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Stability of similarity solutions of viscous thread pinch-off
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In this paper we compute the linear stability of similarity solutions of the breakup of
viscous liquid threads, in which the viscosity and inertia of the liquid are in balance with
the surface tension. The stability of the similarity solution is determined using numerical
continuation to find the dominant eigenvalues. The stability of the first two solutions
(those with the largest minimum radius) is considered. We find that the first similarity
solution, which is the one seen in experiments and simulations, is linearly stable with a
complex nontrivial eigenvalue, which could explain the phenomenon of breakup producing
sequences of small satellite droplets of decreasing radius near a main pinch-off point.
The second solution is seen to be linearly unstable. These linear stability results compare
favorably to numerical simulations for the stable similarity solution, while a profile starting
near the unstable similarity solution is shown to very rapidly leave the linear regime.

DOI: 10.1103/PhysRevFluids.6.104004

I. INTRODUCTION

Liquid threads or jets consist of cylindrical liquid matter, bounded by an interface with another
fluid (Fig. 1). The interfacial energy (that is, surface tension) at such an interface makes it unstable to
perturbations that result in the thread breaking up; a typical everyday example is a column of water
pouring from a kitchen tap forming into droplets some distance from the tap, but there are countless
applications in science and industry across orders of magnitude of spatial scales, from the formation
of galaxies, to pharmaceutical drug delivery, to inkjet printing [1]. In many industrial applications,
either the breakup of the liquid thread is undesirable or the aim is to control the breakup to create
a field of very fine droplets of a similar size (a monodisperse field) [2,3]. In the latter case, the
dynamics of breakup are very important, as complex breakup phenomena, for instance, the creation
of satellite and subsatellite droplets, can result in a wide distribution of droplet sizes.

A cylindrical thread or jet of liquid is unstable to interfacial perturbations due to the Plateau-
Rayleigh instability, driven by surface tension [1,4]. Eventually nonlinear effects take over and
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FIG. 1. Schematic of a thin thread of viscous fluid. The system is modeled with two variables—the
streamwise velocity v(z, t ) (uniform across the thread in the slender body approximation) and the thread radius
h(z, t )—both functions of the streamwise coordinate z and time t .

the liquid breaks up into droplets via pinch-off singularities, at which the thread radius locally
goes to 0. Both numerical simulations and experiments indicate that universal self-similarity plays a
crucial role near pinch-off. However, the dynamics near pinch-off can be complex, including iterated
structures and breakup into droplets of multiple sizes [5,6]. The nature of the self-similarity depends
on the relative importance of effects such as the inertia and the viscosity of the ambient fluid. In a
single simulation or experiment, multiple regimes may be observed [7–9], with a complex picture
of transitions across multiple regimes tangled up with seemingly oscillatory convergence towards
similarity solutions.

If the outer fluid and inertia are neglected, so that the dominant effects are viscosity of the inner
fluid and surface tension, then exact solutions exist for the countably infinite number of similarity
solutions [4,10]. The linear stability of these solutions may also be determined exactly; Eggers
[11] showed that of the infinite number of solutions, only one such solution (that with the largest
minimum radius) is stable, while all other solutions are unstable. Indeed, it is common more widely
for partial differential equation (PDE) models that have a countable set of similarity solutions or
other invariant solutions for only one to be linearly stable: see, for example, Witelski and Bernoff
[12] for the case of self-similar van der Waals rupture of thin films, Bernoff et al. [13] for the case
of pinch-off by surface diffusion, and Kessler and Levine [14], Bensimon [15], and Tanveer [16] for
the case of traveling Saffman-Taylor fingers in Hele-Shaw flow.

If, however, the inertia and viscosity are both in balance with the surface tension, similarity
solutions can only be computed numerically. In addition, the computation is challenging because of
a singular point in the equation, at which an extra condition is imposed by requiring that solutions
be analytic. In the past, shooting methods that utilize a power series expansion at the singular point
have been used to successfully compute the first similarity solution [17,18], which agrees with
numerical simulation of the PDEs, as well as a sequence of secondary similarity solutions, which
are not seen in the numerical simulations [19]. Brenner et al. [19] have conjectured that for viscous
thread breakup with inertia, all similarity solutions are linearly stable, and a difference in sensitivity
to finite-size perturbations is why the first similarity solution is the one that is generically seen in
full numerical simulations.

In this article we examine the linear stability of these similarity solutions. As with the computa-
tion of the similarity profiles themselves, the linear stability is computationally challenging due to
the presence of the singular point and has never been attempted. Previously, numerical continuation
has been successfully used to compute similarity solutions of the thin-film equation [20,21] and
determine their stability [22]. In this article we use numerical continuation, starting from solutions
to the equations in smaller domains generated by shooting, to construct the first two similarity
solutions for viscous-inertial thread breakup and find the most unstable (nontrivial) eigenvalue to
determine their stability. Our chief finding is that the base similarity solution is linearly stable,
but the second is linearly unstable, counter to the prediction by Brenner et al. [19]. In both cases
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the dominant eigenvalue is complex. For the stable solution, the effect of the dominant eigenvalue
matches quantitatively with what is seen in numerical computation of the PDE system, correctly
predicting the frequency and decay rate of the perturbation around the base similarity solution.

We proceed by describing the formulation of the slender body Navier-Stokes equations used
to model the evolution of the radius and fluid velocity of the liquid thread in Sec. II, then in
Sec. III we describe the numerical continuation procedure used to find both the similarity solutions
and the relevant dominant eigenvalues that determine their stability. In Sec. IV we show how the
stability results match with carefully performed numerical simulations. Conclusions are presented in
Sec. V.

II. FORMULATION AND SIMILARITY SOLUTIONS

After applying nondimensionalization and slender body theory to the Navier-Stokes equation
inside the jet, with kinematic and surface tension conditions at the interface, the system is modeled
using two partial differential equations describing the jet radius, h(z, t ), and fluid velocity, v(z, t ),
as a function of the position z and time t :

∂h

∂t
+ v

∂h

∂z
= −h

2

∂v

∂z
, (1a)
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(see, for example, Eggers [17]). Here we have excluded terms such as gravity that are negligible in
the similarity analysis near pinch-off but have retained higher-order contributions from the surface
tension, which we include in the numerical computation of solutions to (1) in Sec. IV. The system
is parameter-free, as any implicit parameters are in the initial and boundary conditions, which do
not play a role in universal similarity solutions near pinch-off.

The jet pinches off when h → 0 at a point z = z0 and finite time t = t0. We seek similarity
solutions by choosing a reference frame that ‘zooms in’ on such a point [23], by defining

v(z, t ) = (t0 − t )−1/2ψ (ξ, τ ), h(z, t ) = (t0 − t )φ(ξ, τ ), ξ = z − z0

(t0 − t )1/2
, τ = − log(t0 − t ).

(2)
This substitution results in the system

φτ + (ψ + ξ/2)φξ = (1 − ψξ/2)φ (3a)

for (1a) and

ψτ + ψ/2 + ξψξ/2 + ψψξ = −
[

1

φ
(
1 + e−τ φ2
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)1/2 − e−τ φξξ(
1 + e−τ φ2

ξ

)3/2

]
ξ

+ 1

φ2
[φ2ψξ ]ξ

for (1b). Note that the terms resulting from higher-order contributions from the surface tension in
this equation are of order t0 − t = e−τ . These will prove to be negligible compared to the dynamics
of interest in the limit t → t0, resulting in

ψτ + ψ/2 + ξψξ/2 + ψψξ = φξ

φ2
+ 3ψξξ + 6

ψξφξ

φ
. (3b)

Steady states (φτ = ψτ = 0) of (3) satisfy the same system of ordinary differential equations
that result from assuming that φ and ψ are functions of ξ only and, thus, are similarity solutions of
the original system, (1). Including the dependence on the logarithmic time variable τ allows us to
examine the stability of these steady states, to determine which is seen in practice, and the manner
in which any such stable similarity solution is approached.
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III. COMPUTATION OF SIMILARITY SOLUTIONS AND EIGENVALUES

To simplify the algebra slightly, we substitute ω = log φ, so that system (3) is

ωτ + (ψ + ξ/2)ωξ = (1 − ψξ/2), (4a)

ψτ + ψ/2 + ξψξ/2 + ψψξ = e−ωωξ + 3ψξξ + 6ψξωξ . (4b)

To investigate the linear stability, write ω(ξ, τ ) = ω̄(ξ ) + ω̃(ξ )eστ and ψ (ξ, τ ) = ψ̄ (ξ ) + ψ̃ (ξ )eστ ,
where σ is the eigenvalue. The base state, that is, the similarity solutions themeselves, satisfy

(ψ̄ + ξ/2)ω̄ξ = (1 − ψ̄ ′/2), (5a)

ψ̄/2 + ξψ̄ ′/2 + ψ̄ψ̄ ′ = e−ω̄ω̄′ + 3ψ̄ ′′ + 6ψ̄ ′ω′, (5b)

and the equations for the perturbations are

σ ω̃ + (ψ̄ + ξ/2)ω̃′ + ψ̃ω̄′ = −ψ̃ ′/2, (6a)

σψ̃ + ψ̃/2 + ξψ̃ ′/2 + ψ̄ψ̃ ′ + ψ̄ ′ψ̃ = e−ω̄ω̃′ − e−ω̄ω̄′ω̃ + 3ψ̃ ′′ + 6ψ̄ ′ω̃′ + 6ω̄′ψ̃ ′. (6b)

We recover the base state and perturbation to the scaled radius φ from φ̄ = eω̄ and φ̃ = φ̄ω̃. We now
consider the computation of the base state and perturbation problems in more detail.

A. Base state

First, we examine the base state, which has previously been shown to have discretely selected
(and presumably a countably infinite number of) solutions, indexed (say) by decreasing size of φ0

[17–19]. Rearranging for the derivative terms explicitly,

ω̄′ = 1 − ψ̄ ′/2

ψ̄ + ξ/2
, (7a)

ψ̄ ′′ = 1

3

[
ψ̄

2
+ ξψ̄ ′

2
+ ψ̄ψ̄ ′ − e−ω̄ω̄′ − 6ψ ′ω̄′

]
. (7b)

As a third-order problem, we require three conditions. Two come from the far field ξ → ±∞; per
the stationarity condition (that is, that the unscaled velocity remains finite away from the singularity)
we must have

ψ̄ + ξψ̄ ′ → 0 ⇒ ψ̄ ∼ C±ξ−1, ξ → ±∞, (8)

where C± are constants that must be determined as part of the solution. The third comes from
the requirement that the solution be analytic near the singular point ξ0, where ψ = −ξ0/2. This
requirement is sensitive, as it is a relatively high-order noninteger power in the series expansion
around ξ0 that can lead to nonanalyticity. Performing the expansions

ω̄ =
∞∑

n=0

cn(ξ − ξ0)n, ψ̄ =
∞∑

n=0

dn(ξ − ξ0)n, (9)

we have two free parameters, φ0 = φ(ξ0) and ξ0, with

d0 = −ξ0/2, d1 = 2, c0 = log φ0, (10a)

c1 = φ0ξ0

12φ0 − 4
, (10b)

d2 = −5c1

2
, (10c)

c2 = − c2
1 + 6φ0

36φ0 − 2
, (10d)
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d3 = −2c1d2 + 10c2

3
, (10e)

and so on. A solution exists when φ0 and ξ0 are such that both far-field conditions are satisfied.
The boundary value problem is solved in the numerical continuation package AUTO07p [24].

We treat (7) as two separate boundary value problems, from ξ0 + δξ to L+ � 1 and from ξ0 − δξ−
to −L− with L− � 1. An initial approximation is made by starting with the values of φ0 and ξ0

close to those given in [19] and shooting an O(1) distance in each direction. The power series is
used as boundary conditions near the singular point. After shooting the far-field conditions, (8), are
not satisfied, a fact that can be quantified using error terms ε±:

ψ̄± + ξψ̄ ′
± = ε±, ξ = ±L±. (11)

Using numerical continuation we decrease each error ε± to 0, allowing ξ0 and φ0 to vary, and then
increase L± until the finite domain size no longer has a significant effect on the accuracy.

It is important to note that singularities occur when φ0 is such that the denominator in one of the
power series coefficients, (10), is 0. At these values, no power series solution exists near ξ0 (instead,
the series will presumably have power-log terms). Brenner et al. [19] observed that these singular
values of φ0 occur at

φ∗
0 = 1

15n − 12
= 1

3
,

1

18
,

1

33
, . . . . (12)

The value of φ0 corresponding to the first similarity solution, φ
(1)
0 = 0.030 432 . . ., is very slightly

larger than the singular value φ∗
0 = 1/33, while the value of φ0 for the second similarity solution,

φ
(2)
0 = 0.010 785 4 . . ., is slightly larger than the singular value φ∗

0 = 1/93. Brenner et al. [19] argue
that the selected values of φ0 lie close to the singular values, (12). For this reason it is particularly
important to have an appropriate initial approximation for ξ0 and φ0 for each similarity solution. In
addition, the first nonanalytic term in the series solution of (7) near ξ0 can be determined to be of
order ξ (φ−1

0 +12)/15. The selection of the analytic solution is equivalent to requiring that the coefficient
on this term must be 0. Given (12), this exponent is marginally less than 3 for the first similarity
solution and marginally less than 7 for the second one. Terms up to these orders are then needed in
the power series to resolve the selection of the first solution. Higher branches of solutions require
even further terms. We go up to 14 terms in this power series expansion (and one term less for the
perturbation terms), with the expressions for the coefficients, (10), found automatically using the
symbolic Python library SymPy [25].

In Fig. 2 we plot the first two similarity solutions thus computed [that is, the two solutions to (7)
with the largest values of φ0], which we refer to as the first solution (the solution found by Eggers
[17], which we expect to be linearly stable) and the second solution.

B. Computation of eigenvalues

We also find the eigenvalues σ using numerical continuation. Rearranging (6) for derivatives,

ω̃′ = − ψ̃ ′/2 + ω̄′ψ̃ + σ ω̃

ψ̄ + ξ/2
, (13a)

ψ̃ ′′ = 1
3 [σψ̃ + ψ̃/2 + ξψ̃ ′/2 + ψ̄ψ̃ ′ + ψ̄ ′ψ̃ − e−ω̄(ω̃′ − ω̄′ω̃) − 6(ψ̄ ′ω̃′ + ω̄′ψ̃ ′)]. (13b)

Again we require three conditions. The far-field conditions are

(2σ + 1)ψ̃ + ξψ̃ ′ → 0 ⇒ ψ̃ ∼ C̃±ξ−(2σ+1), ξ → ±∞, (14)
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FIG. 2. (a, c) The first (stable) similarity profile and (b, d) the second (unstable) similarity profile; solutions
to (7) found by the numerical continuation procedure described in Sec. III A. In (c) and (d), the scaled radius φ

is given by eω.

for some constants C̃±, and again we require analyticity at ξ0. Expanding the perturbation variables
as power series,

ω̃ =
∞∑

n=0

c̃n(ξ − ξ0)n, ψ̃ =
∞∑

n=0

d̃n(ξ − ξ0)n, (15)

we find that d̃0 and c̃0 are arbitrary, while the next terms in the power series are found sequentially:

d̃1 = −2c̃0σ − 2d̃0c1, (16a)

c̃1 = −2d̃0φ0σ + d̃0φ0(24c2 + 5) + 2c̃0c1

12φ0σ + 6φ0 − 2
, (16b)

d̃2 = −2c̃1σ + 4d̃0c2 + 2c1d̃1 + 5c̃1

2
, (16c)

c̃2 = −φ0d̃1σ + 36d̃0φ0c3 + 2d̃0φ0d2 + (12φ0d̃1 + 2c̃0)c2 + 5φ0d̃1 + 2c1c̃1 − c̃0c2
1

12φ0σ + 36φ0 − 2
, (16d)

d̃3 = −2c̃2σ + 6d̃0c3 + 2c1d̃2 + 2c̃1d2 + 10c̃2 + 4d̃1c2

3
, (16e)

and so on. Expressions for these coefficients up to 14th order are again found with SymPy [25].
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When considering the equations for the perturbations, the base state is fixed, thus φ0 is a given
value, and the effect of varying σ must be considered. In a similar manner to the leading-order
case, the perturbation problem has no analytic solution when a denominator in the power series
coefficients for ω̃, that is, (16b), 16d), etc., is 0. These occur at specific values σ = σ ∗:

σ ∗ = 1
6

(
φ−1

0 − (15n − 12)
)
, n = 1, 2, 3, . . . . (17)

Based on the value φ
(1)
0 = 0.030 432, the singular values of σ for the first solution occur at

σ ∗(1) = 4.976 630, 2.476 630,−0.023 370,−2.523 370, . . . , (18a)

while for the second solution, φ
(2)
0 = 0.107 854 and thus the singular values of σ are

σ ∗(2) = 14.953 041, 12.453 041, 9.953 041, 7.453 041, 4.953 041, 2.453 041, −0.046 959, . . . .

(18b)
System (13) is coded into AUTO alongside the system for computation of the base state, with

(14) and (15) as boundary conditions, but allowing c̃0 = c̃0± and d̃0 = d̃0± to take different values
on either side of ξ0 in the power series. As the perturbation problem is linear, the scale invariance
must be removed by fixing either of c̃0 and d̃0. If d̃0 is fixed, then for a given σ , c̃0± is determined by
satisfying each far-field condition. The artificial degree of freedom in allowing c̃0 to take different
values on each side of the singular point allows us to vary σ via continuation and detect discrete
eigenvalues by the criterion c̃+ − c̃− = δc̃ = 0 (that is, when δc̃ = 0, the two solutions on either
side of ξ0 have been connected in a continuous and smooth fashion). Conversely, if c̃0 is fixed, we
detect eigenvalues by allowing d̃± to vary, and then the values of σ such that δd̃ = d̃0+ − d̃0− = 0
correspond to eigenvalues.

1. Eigenvalues on the real line

We start by computing real eigenvalues σ for both the first and the second solutions. Due
to invariance in space and time of the original problem, respectively, we expect trivial unstable
eigensolutions,

σX = 1
2 , ω̃X = ω̄′, ψ̃X = ψ̄ ′, (19a)

σT = 1, ω̃T = ξω̄′ − 2, ψ̃T = ψ̄ + ξψ̄ ′, (19b)

up to a scalar constant of multiplication in the eigenfunctions [e.g., 12,23]. In addition,
there is a stable eigenvalue due to Galilean invariance under constant-speed translation, i.e.,
h(z, t ) 	→ h(z − ε(t − t0), t ), v(z, t ) 	→ v(z − ε(t − t0), t ) + ε. Under this translation we find the
eigensolution

σV = − 1
2 , ω̃V = ω̄′, ψ̃V = 1 + ψ̄ ′. (19c)

While these eigenvalues do not play a role in the stability of similarity solutions (these instabilities
are removed by correctly choosing the time and location of the breakup point), and (as we will
see) real eigenvalues do not play a role in the stability of the similarity solutions we consider here,
the accurate computation of the trivial eigenvalues provides a useful check on the accuracy of our
method.

The real eigenvalues for both the first and the second similarity solutions are found as follows.
Starting with an initial guess of 0 for the eigenfunctions and a given value of σ , the parameter
d̃0 is brought from 0 to unity, while allowing c̃0+ to vary, as well as the difference δc̃ between
the values on each side of ξ0. By varying σ and computing the corresponding value for δc̃0, we
construct a selection curve; when δc̃0 = 0, we have a candidate eigenvalue. Note that by fixing d̃0,
we remove the arbitrary constant in the linear problem, at the cost of introducing singularities when
a solution requires d̃0 = 0. We build a complete curve by choosing values of σ on either side of each
singularity to continue from. If we instead fix the value of c̃0 and let d̃0± be free, the singularities
occur in different places, while the same 0s (corresponding to the eigenvalues) are found.
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FIG. 3. Selection of eigenvalues σ on the real line: (a) the first solution and (b) the second solution. We
see the three trivial eigenvalues at σT = 1, σX = 1/2, and σV = −1/2, as well as the singular values σ ∗, (18),
where a coefficient in the power series expansion for the perturbation, (16), becomes singular and, therefore,
does not correspond to an analytic solution.

The resultant selection curve is shown in Fig. 3 for both the first and the second solutions,
including the results both of fixed c̃ and of fixed d̃ . As expected, the three trivial eigenvalues, (19),
at σ = 1/2, 1, and −1/2 are observed. In Fig. 3 we plot the results between σ = −1 and σ = 6,
showing that no other real eigenvalues exist in this region; we have continued for larger values up
to σ = 100 and not found any other eigenvalues, and we have no reason to suspect that they may
exist, given the absence of the large exponential growth this would predict in the simulations (see
Sec. IV). Negative real eigenvalues may exist for σ < −1, but these are not important compared to
the complex eigenvalues we describe in the next section.

We also note the existence of apparent eigenvalues at the values σ ∗, (17), at which point the
power series for the perturbation solution at ξ0 does not exist. These points must be discounted, as
the eigenfunction is not analytic at ξ0 for these values (the continuation method has managed to
pass through these points numerically). More generally, any method of analyzing the linear stability
of this problem is likely to come up with these spurious values, demonstrating that care must be
taken in interpreting the computation of such points with regard to the actual linear stability. As
will become apparent upon comparison with numerical solutions, these singular values σ ∗ do not
correspond to unstable modes.

2. Complex eigenvalues

All of the eigenvalues found thus far are trivial and will not determine the stability of a similarity
solution. Instead, we must look for eigenvalues in the complex σ plane. We now search for complex
eigenvalues by assuming ω̃, ψ̃ (and thus c̃0 = c̃0R + ic̃0I and d̃0 = d̃0R + d̃0I ), and σ = σR + iσI to
be complex and solving both real and imaginary parts of Eqs. (13), as well as conditions (14) and
(15).

To locate complex eigenvalues, we fix d̃0R and d̃0I = 0 and then must find σR and σI such that
both c̃0R and c̃0I vanish. To accomplish this, we start with a range of real values of σ , and d̃0 is again
increased to a fixed value to fix the arbitrary constant in the eigenfunction. Then σI is increased until
the real part of the error δc̃0R = 0, at which point the curves defined by δc0R = 0 are traced out to
find points where the imaginary part of the error δc̃0I = 0 as well. This point then corresponds to a
complex eigenvalue. By starting with a large number of values of σR, we can be confident of finding
all such curves and eigenvalues in some region near the real line.

These curves and eigenvalues are plotted in Fig. 4. For the first similarity solution, the eigenvalue
with the largest real part thus found occurs at σ ≈ −0.670 + 2.246i (of course, the complex
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FIG. 4. Curves defined by the real part of the error parameter Re(δc̃) = δc̃R = 0 and eigenvalues (where
both real and imaginary parts of δc̃ vanish) for (a) the first solution at σ = −0.670 + 2.246i and (b) the
second solution at σ = −0.552 + 3.015i and σ = 3.695 + 4.905i. In both cases, the eigenvalues are found
by continuing σ from real values in the positive imaginary direction, until the real part of the error δc̃0R is 0,
then continuing into the complex plane (holding δc̃0R at 0) to find the curves defined by this equation. At points
on these curves where the error δc̃0I is also 0, the corresponding value of σ is an eigenvalue.

conjugate is also an eigenvalue). The location of this eigenvalue is plotted in Fig. 4 along with
the continuation path taken to find it, while the eigenfunctions ω̃ and ψ̃ themselves are plotted in
Fig. 5. Since this eigenvalue has a negative real part, the first similarity solution is linearly stable.
This conforms with numerous previous numerical observations [17–19]; in Sec. IV we show that
the complex value of σ accurately predicts both the frequency and the decay rate of the original
system, (1), as the stable similarity solution is approached. In addition, since the real part of this
eigenvalue is greater than −1, the effect of this eigenvalue is dominant over the effect of higher-order
contributions to the surface tension [proportional to (t0 − t ) = e−τ ] that were neglected in deriving
system (3b).

For the second similarity solution, complex eigenvalues are found in the same way. The two
nontrivial eigenvalues with the largest real part are thus found, one at σ = −0.552 + 3.015i and
one at σ = 3.695 + 4.905i. The presence of an eigenvalue with a positive real part indicates that
the second similarity solution is linearly unstable. The eigenfunctions are again plotted in Fig. 5.
These results comprise the first direct evidence that it is purely linear stability considerations that
are the reason that only the first similarity solution is seen in reality and numerical simulations, and
not finite-size effects as conjectured by [19]. An important property of the unstable eigenfunction
[Figs. 5(b) and 5(d)] is that it is localized near the region where the gradient of the base velocity is
large, and the gradients of the eigenfunctions are themselves large. Since the WKB analysis in [19]
presupposes gently sloping φ and ψ , with a relatively large wave number, it is not surprising that
their analysis does not detect this instability. A discussion of the convergence of the eigenvalues
with respect to the numerical parameters, particularly δξ , is included in the Appendix.

IV. COMPARISON WITH NUMERICAL SIMULATION

A. Numerical scheme

We now show that the numerical solution demonstrates the validity of the linear stability results.
The numerical solutions of full nonlinear lubrication equations, (1), are computed using a second-
order finite-difference scheme in both time and space. The time-integration method is an adaptive
Runge-Kutta scheme, where the time step is adjusted so that the second-order temporal derivative
in the Taylor expansion is <10−3. The spatial grids are highly nonuniform, with corresponding
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FIG. 5. The complex eigenfunction for each of (a, c) the stable first similarity solution at the complex
eigenvalue σ = −0.670 + 2.246i and (b, d) the unstable second similarity solution at σ = 3.695 + 4.905i.
(a) and (c) plot the perturbations ψ̃ to the self-similar velocity profiles ψ , while (b) and (d) plot the perturbations
w̃ to the self-similar profile of the log-radius w. The unstable eigenfunctions on the second solution are
localized in the region near 0, which includes both the singular point and the region in which the base solution
[depicted in Figs. 2(b) and 2(d)] has large gradients.

finite-difference weights calculated by the Fornberg algorithm [26], which enables high resolution
of the region near the rupture point. When necessary, additional mesh points are added to the grid at
points where the minimum height is smaller than a specified percentage of the local grid size, with
the solution interpolated onto the new grid using cubic splines.

B. Decay to the stable similarity solution

In Fig. 6 we plot the result for a generic initial condition, showing [Fig. 6(a)] the oscillatory
decay to the stable similarity solution and [Fig. 6(b)] the asymptotic agreement with the similarity
profile. By plotting log(dhmin/dt ) as a function of log hmin in Fig. 6(a), we observe the convergence
to the similarity solution without having to estimate the breakup time and location explicitly, as has
been exploited in previous studies [8]. In terms of the similarity variables, hmin occurs at a point
ξ ∗(τ ), where

hz(z, t ) = (t0 − t )1/2φξ (ξ ∗(τ ), τ ) = 0. (20)
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FIG. 6. Convergence of a generic initial condition to the stable similarity solution: (a) By plotting hmin

against its time derivative and comparing it to (22) the decay rate and frequency predicted by the dominant
nontrivial eigenvalue σ ≈ −0.670 + 2.246i can be clearly observed (the values A1 = 0.25 and A2 = 2 are
fitted). (b) The profiles asymptote to the stable similarity solution as time tends to the pinch-off time (the
profiles are shifted by the point ξmin where φ is at its minimum, so the shifted profiles all have their minimum
at 0).

As the singularity is approached for a stable solution, τ → ∞ and ξ ∗(τ ) converges toward the
minimum ξ̄ ∗ of the similarity profile φ̄(ξ ). Note that ξ̄ ∗ is close to, but not equal to, the singular
point ξ0. Assume in accordance with linear stability that φ ∼ φ̄(ξ ) + ce−στ φ̃(ξ ) (plus complex
conjugate), where c ∈ C. We then have

ξ ∗(τ ) ∼ ξ̄ ∗ + ce−στ ξ̃ ∗, ξ̃ ∗ = − φ̃′(ξ̄ ∗)

φ̄′′(ξ̄ ∗)
, (21)

and
dhmin

dt
∼ −φ̄(ξ̄ ∗) + Ah−σ

min. + c.c. = −φmin + A1h−σR
min cos (σI log(hmin) + A2), A1, A2 ∈ R,

(22)
where

A = A1e−iA2 = c(σ − 1)φ̄(ξ̄ ∗)σ φ̃(ξ̄ ∗). (23)

Note that since A = 0 when σ = 1 the instability due to time invariance, (19b), is suppressed,
while the instability due to translation invariance, (19a), and the (stable) perturbation due to velocity
invariance, (19c), are suppressed since the corresponding eigenfunctions have φ̃ = φ̄ω̃ = φ̄′ = 0 at
ξ = ξ̄ ∗. Thus the dominant behavior is due to the nontrivial eigenvalue with the largest real part.

The amplitude A1 and phase A2 in (22) are not predicted from linear stability, but the decay
rate and frequency are given by the real and imaginary parts of the eigenvalue σ . In Fig. 6 we plot
the predicted curve, (22), with A1 and A2 suitably fitted. The agreement between the linear stability
result and the numerical computation is excellent, and it is indeed the complex eigenvalue computed
in Sec. III that dominates the dynamics as the similarity solution is approached.

A challenge in comparing numerical solutions to similarity solutions representing finite-time
singularities [such as the pinch-off in system (1)] is that any small but finite (and hence beyond
linear stability analysis) source of error, such as the spatial discretization, becomes increasingly
important as the singularity time is approached. In our numerical scheme we found that the effect
of the error is to destabilize the stable similarity solution; however, we observe that the time that
this destabilization becomes appreciable can be made arbitrarily close to the pinch-off time by
decreasing the mesh size, thus the destabilization is a property of the numerical scheme and not
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FIG. 7. Departure of the numerical solution to (1) from an initial condition equal to the second similarity
solution. (a) The plot of hmin vs its derivative shows the solution leaving the neighborhood of the unstable
solution and settling to the stable solution (where dhmin/dt ≈ −0.0304). Inset: A short-lived, but reasonable,
match to the linear stability approximation, (22). (b) The profiles show that the oscillations grow first near the
minimum in φ.

of the PDE system, (1), itself. This is, however, reminiscent of the observation that physically, any
finite-size noise, for example, due to thermal fluctuations [27,28], will destabilize the similarity
solution at very small scales [5].

C. Linear instability of the second solution

In Fig. 7 we plot the result of the numerical simulation with the initial condition given by the
unstable similarity solution plotted in Figs. 2(b) and 2(d). By equating h(x, 0) with φ(ξ ) and v(x, 0)
with ψ (ξ ), the time to rupture would (if the solution remained at the similarity solution) be t0 = 1.

A quantitative comparison with the linear stability prediction is challenging, for a number of
reasons; the full numerical solution includes the nonzero contribution from the higher-order surface
tension from (1), which does not appear in the similarity solution, which will have an effect at early
times, and since the minimum of φ is close to 0 while the real part of the eigenvalue is large, we
expect the solution to rapidly leave the linear regime. In Fig. 7(a) we plot hmin vs its time derivative,
with a fit of the predicted behavior according to (22). A meaningful fit can only be made over a
relatively short range [inset in Fig. 7(a)], which, although inconclusive, is expected for the above
reasons.

The solutions (scaled according to the similarity variables) are plotted in Fig. 7(b). The profiles
remain close to the unstable base state for some time, before rapidly thinning near the minimum
in φ.

V. DISCUSSION

In this article we have shown by explicit computation of the linear stability problem in the
appropriate self-similar coordinate system, (3), that the first solution (ordered by largest minimum
thickness) is linearly stable, while the second solution is linearly unstable. The linear stability
computations accurately determine the trivial eigenvalues that are known to exist, and match with
the behavior of numerical solutions, providing further evidence of their accuracy. Although we have
only computed the linear stability properties of the first two similarity solutions, there is no reason
to believe that the more extreme solutions found in [19] will be linearly stable, as they are also not
seen in simulations.
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The existence of an oscillatory decay to the stable similarity solution was first noted by Li and
Sprittles [8], who conjectured the existence of the dominant complex eigenvalue we have found
in this study. As noted by Li and Sprittles [8], this oscillatory decay has not been emphasized in
most experimental and numerical studies, even where it is likely to be present, as it is not obvious
when plotting the minimum radius against time to pinch-off, rather than the time derivative of the
minimum radius vs the minimum radius, as in Fig. 6(a). In addition, most experiments start in a
regime where the inertial or viscous effects are dominant, and it is only in the stages very close to
pinch-off that the viscous-inertial regime is reached.

However, our linear stability analysis does suggest that the oscillatory decay is the generic
behavior as a solution evolves from another profile (for instance, as it would when transiting
from the viscous to the viscous-inertial regime), and at least one or two oscillations could have an
amplitude high enough to have an important physical effect. One intriguing possibility is that it is
these decaying oscillations that are the cause of the small bumps or oscillations that are sometimes
observed on the ‘microthreads’ close to pinch-off (see Fig. 8 in Kowalewski [29]). These small
bumps cause very small satellite droplets to be created when a larger droplet pinches off [6,7].
A reason to believe this possibility is that the small bumps do not exhibit a well-defined critical
wavelength, as might be expected from a Rayleigh-Plateau type of instability in non-self-similar
coordinates, and the small droplets decrease in size the closer they are to the main pinch-off location.
We note that as the oscillations are decaying in the self-similar coordinate system, we would not
expect the droplets created to be strictly geometrically decreasing in size, as might occur if a periodic
solution in self-similar coordinates existed (as occurs in the thin-film equation of Dallaston et al.
[22], for example). However, the presence of oscillations could create further pinch-off locations
that lead to a large distribution of final droplet sizes.

It is hoped that this study will help to clarify what parts of the dynamics of near-pinch-off
behavior of liquid threads can be explained by the continuum dynamics described by system (1)
and what parts would require extra effects such as the viscosity of the ambient fluid, or thermal or
other small-scale fluctuations, to explain. We have also outlined how numerical continuation may
be used to numerically compute challenging linear stability problems, particularly those that have
singular points in the domain interior.

ACKNOWLEDGMENTS

C.Z. and J.E.S. acknowledge financial support from EPSRC Grant Nos. EP/N016602/1,
EP/P020887/1, EP/S029966/1, and EP/P031684/1.

APPENDIX: CONVERGENCE OF EIGENVALUES WITH RESPECT TO δξ

We found the solutions to both the base state, (7), and the perturbation problems, (13), to be well
converged, with a value of the distance from the singular point at which the power series is applied
δξ = 0.2 and domain size L− = 50, L+ = 10 for the first branch and δξ = 0.3 and L− = 10, L+ = 5
for the second branch (these have sometimes been increased for the sake of illustration). For these
values, even the least accurately determined of the trivial eigenvalues (σV = −1/2 on the second
branch) was correct to three decimal places, with the other trivial eigenvalues found with a greater
accuracy.

To further ensure the accuracy of the nontrivial complex eigenvalues, we have checked the
convergence with respect to the numerical parameters, in particular, δξ : the distance from the
singularity at which the power series expansions, (10) and (16), are applied. The convergence in this
parameter is complicated by the sensitivity of the selection of solutions (i.e., that it is the existence
of higher derivatives that determine the existence of a solution), particularly the second solution.
For small δξ , accuracy is lost due to numerical round-off error in the calculation of coefficients
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FIG. 8. Convergence of the system at the unstable complex eigenvalue σ = 3.695 + 4.905i. As δξ de-
creases, the solution is observed to converge, until δξ tends to below 0.1, where the numerical round-off error in
the high-order power series starts to have an effect. Nevertheless, the eigenvalue has been accurately determined
to at least three decimal places.

in (10) and (16), as the terms responsible for selection become too small. In Fig. 8 we plot the
unstable eigenvalue of the second solution as this parameter is varied. This plot shows that accuracy
is lost if this parameter is too large or small, but as demonstrated, for a range of values between
δξ = 0.2 and δξ = 0.6, the eigenvalue has converged to three decimal places.
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