P−

− )d�

+
∫ ∞

0
(EQ+1 f + − P+

− )d� + 2s
∫ ∞

0
(HQ f − P+

+ )dξ, (57)

where now all integrals are convergent. An explicit calculation shows that I0 vanishes at each order
in s, which we checked up to O(s7). This agrees with (24), which is demonstrated in Appendix A.

Next, we consider I1 (i.e. f = �
∂ jr
∂s2

), to which in the inner expansion only odd powers of s
contribute, and thus Q = 1, 3, 5, . . . . Now f1(ξ ) decays like 1/ξ at infinity, indicating a logarithmic
behavior after integration. Indeed, the overlap in (56) now contains R± = ±(s/4 − 3s3/8)/ξ +
O(s6), which is divergent both at the origin and at infinity. To deal with this divergence, we introduce
an arbitrary parameter B > 0 to split the integrals into two:

I1 =
∫ ∞

−∞
f (s,�)d� ≡ Iout + Iin ≈

∫ −B

−∞
(EQ+1 f − − P−

− )d� +
∫ 0

−B
(EQ+1 f − − P−

− − R−)d�

+
∫ B

0
(EQ+1 f + − P+

− − R+)d� +
∫ ∞

B
(EQ+1 f + − P+

− )d�

+ 2s
∫ B/s

0
(HQ f − P+

+ )dξ + 2s
∫ ∞

B/s
(HQ f − P+

+ − R+)dξ . (58)

The result cannot depend on the choice of B, and indeed an explicit calculation shows that B drops
out.
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To make the logarithmic dependence explicit, we rewrite the contribution to I1 coming from the
inner expansion as

Iin = 2s
∫ ∞

0
[HQ f − P+

+ − R+(ξ + 1)]dξ + 2s
∫ B/s

0
R+(ξ + 1) dξ

+2s
∫ B/s

0
[R+(ξ + 1) − R+(ξ )]dξ . (59)

Now since the argument of R+(ξ ) has been shifted by 1, the first integral of (59) converges at both
the lower and the upper limit. Since R+ is of the form R+ = a/� (in this case a = s/4 − 3s3/8) the
second and third integrals yield∫ B/s

0

a

ξ + 1
dξ +

∫ B/s

0

(
a

ξ
− a

ξ + 1

)
dξ = a ln B − a ln s.

Thus at order s2, the logarithmic contribution to I1 is −s2 ln s/2, while the term a ln B cancels against
a counter-term coming from the outer expansion. Performing the calculations explicitly, we obtain
to leading order for the integrals defined in (52)

I1 = s2

(
1

2
+ 2 j (1)

r

)
− s2

2
ln s, I2 = − s2

4
, I4 =

(
1

4
+ 2 jc

r − ln s

4

)
s3, (60)

where

j (1)
r =

∫ ∞

0

[
ξ j (1)

0 (ξ ) − 1

4(1 + ξ )

]
dξ, jc

r =
∫ ∞

0

[
ξ j1(ξ ) − 1

8(1 + ξ )

]
dξ . (61)

Here j (1)
0 (ξ ) is the constant coefficient in the inner expansion of ∂ ĵr

∂s2
, and j1(ξ ) the linear coefficient

in the inner expansion of ĵr . The integral I3 is of order s2 and need not be considered. Thus we
finally find

v(J )
r = − s′

s
(I1 + I2) + s′

s2
I4 = s′s

[
2 jc

r − 2 j (1)
r + ln s

4

]
+ O(s6). (62)

Next we calculate v(J )
z , using (27) and (28), calculating terms of O(s). Proceeding by the method

of composite approximations described above, we find∫ ∞

−∞

[
ĵz − H (�) ĵe

z

]
(s1,�)d� = s2

(
− ln 2

2
+ ln s

2

)
,

since ∫ ∞

0

[
j (z)
1 + 1

4(1 + ξ )

]
dξ = − ln 2

4
, (63)

where j (z)
1 (z)(ξ ) is the linear term of the inner expansion of ĵz (see Appendix A). Taken together,

this yields

v(J )
z ≈

∫ l1

ln(2R)
ζ2κ̂ ĵe

z dl2 − s

(
− ln 2

2
+ ln s

2

)
. (64)

In fact, using (63), the constant jc
r − j (1)

r in (62) is jc
r − j (1)

r = 3/32 − ln 2/8, a consequence of the
identity ∫ ∞

0

[
4ξ j1(ξ ) − 4ξ j (1)

0 (ξ ) − 2 j (z)
1 (ξ )

]
dξ = 3

8
, (65)

which can be found using the methods of Appendix A.
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Now we come to the K-integrals, and begin with the z-equation, for which we need results to
O(s). We begin with K1, defined in (33). Calculating the leading contribution to the first, local
integral, and using that vz(l2) − vz(l1) = v′

z� + O(�2), we obtain∫ ∞

−∞

[
ζ2k̂1 − H (�)ζ2k̂e

1

]
[vz(l2) − vz(l1)] dl2 ≈ v′

z

∫ ∞

−∞

[
ζ2k̂1 − H (�)ζ2k̂e

1

]
�d�.

The integral is of order s2, and v′
z ∼ s, and hence the local integral need not be considered at this

order. We are left with

K1 ≈
∫ ln(2R)

l1

ζ2k̂e
1vz(l2) dl2 − vz(l1)

∫ ln(2R)

l1

ζ2k̂e
1 dl2. (66)

Using (50), one finds that to leading order ζ2k̂e
1 ≈ −3ss′/2 = 3(4l2

1 ) + O(l−3
1 ) and ζ2k̂e

1vz =
−3/(8l3/2

1 ) + O(l−5/2
1 ), so that up to an R-dependent constant C(R)

K1 ≈ − 3

4
√

l1
− vz(l1)

3

4l1
+ C(R) = − 3

8
√

l1
+ C(R). (67)

The constant C(R) will be calculated later, once we have a description of the profile over the entire
drop.

As for K3, defined in (35), k̂e
3 ≈ −3s2s′/2 ≈ 3/(4l5/2) at leading order, and since vr ≈ −1/2, the

second, nonlocal integral makes a contribution ∝1/l3/2
1 , which is subdominant in the z-equation.

Thus as was shown in Sec. II C, according to (42) we have K3 ≈ vrs/2.
Coming to the r-equation, we have to calculate to order O(s4). Using that vz(l2) − vz(l1) =

�v′
z + · · · , it is sufficient to calculate the leading contribution∫ ∞

−∞
�ζ2k̂2(s,�) d� = − s

2
+ 3s3

4
+ O(s5),

and thus we obtain

K2 = v′
z

[
− s

2
+ 3s3

4

]
+ O(s5). (68)

Finally we compute K4 to the next order, using (36). We can approximate k̂s,e
4 = −3s3s′/(4(1 +

s2)5/2 ≈ −3(s4)′/16, and thus the nonlocal integral becomes∫ ln(2R)

l1

k̂s,e
4 dl2 ≈ − 3

16
s4

∣∣∣∣
∞

l1

≈ 3s4
1

16
.

The local part can be approximated as∫ ∞

−∞
ζ2

{
k̂4vr (l2) − [

k̂s
4 − H (�)k̂s,e

4

]
vr (l1)

}
dl2 ≈ vr (l1)

∫ ∞

−∞
ζ2

[
k̂4 − k̂s

4 + H (�k̂s,e
4 )

]
dl2

+ v′
r (l1)

∫ ∞

−∞
ζ2k̂4� dl2 ≈ vr (l1)

[∫ ∞

−∞
ζ2

(
k̂4 − k̂s

4 + H (�)k̂s,e
4

)
(s1,�) d�

+ s′
1

∫ ∞

−∞

(
�

∂
{
ζ2

[
k̂4 − k̂s

4 + H (�)k̂s,e
4

]}
∂s2

+ ∂
{
ζ2

[
k̂4 − k̂s

4 + H (�)k̂s,e
4

]}
∂s′

2

)
d� + O(s′′

1 )

]

+ v′
r (l1)

∫ ∞

−∞
�ζ2k̂4(s1,�) d� ≡ vr (l1)(I0 + s′

1I1) + v′
r (l1)I2. (69)

We find that

I0 = −1 + s2

4
+ O(s4), I1 = 3s

8
,
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while I2 ∼ s2, so that v′
rI2 ∼ l−3, which does not need to be considered at this order. As a result, we

finally obtain from (36)

K4 = vr

(
−1 + s2

4
+ 3s′s

8
− 3s4

16

)
. (70)

Inserting everything into (19), the equations become to second order (which means including
s ∝ l−1/2 for the z-equation, and s4 ∝ l−2 for the r-equation):

vz = vtip +
∫ l

ln(2R)
ζ2κ̂ ĵe

z dl2 − s

(
− ln 2

2
+ ln s

2

)
+ 3

8
√

l
− C(R) − vrs

2
, (71)

0 = s′s
(

3

16
− ln 2

4
+ ln s

4

)
− v′

z

(
− s

2
+ 3s3

4

)
− vr

(
s2

4
+ 3s′s

8
− 3s4

16

)
. (72)

This has to be solved together with the kinematic condition

dH

dζ
= vr

vz
,

which yields

dH

dζ
= s + s′ = vr

vz
. (73)

To find the right form of the solution to the system (71)–(73), we eliminate constants of inte-
gration by differentiating (71) with respect to l , and eliminate vr using (73). Putting s = l−1/2 + δ1

and vz = −l1/2/2 + δ2, we linearize about the leading-order solution (45). The resulting system of
ordinary differential equations for δ1 and δ2 can be solved to leading order as l → ∞, from which
we derive the structure of the solution as

s = (l − l0)−1/2 + (A1 ln l + A2 ln2 l )(l − l0)−3/2, (74)

vz = v0 −
√

l − l0
2

+ (v1 + B1 ln l + B2 ln2 l )(l − l0)−1/2. (75)

The arbitrary shift l0 is an expression of the fact that Eqs. (71)–(73) are translationally invariant.
Using (74) and (75), we expand as follows:

ζ2κ̂ ĵe
z = − 1

4
√

l − l0
+

[
1

2
− A1

4
ln l − A2

4
ln2 l

]
1

√
l − l0

3 + · · · .

Inserting this into the differentiated version of (71), and solving it together with (72) for A1, A2, B1,
and B2, we obtain

s = 1√
l − l0

+ 2

[(
9

16
− ln 2

4

)
ln l − ln2 l

16

]
(l − l0)−3/2 + · · · , (76)

vz = v0 −
√

l − l0
2

+
[

1

4
+

(
9

16
− ln 2

4

)
ln l − ln2 l

16

]
(l − l0)−1/2 + · · · , (77)

vr = −1

2
+ 1

2(l − l0)
+ · · · , (78)

where l0 has been chosen so that any constant coefficient of l−3/2 in the expansion of s is zero. The
constant v0 is a constant of integration; by matching to the outer solution we will see below that v0

has to vanish: v0 = 0. In Fig. 3 (left) we show dHdζ = s + s′ fitted to the asymptotic form (76),
using l0 as the only fit parameter. The result is l0 = 0.1 and yields a very good fit. As far as the
matching to the outer solution is concerned, the constant l0 contains all the information about the
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FIG. 3. Left: The slope dHd/ζ (l ), rescaled in similarity form, compared with the asymptotics (76), where
l0 = 0.1 was adjusted. Right: The two components of the velocity field vz (black) and vr (red), compared with
(77) and (78), respectively.

very tip of the similarity solution, where the curvature is unity. Using this constant, the asymptotics
of both vz and vr can be predicted without adjustable parameters (on the right of Fig. 3), yielding
very good agreement, without adjustable parameters.

IV. OUTER, SLENDER BODY SOLUTION

The outer solution is based on the idea that for a strong external flow (large Ca), the drop is
slender (its typical radial extension is much smaller than its length). Using slenderness, Taylor [6]
suggested to represent the effect of the drop on the external flow as a distribution of two-dimensional
point sources along the axis. This idea was worked out systematically in [7] using slender body
theory [16]. We now recall the important results of this theory for an inviscid bubble in the
hyperbolic flow (3); see Fig. 2.

The outer flow problem is nondimensionalized as follows: as the length scale we choose the drop
half-length �, the inverse extension rate G−1 [see (3)] as the timescale, and Gη as the pressure scale.
Denoting dimensionless outer variables with an overbar, the external flow is now

v(ext)
z = z, v(ext)

r = r/2,

and the Stokes equation is ∇p = �v. Finally, the normal stress boundary condition is

n · σ · n = εκ, ε ≡ γ

Gη�
. (79)

A strong flow corresponds to small ε, which will be our expansion parameter. It can be interpreted
as the inverse of the local capillary at the tip, since −G� is the unperturbed velocity at the tip:
ε = 1/Catip.

Since the flow is axisymmetric, we can introduce the stream function to write

vr = −1

r

∂ψ

∂z
, vz = 1

r

∂ψ

∂r
. (80)

The idea, as proposed originally in [6], is to write ψ as the sum of the outer flow’s contribution and
a small perturbation, coming from a distribution of sources and Stokeslets along the axis:

ψ = r2z

2
+

∫ 1

−1

f (z̃)r2√
r2 + (z − z̃)2

dz̃ −
∫ 1

−1

g(z̃)(z − z̃)√
r2 + (z − z̃)2

dz̃, (81)
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which by definition satisfies Stokes’ equation. Apart from the two Eqs. (79), we have to satisfy the
kinematic condition

ψ |r=h = 0, (82)

which are three equations for the three unknowns h, f , and g, which are to be solved at each order.
Buckmaster’s [7] calculation shows that the solution has the structure

h = εh0 + ε3h1 + · · · , f = ε2 f0 + ε4 f1 + · · · , g = ε2g0 + ε4g1 + · · · . (83)

At each order, (82) and the normal stress balance (79) are a closed set of equations for h and g; f
can then be calculated from the tangential stress balance. At lowest order, the result is [7]

h0 = 1

4
(1 − z2), f0 = − z

16
(1 − z2), g0 = 1 − z2

64
(1 − 5z2), (84)

which corresponds to the solution found in [6]. We consider only the generic and stable solution [9],
for which h0 has a quadratic maximum at z = 0.

At the next order, one finds

h1(z) = z2
∫ z

−1

Q(s)

s2
ds, (85)

where Q(s) is of the form

Q(s) = −2
H1(z) + pinf h2

0(z)

z(1 − z2)
,

and H1(z) is a function given in terms of integrals over the first-order solution [7], which are easily
calculated. In an expansion around s = 0 (the center of the drop), Q has the structure Q = Q−1s−1 +
Q1s + O(s3). The most singular term Q−1s−1, after integration, cancels against the factor z2 in front
of the integral and contributes to the constant h1(0).

The term Q1s yields a logarithm after integration, and would result in the profile no longer being
analytic. Thus the constant of integration pinf that appears in the pressure at second order must
be chosen such that Q1 = 0, resulting in pinf = 6 − 12 ln 2 + 4 ln ε. With this choice, the result
for (85) is

h1(z) = z2Li2(z2)

8
+ 27z4 − 24z2 − 3

192
ln(1 − z2) + 27z4 − 48z2 + 21

96
ln(ε)

+−162z4 + 288z2 − 126

192
ln(2) + 23

64
(1 + z4) − 4π2 + 138

192
z2, (86)

where

Li2(x) ≡ −
∫ z

0

ln(1 − u)

u
du

is the dilogarithm.
Near the ends, h1 ≈ (1 − |z|) ln(1 − |z|), which becomes large compared to the conical solution

at leading order, which means that the perturbation expansion breaks down near the ends. This
is expected, since the slenderness assumption is violated at the tips. Instead, we have to use the
similarity solution of the previous section, and match it to the perturbative result. At the center of
the drop,

h1(0) = 7

32
ln ε − 21

32
ln 2 + 23

64
, (87)

which agrees with [9]. Otherwise h1(z) has a regular expansion in z2 at z = 0, as anticipated.
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FIG. 4. The drop half-length � as function of the capillary number Ca = GRdη/γ for for a bubble in the
flow (3); see Fig. 2. The solid line is the result of our boundary integral simulation [15], the dotted line is the
leading-order result [6], the dashed line is (89).

To determine �, we compute the volume of the drop:

V = 2π�3
∫ 1

0
h

2
(z) dz.

Now ε = a/�, where a = γ /(Gη) is a characteristic length of the outer flow. To leading order,
h = εh0, and ∫ 1

0
h2

0 dz = 1

30
,

so that V = πa2�/15. Thus since Ca = Rd/a, one finds � = 20Ca2Rd to leading order [6].
Expanding to next order in ε2, we have

V = 2π�3

[
ε2

∫ 1

0
h2

0 dz + 2ε4
∫ 1

0
h0h1 dz

]
= 2π�3

[
ε2

30
+ ε4

(
50 863

661 500
+ ln ε

21
− 227 ln 2

1575

)]
.

(88)

Inserting the first-order result ε = 1/(20Ca3) into the second-order term, this can be solved to give

�

Rd
= 20Ca2 − 3

2Ca4

[
50 863

661 500
− ln(20Ca3)

21
− 227 ln 2

1575

]
. (89)

This result is compared to a full numerical simulation in Fig. 4. We will see below that the prediction
of (89) will not be changed by the explicit inclusion of the inner solution, although the solution itself
breaks down at the ends.

For the capillary numbers that can be realized while still resolving the entire solution, the
agreement is mediocre: while the leading order result significantly underpredicts the drop length,
including the next order leads to an overprediction. For example in the case of Fig. 2, for which
Ca = 0.4393, and drop radius Rd = 1, (89) yields � = 3.86 at first order, and � = 5.79 at the next
order, while numerically we find � = 4.797, a 20% overprediction at second order. Solving the
nonlinear Eq. (88) for � directly yields � = 5.65. However, this does not mean slender body theory
is deficient, since Ca is quite small in our example. Since the aspect ratio of the drop is 1/(80Ca3) to
first order, slenderness is well verified even for Ca ∼ 1. Indeed, for Ca = 1 first- and second-order
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predictions for � differ only by 1%. More importantly, we will see below that slender body theory is
a crucial ingredient of the composite solution for the crossover between the tip and the bulk of the
drop, which works extremely well, even for Ca � 1/2.

In order to match the outer solution to the tip region, we investigate the limit z → −1 of the
slender-body solution, going toward the tip, and introduce ξ = (z + �)/� = 1 + z:

h1(ξ ) = 1
16 (−2 ln ε − ln ξ + 5 ln 2 − 4)ξ + O(ξ 2). (90)

In other words, the inner limit of the outer expansion becomes

hin = εξ

2
+ ε3ξ

16
[− ln(ε2ξ ) + 5 ln 2 − 4] + · · · , (91)

where the term ln ξ signals the breakdown of the outer expansion, as observed in [7]. Using (80)
and expanding the integrals (81) in ε, the velocity field can also be calculated to second order, with
the results

vz = z + ε2z

16
(3z2 − 1)[3 − 6 ln 2 + 2 ln ε + ln(1 − z2)] + O(ε4) (92)

and

vr = − εz2

2
− ε3z2

96
{π2 − 138z2 − 24Li2(z2) + 45(1 − z2) ln[ε2(1 − z2)]

− 270(1 − z2) ln 2 + 126} + O(ε5). (93)

Expanding this for small ξ = 1 + z, we obtain

vz = −1 + ε2

8
[− ln(ε2ξ ) + 5 ln 2 − 3] + O(ξ, ε4), vr = −ε

2
+ ε3

8
+ O(ξ, ε5). (94)

V. MATCHING TO THE DROP

Now we match the inner similarity solution H (ζ ) to the outer solution h(z). Outer and inner
variables are connected by

ζ = ξR, H = Rh, v = ε−1v, (95)

where we recall that ζ = (z + �)κm and R = �κm.
The expansion (76)–(78) represents the outer limit of the inner solution near the tip for ζ → ∞,

while (91)–(94) is the inner limit ξ → 0 of the outer solution. We will now compare the two and
construct a composite solution, valid everywhere.

To compare inner and outer expansions, we write the outer limit of the inner expansion [cf. (76)]:

h = R−1H (ξR) = ξs(ξR)

= ξ√
ln(Rξ )

+ 2ξ

{
l0
4

+
(

9

16
− ln 2

4

)
ln(ln(Rξ )) − ln2[ln(Rξ )]

16

}
[ln(Rξ )]−3/2 + · · · ,

which in the limit of R � ξ can be written as

h = ξ√
ln R

+ ξ

[
− ln ξ

2
+ l0

2
+

(
9

8
− ln 2

2

)
ln(ln R) − ln2(ln R)

8

]
(ln R)−3/2 + · · · . (96)

Comparing (96) to (91), we identify ε = 2/
√

ln R at leading order. Since ε = Ca−1
tip , this cor-

responds exactly to our previous matching result (49). To ensure matching at the next order,
we put

ε = 2√
ln R

+
[

l0 − 3 ln 2 + 4 +
(

5

4
− ln 2

)
ln(ln R) − ln2(ln R)

4

]
(ln R)−3/2 + · · · , (97)
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FIG. 5. The natural logarithm of the tip curvature as a function of the square of the local capillary number
Catip (solid line) for a bubble in the hyperbolic flow (3), as shown for a particular capillary number in Fig. 2.
The dotted line is the theoretical prediction (98). For comparison, the dashed line has a constant slope of 4,
corresponding to the leading-order result (49).

in which case (96) and (91) become identical, when expanded consistently. It is straightforward to
confirm that with the same choice of (97), the radial component of the velocity field (78) in the
outer limit of the inner expansion becomes identical to vr of (94). If in addition the constant v0 in
(77) is chosen to vanish, (77) also becomes identical to vz of (94), which completes the matching.
Writing (97) in terms of the local capillary number Catip, we find an improved estimate for the tip
curvature:

κm ≈ C

�
e4Ca2

tip , (98)

where the prefactor

C = exp
[
l0 − 3 ln 2 + 4 + 2

(
5
4 − ln 2

)
ln(2Catip) − ln2(2Catip)

]
depends itself slowly on Catip. In Fig. 5 the tip curvature κm, taken from a numerical simulation
of an inviscid bubble in a hyperbolic flow [15], is compared to the second-order result (98). The
agreement is very good, without any adjustable parameters. For comparison, we show a line of
constant slope 4, which would be the result of leading-order matching (49). Since in reality the
prefactor C is weakly dependent on Catip, the local slope is slightly smaller than that; in [15] it was
estimated as 3.7. In addition, the second-order solution fixes the prefactor measured relative to the
drop size �, which was undetermined at leading order.

To construct a composite solution, valid everywhere inside the drop, we note that inner and outer
solutions have the identical form (76) and (91). As usual [43], a composite solution is obtained
by adding inner and outer solutions together, and subtracting the solution valid in the overlap
region:

h = �h
( z

�

)
+ κ−1

m H[(z + �)κm] − �hin. (99)

The composite solution (99) (dotted line) is compared to a full numerical solution of a bubble (solid
line) in Fig. 6. To be able to see the details of the crossover from the tip region to the bulk of
the drop, we plot the interface slope as a function of the logarithm of the distance from the tip,
over a wide range of scales. The agreement is almost perfect, except in the interior of the bubble,
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FIG. 6. The interface slope h′(z) of an inviscid drop (or bubble) in the flow (3) at Ca = 0.4369, Rd = 1
(solid line), as function of the logarithmic distance from the tip ln((z + �)/Rd ). The slope of the composite
solution (99) is the dotted line, with the numerical values � = 4.976 and κm = 1.611 × 108 as input parameters.
The slope of the outer solution (83) is shown as the dashed line, and the result of the leading-order solution [6]
is shown as the dot-dashed line.

owing to the slow convergence of the outer solution, as manifested in Fig. 4. For comparison, we
also plot the result of the outer solution. The dot-dashed line is the leading-order slender body
theory [6], which asymptotes to a conical shape near the tip, with constant slope. Including the next
order (dashed line) means one captures a first glimpse of the true behavior of the slope, with the
slope increasingly linearly with the logarithm of the distance from the tip, while the true solution
varies like the square root of the logarithmic distance. Owing to this extremely slow variation,
corrections to the leading-order solution are not confined to an exponentially small region, as
claimed in [7], but are spread out over all length scales, from the tip size to the length of the
drop.

In obtaining (98), we have used the matching condition (97) together with the identification
ε = Ca−1

tip . An alternative way to obtain the same answer is to realize that vtip = −Catip, since by
definition vtip is the tip velocity in units of γ /η. Thus we can calculate vtip directly by inserting (77)
into (71), which yields

−
√

l

2
+

[
l0
4

+ 1

4
+

(
9

16
− ln 2

4

)
ln l − ln2 l

16

]
1√
l

= vtip +
∫ l

ln(2R)
ζ2κ ĵe

z dl2 +
[

5

8
+ ln 2

2
+ ln l

4

]
1√
l

− C(R). (100)

However, now we have to evaluate the integral in (100), as well the integral underlying C(R), cf.
(67). Since the integration is over the entire drop, we need a uniformly valid expression for the
integrands. The details are somewhat involved, so they have been moved to Appendix B. The result
is that, up to orders of 1/

√
ln R,∫ l

ln(2R)
ζ2κ ĵe

z dl2 = −
√

l

2
+

[
l0
4

− 3

8
− ln 2

2
+

(
5

16
− ln 2

4

)
ln l − ln2 l

16

]
1√
l

+
√

ln 2R

2

−
[

l0
4

− 3

8
− ln 2

2
+

(
5

16
− ln 2

4

)
ln(ln 2R) − ln2(ln 2R)

16

]
1√

ln 2R
− 3

4
√

ln R

(101)
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and

C(R) = 5

8
√

ln R
. (102)

Inserting (101) and (102) into (100), the l-dependence cancels, and we are left with

vtip = −
√

ln R

2
+

[
l0
4

+ 1 − 3 ln 2

4
+

(
5

16
− ln 2

4

)
ln(ln R) − ln2(ln R)

16

]
1√
ln R

.

Using ε = −1/vtip, this is easily seen to be exactly the same as (97), a remarkable check of the
consistency of the matching procedure!

VI. DISCUSSION

In this paper, we investigated the tip region of bubbles in strong flows, showing the tip size
remains finite. Thus surface tension is always strong enough to keep the surface regular in a steady,
axisymmetric flow, as long as the capillary number remains finite. However, as the flow strength
increases, a singular tip is approached very rapidly. The flow considered here has some similarities
with the two-dimensional, converging flows which create free-surface cusps [31,33]. However,
in the two-dimensional, viscous flow case the cusp tip is regularized on a scale which decreases
exponentially with the capillary number, whereas in our three-dimensional, axisymmetric case the
size decreases much more quickly, exponentially with the square of the capillary number. This is in
line with the intuition that for tips the focusing is much stronger, since streamlines converge radially
onto a single point, while for cusps in three dimensions the forcing is along a line. Thus our solution
represents a worst-case scenario, and a stationary free surface with surface tension always remains
smooth, at least in the mathematical sense, based on a continuum description down to arbitrarily
small scales.

The mechanism for the exponential tip size dependence of the two-dimensional cusp is also very
different from what is observed in three dimensions [31]. The tip of the cusp represents a forcing
of the fluid by a force of strength 2γ , which would lead to a logarithmic singularity if it were a
true point force. This singularity is cut off on the scale of the tip, which leads to a tip size which
is exponentially small in the capillary number. However, in three dimensions the tip represents a
forcing which is vanishingly small in the limit of small tip size, and hence the same argument does
not work here. As we have seen, a nonlocal argument has to be used instead. The shape of the
interface is also different, in that in two dimensions the width of the cusp scales like the distance
from the tip to the power 3/2, while in three dimensions both length scales are of the same order,
but with logarithmic corrections.

The similarity solution for the drop ends is another example of slow convergence [39], observed,
for example, for mean curvature flow [44–46], or for the pinch-off of a bubble in an ideal fluid [47].
In fact, the leading-order nonlinear equation for s(l ) is the same as that for the scaling exponent δ(τ ),
which in cavity collapse describes the approach to the fixed point [39], p. 224. In the time-dependent
problem, the role of l is taken by the logarithm τ of the time distance to the pinch-off singularity.
Slow convergence is associated with vanishing eigenvalues around the fixed point [39], leading to a
variation of exponents on a logarithmic scale.

Our calculation of the tip curvature, both theoretically and numerically, demonstrates that the tip
size is extremely small, even at moderate values of the capillary number. For a capillary number
of slightly less than 1/2 (see the example of Fig. 2), and for a bubble of radius 1 mm, the tip size
would formally be in the order of 10−10 m. This size can be reached in our simulations, based on
continuum theory, but becomes meaningless as far as an actual experiment is concerned, the tip
being smaller than the size of an atom.

To further illustrate the remarkably rapid shrinking of the tip size with flow strength, we
estimated the extrapolated tip size, based on continuum theory, for the experimental picture in
Fig. 1 (left), for which Ca = 0.7; in that case, the tip size would already be 10−89 m! The reason
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for this steep rise is that according to (89), the drop length increases with capillary number,
which moves the tip to a place where the flow is stronger. Thus, as already noted in [15], the tip
curvature increases like the exponential of Ca6, and quickly reaches sizes at which continuum theory
breaks down.

However, the smallness of the tip curvature in many practical situations does not imply
that one can ignore the singular behavior near the tip and replace the end by a conical so-
lution solution as predicted in the leading-order slender body analysis. Instead, as shown in
Fig. 6, the logarithmic variation of the slope extends over all scales, up to the scale of
the drop.

Apart from issues with the applicability of continuum theory, a fully resolved simulation at
capillary numbers higher than 1/2, for which the tip size might be close to a hundred orders
of magnitude smaller than the drop, as we have seen above, is hardly feasible. However, simply
under-resolving the simulation could lead to numerical instability and results of uncertain accuracy.
Instead, we believe our solution can be used to implement effective boundary conditions on a scale
much larger than the true tip size, since the asymptotic behavior of the interface slope is now
known. This boundary condition will depend on the resolution of the numerics, since the slope
is a scale-dependent quantity.

Finally, there are many opportunities to extend our calculation to related problems. One of the
most interesting problems would be to include an inner fluid, which will lead the solution to break
down at a finite capillary number. Instead, it is often observed that a tiny jet is ejected from the tip,
the so-called tipstreaming phenomenon [3,21]. The jet size can be in the order of microns [22,48–
50], but it is not known which parameters set the smallest possible jet size. We hope our calculation
opens the door to address this question systematically, working directly on the basis of the Stokes
equation.

APPENDIX A: INTEGRALS OVER CONES

To demonstrate (24), we consider the conical surface H = sζ for 0 � ζ � R, where at ζ = R the
cone is closed in smooth, axisymmetric fashion. On the mantle of the cylinder, κ = 1/(ζ2s

√
1 + s2).

Assuming for simplicity that the viscosity inside and outside of the cylinder is η, the boundary
integral equation is

v(x1) = −
∫

S
κJ · n dσ2.

For reasons of symmetry, the cone can move only along the axis, and so vr = 0. As a result, and
transforming to l2 = ln ζ2 as in (17), we find

0 = − 1

s
√

1 + s2

∫ ∞

−∞
ĵr (l1, l2) dl2,

where we have taken the limit R → ∞. Using that for a cone, ĵr (l1, l2) = ĵr (s,�), and passing to
� as the integration variable, we obtain (24).

More identities can be derived from (6). Transforming to logarithmic variables, and using the
same cone as above for the surface, one obtains∫ ∞

−∞
ζ2k̂s

1(s,�) d� = 1

2
, (A1)∫ ∞

−∞
ζ2k̂s

2(s,�) d� = 0, (A2)∫ ∞

−∞
ζ2k̂s

4(s,�) d� = 1

2
. (A3)
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As an example we would like to demonstrate (41), where

ξK (−1)
2 = 1

2π

(E − K )ξ 4 + (8E − 6K )ξ 2

(4 + ξ 2)3/2
, (A4)

and E = E (2/
√

4 + ξ 2), K = K (2/
√

4 + ξ 2) are given in terms of the elliptic integrals

E (k) =
∫ 1

0

√
1 − t2k2

√
1 − t2

dt, K (k) =
∫ 1

0

1√
1 − t2k2

√
1 − t2

dt . (A5)

Expanding the integrands of the identities (A1)–(A3) in s using a uniform approximation as
described in Sec. III, one obtains an infinite sequence of identities for the integral over the inner
variable ξ , for each order in s. In this fashion, at order s0 we find from (A2) that

I (s,0)
2 ≡

∫ ∞

−∞

(E − K )ξ 4 + (7E − 5K )ξ 2 + 4E

(4 + ξ 2)3/2
dξ = 0,

and from (A1) at order s−1 that

I (s,−1)
1 ≡

∫ ∞

−∞

(K − E )ξ 2 + 4E

(4 + ξ 2)3/2
dξ = π.

Clearly,

2π

∫ ∞

−∞
ξK (−1)

2 dξ = −I (s,−1)
1 + I (s,0)

2 = −π,

which is equivalent to (41). Other integrals over elliptic integrals, like (41) or (65), can be evaluated
in a similar way.

The integral (63) is slightly different, in that it had to be made convergent by subtracting the
asymptotic behavior j (z)

1 ≈ −1/(4ξ ) for large ξ . Instead of using (A1)–(A3), we compute (63)
directly. Expanding ĵz in the inner variable ξ , we find that j (z)

1 = −K/(2π
√

4 + ξ 2). Substituting
ζ = 2/

√
4 + ξ 2, one can show that the integral in (63) is equivalent to

Is ≡
∫ 1

0

[
1

4
− K (ζ )

2π

]
dζ

ζ
√

1 − ζ 2
,

noting that ∫ ∞

0

(
1

1 + ξ
− 1√

4 + ξ 2

)
dξ = 0.

With the definition (A5), we find

Is = 1

2π

∫ 1

0

∫ 1

0

( √
1 − t2ζ 2 − 1√

1 − t2
√

1 − t2ζ 2

)
dζ dt

ζ
√

1 − ζ 2
= 1

4π

∫ 1

0

ln(1 − t ) + ln(1 + t )√
1 − t2

dt = − ln 2

4
,

using [51], 4.292, for the last identity.

APPENDIX B: INTEGRALS OVER THE ENTIRE DROP

To compute ∫ l

ln(2R)
ζ2κ ĵe

z dl2,
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which is the integral in (71), we develop a composite solution for ζ2κ ĵe
z . Inserting (76) into (51) and

(26), and expanding for large l , the inner part of the solution becomes

ζ2κ ĵe
z

∣∣
in = − 1

4
√

l
+ 1

4
√

l
3

[−l0
2

+ 2 −
(

9

8
− ln 2

2

)
ln l + ln2 l

8

]
. (B1)

To compute the outer solution, note that

ĵe
z = −h[h

′
(2ξ 2 − h

2
) − ξh]

4(ξ 2 + h
2
)3/2

, κ = 1

h(1 + h
′2

)1/2
− h

′′

(1 + h
′2

)3/2
,

so using (83) and expanding in ε, we obtain

κ ĵe
z

∣∣
out = ε

4ξ 2
[h0(ξ − 1) − 2h′

0(ξ − 1)ξ ] + O(ε3) = ε

16ξ
(3ξ − 2) + O(ε3). (B2)

It is seen from (100) that only terms up to order (ln R)−1/2 are needed, so it is enough to include
terms of order ε in the inner solution. Finally, taking the limit ξ → 0 in (B2) we find the solution in
the overlap region:

κ ĵe
z

∣∣
over = − ε

8ξ
+ O(ε3), (B3)

so that the composite solution is

κ ĵe
z

∣∣
comp = κ ĵe

z

∣∣
in + κ ĵe

z

∣∣
out + ε

8ξ
, (B4)

where ε is given in terms of ln R by (97). Combining the last two terms of (B4), the integral becomes
convergent for R → ∞ at the lower end, so we can approximate∫ 2

0

(
κ ĵe

z

∣∣∣∣
out

+ ε

8ξ

)
dξ ≈ ε

∫ 2

0

(
3ξ − 2

16ξ
+ ε

8ξ

)
dξ = 3ε

8
≈ 3

4
√

ln R
.

Further, performing the integral over (B1), we find∫
ζ2κ ĵe

z

∣∣
indl2 = −

√
l

2
+

[
l0
4

− 3

8
− ln 2

2
+

(
5

16
− ln 2

4

)
ln l − ln2 l

16

]
1√
l
,

so that we obtain (101).
Next we come to the integrals in (66). To calculate the second integral, we note that the (z, z)

component of (6) implies that ∫ ln(2R)

−∞
ζ2k1 dl2 = 1

2
.

Thus separating the local contribution, the integral can be written as (up to exponentially small
corrections):

1

2
=

∫ ∞

−∞

[
ζ2k̂1 − H (�)ζ2k̂e

1

]
dl2 +

∫ ln(2R)

l
ζ2k̂e

1 dl2 ≡ I0 + I1.

Computing the local integral I0 in the usual way by expanding about a cone of slope s(l ) and using
composite solutions, one finds that I0 = 1/2 − 3s2/4 ≈ 1/2 − 3/(4l ), which means that I1, which
is the second integral in (66), is I1 = 3/(4l ) + O(l−2).

To compute the first integral in (66), we need a composite description of the integrand ζ2k̂e
1vz(l2),

which in outer variables reads ξk
e
1vz(l2)/ε. We compute the inner version based on the inner

solutions (76) and (77) and the outer version from (83) and (92). Taking the inner limit of the outer
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solution, one confirms that the leading term as ξ → agrees with the leading term as ln(R) → ∞ of
the inner solution, and the overlap is

ξk
e
1vz

ε

∣∣∣∣
over

= − 3ε3

64ξ
≈ − 3

64ξ (ln R)3/2
.

Writing the composite solution as

ζ2ke
1vz ≈ ζ2ke

1vz

∣∣
in + ξ

ε
k

e
1vz

∣∣∣∣
out

− ξ

ε
k

e
1vz

∣∣∣∣
over

,

the integral becomes∫ ln(2R)

l
ζ2ke

1vz(l2) dl2 ≈
∫ ln(2R)

l
ζ2ke

1vz

∣∣
indl2 + 1

ε

∫ 2

el /R

(
k

e
1vz

∣∣
out − k

e
1vz

∣∣
over

)
dξ .

The first integral is to leading order∫ ln(2R)

l
ζ2ke

1vz

∣∣
indl2 ≈ −3

8

∫ ln(2R)

l

dl

l3/2
= 3

4

(
1√

ln 2R
− 1√

l

)
≈ 3

4

(
1√
ln R

− 1√
l

)
,

and to leading order

1

ε
k

e
1vz

∣∣∣∣
out

= −3(ξ − 2)(ξ − 1)ε

32
≈ −3(ξ − 2)(ξ − 1)

16
√

ln R
.

The contribution from ε−1k
e
1vz|over is of order (ln R)−3/2 and does not need to be considered, so we

are left with

1

ε

∫ 2

el /R

(
k

e
1vz

∣∣
out − k

e
1vz

∣∣
over

)
dξ ≈ − 3

16
√

ln R

∫ 2

0
(ξ − 2)(ξ − 1) dξ = − 1

8
√

ln R
.

Taking these results together, we finally have

K1 ≈
∫ ln(2R)

l
ζ2ke

1vz(l2) dl2 − 3

4l

(
−

√
l

2

)
≈ 3

4

(
1√
ln R

− 1√
l

)
− 1

8
√

ln R
+ 3

8
√

l
,

which means that we can identify the constant C(R) to be (102).
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