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The viscoelastic relaxation time of a polymer solution is often measured using capillary
breakup extensional rheometry (CaBER) where a droplet is placed between two plates
which are pulled apart to form a thinning filament. For a slow plate retraction protocol,
required to avoid inertio-capillary oscillations for low-viscosity liquids, we show experi-
mentally that the CaBER relaxation time τe inferred from the exponential thinning regime
is in fact an apparent relaxation time that may increase significantly when increasing the
plate diameter and the droplet volume. Similarly, we observe that τe increases with the plate
diameter for the classical step-strain plate separation protocol of a commercial (Haake)
CaBER device and increases with the nozzle diameter for a dripping-onto-substrate (DoS)
method. This dependence on the flow history before the formation of the viscoelastic
filament contradicts polymer models such as Oldroyd-B that predict a filament thinning rate
1/3τ (τ being the model’s relaxation time), which is a material property independent of
geometrical factors. We show that this is not due to artifacts such as solvent evaporation or
polymer degradation and that it can be rationalized by finite extensibility effects (FENE-P
model) only for a dilute polymer solution in a viscous solvent, but not for semidilute
solutions in a low-viscosity solvent.

DOI: 10.1103/PhysRevFluids.9.073302

I. INTRODUCTION

When polymers are added to a low-viscosity solvent such as water, the extensional rheology of
the resulting solution is usually measured by indirect techniques where the (extensional) strain and
strain rate are not controlled, unlike for high-viscosity polymer solutions or melts for which reliable
extensional rheometers are available, e.g., Meissner’s RME (rheometric melt elongation rheometer)
and FiSER (filament stretching extensional rheometer). Most indirect techniques for low-viscosity
polymer solutions aim at forming a liquid filament undergoing capillary-driven thinning. Histori-
cally, this was first achieved by placing a drop of liquid between two horizontal plates which are
then separated beyond the stability limit of a stable liquid bridge [1–3], a technique now known
as CaBER (capillary breakup extensional rheometry). Alternative techniques, also based on the
Rayleigh-Plateau instability, were proposed to avoid inertio-capillary oscillations of the end drops
in the original CaBER step-strain (rapid) plate separation protocol, which prohibits measurement of
very short relaxation times [4]. This is achieved by separating the plates at a constant low velocity
(slow retraction method or SRM) [5], by dripping a droplet in air from a nozzle at a low flow rate [6]
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or, in a more recent technique, by slowly bringing a solid substrate in contact with a drop hanging
steadily from a nozzle (dripping-onto-substrate or DoS) [7].

In all these techniques, after an initial inertial and/or viscous regime, an elastic regime emerges
where the elastic stresses arising from the stretching of polymer chains dominate and give rise to
a cylindrical filament that thins exponentially in time for a wide range of dilute and semidilute
polymer solutions. This is consistent with the Oldroyd-B model, which predicts [8,9]

h = h1 exp

(
− t − t1

3τ

)
, (1)

where h is the minimum filament radius, τ the viscoelastic relaxation time of the polymer solution,
t1 the time marking the onset of the elastic regime, and h1 = h(t1) the filament radius at that time.
For a step-strain CaBER protocol, in which polymer molecules do not relax during the fast plate
separation, the model predicts h1 = (Gh4

i /2γ )1/3 where G = ηp/τ is the elastic modulus, ηp the
polymer contribution to the shear viscosity, γ the surface tension, and hi the radius of the initial
liquid column [10]. It is generally accepted that (i) for a polymer solution with a spectrum of
relaxation times, the longest one dominates [2] and that (ii) as polymer chains unravel during the
exponential regime, they ultimately approach their finite extensibility limit, causing the filament to
break after a terminal regime which can be described by, e.g., FENE models (P or CR) [2,9,11].

The general consensus is that geometrical parameters such as the size of the system can influence
only h1 (via hi) but not the thinning rate |ḣ/h| = 1/3τ of the filament (where the dot means d/dt)
since τ is a material property. In particular, Bazilevsky et al. [1] and Miller et al. [12] checked that
the filament thinning rate was independent of the sample volume and of the plate separation speed
and, in a step-strain plate separation protocol, on the final plate separation distance. This suggests
that it is independent of the history of the polymer deformation prior to the elastic regime. However,
Rajesh et al. [13] recently tested polymer solutions of different solvent viscosities with a dripping
method and reported a larger thinning rate for a smaller nozzle radius.

In this paper, we show that the apparent relaxation time, inferred from the exponential thinning
regime, depends on the size of the system for other filament thinning techniques such as CaBER
(with both slow and fast plate separation protocols) and dripping-onto-substrate (DoS).

II. MATERIALS AND METHODS

A. Polymer solutions

We use three different liquids: two solutions of poly(ethylene oxide) (PEO) of molecular
weight Mw = 4 × 106 g/mol, one in water with concentration 500 (w)ppm, referred to as PEOaq,
and one in a more viscous solvent with concentration 25 (w)ppm, referred to as PEOvisc, and
a 1000 ppm solution of poly(acrylamide/sodium acrylate) (HPAM) [70:30] of molecular weight
Mw = 18 × 106 g/mol in water with 1 wt% NaCl to screen electrostatic interactions and make the
chain flexible instead of semirigid. Both polymers were provided by Polysciences (ref. 04030-500
for PEO and 18522-100 for HPAM). For the PEOvisc solution, the solvent is an aqueous Newtonian
30 wt% 20, 000 g/mol PEG solution. The different concentrations were chosen to ensure that all
three liquids have comparable filament thinning rates. After slowly injecting the polymer powder to
a vortex generated by a magnetic stirrer, solutions were homogenized using a mechanical stirrer at
low rotation speed for about 16 hours. For the PEOvisc solution, PEG was added after mixing PEO
with water.

The shear viscosity η of these solutions was measured at the temperature of filament thinning
experiments with a MRC-302 rheometer from Anton Paar equipped with a cone plate geometry
(diameter 50 mm, angle 1◦, and truncation gap 53 µm). The PEOvisc solution is a Boger fluid with
a constant shear viscosity, while the two others are shear-thinning and are well described by the
Carreau law η(γ̇ ) = η0[1 + (γ̇ /γ̇c)2](n−1)/2 where η0 is the zero-shear viscosity, n is the shear-
thinning exponent, and γ̇c is the shear rate marking the onset of shear thinning. These values, along
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TABLE I. Properties of the three polymer solutions. ρ is the density, γ the surface tension, ηs the solvent
viscosity, c the polymer concentration, c∗ the critical overlap concentration, η0, n and γ̇c the Carreau fitting
parameters of the shear viscosity, ηp = η0 − ηs, and τm the maximum CaBER relaxation time measured for the
largest plates.

ρ γ ηs c c/c∗ η0 ηp n 1/γ̇c τm

Name (kg/m3) (mN/m) (mPa s) (ppm) (mPa s) (mPa s) (ms) (ms)

PEOaq 998 62.5 0.92 500 1.86 3.0 2.08 0.93 120 240
PEOvisc 1048 56.0 245 25 0.018 248 3.3 1 – 110
HPAM 998 72.0 0.92 1000 – 15 14 0.78 410 100

with the solvent viscosity ηs, the density ρ, and the surface tension γ measured with a pendent
drop method, are reported in Table I. For the PEOaq (500 ppm) solution, viscosity measurements for
other PEO concentrations gave an intrinsic viscosity [η] = 2.87 m3/kg and hence a critical overlap
concentration c∗ = 0.77/[η] = 0.268 kg/m3 (268 ppm). Assuming that the PEOvisc solution (25
ppm) is dilute, ηp should increase linearly with the concentration as ηp = [η]ηsc, from which [η]
and c∗ are estimated from this single PEO concentration. Values of c/c∗ are presented in Table I.

B. Slow stepwise plate separation CaBER protocol

In our home-made CaBER setup, a droplet of volume V is placed on a horizontal plate of radius
R0 and the motor-controlled top plate of same radius is first moved down until it is fully wetted
by the liquid, i.e., until the liquid bridge between the plates has a quasicylindrical shape. The top
plate is then moved up slowly (at about 0.5 mm/s) and stopped at a plate separation distance Lp

where the liquid bridge is still stable, like in the left inset image of Fig. 1(a), but close to the
bridge instability threshold. Then, instead of moving the top plate at a constant (lower) velocity,
i.e., like in SRM [5], we move it by 10 µm Lp-increment steps, waiting about 1 sec between each
step (longer than the solution’s relaxation time), which is long enough to ensure that polymers are
at equilibrium (no prestress) before each new step. At a certain step, the bridge becomes unstable
and collapses under the action of surface tension, transiently leading to the formation of a nearly
cylindrical filament, which is the signature of viscoelastic pinch-off, as shown in the right inset
image of Fig. 1(a). We stop moving the top plate once capillary-driven thinning starts. The CaBER
setup is placed in a plastic box where the relative humidity is kept above 80% using wet paper
to minimize evaporation. The aluminium plates are plasma-treated before each new experiment to
increase their hydrophilicity and minimize dewetting.

The process is recorded by a high-magnification objective mounted on a high-speed camera
(Phantom TMX 7510), and images are analyzed with a Python code. A typical time evolution of
the minimum bridge/filament radius h is shown in Fig. 1(a). The purpose of this step-by-step plate
separation protocol is to extract the value of the last stable bridge radius h0, which, since steps are
small, can be considered as the initial bridge radius at the onset of capillary thinning. Our image
resolution is up to 1 pixel per micrometer for the smallest drops, corresponding to the smallest
plates, and our time resolution is 15 000 images per second to capture the fast bridge collapse from
radius h0 to the radius h1 marking the onset of the elastic regime; see Fig. 1(a).

The critical aspect ratio � = Lp/(2R0) at which the liquid bridge becomes unstable depends
on the liquid volume V and on the Bond number Bo = ρgR2

0/γ , where g is the gravitational
acceleration [14]. In our experiments, we vary both the plate diameter 2R0, between 2 and 25 mm,
and the nondimensional droplet volume V ∗ = V/R3

0, and we find that the last stable bridge radius
h0 increases with both R0 and V ∗.
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FIG. 1. (a) Time evolution of the minimum bridge/filament radius h in the slow stepwise plate separation
protocol for the PEOaq solution for plate diameters 2R0 = 3.5 mm and a droplet volume V ∗ = V/R3

0 ≈ 2.4.
Inertio-capillary oscillations are visible after each step. Inset images correspond to a stable liquid bridge (left)
and to a thinning filament (right) of the PEOaq solution with 2R0 = 7 mm and V ∗ ≈ 2.4. (b) h(t ) in log-lin
for the PEOaq solution tested with plate diameters, 2R0 = 2, 3.5, 5, and 7 mm, with V ∗ ≈ 2.4. Inset images
correspond to three times labeled 1 to 3 indicated on the h(t ) curve plus a fourth later time where h is below
our spatial resolution for 2R0 = 7 mm. The time reference t1 marks the onset of the elastic regime.

III. RESULTS

Figure 1(b) compares the time evolution of the minimum bridge/filament radius h for the PEOaq

solution tested with plate diameters 2R0 between 2 and 7 mm with a fixed nondimensional droplet
volume V ∗ = V/R3

0 ≈ 2.4. Although all filaments thin exponentially in time at the beginning of the
elastic regime, as suggested by the fairly straight curves for t > t1 (before the terminal regime),
they thin faster for smaller plates. This is in apparent contradiction with the Oldroyd-B model,
which predicts a rate of exponential thinning |ḣ/h| = 1/3τ [see Eq. (1)] which should be the same
for all filaments, provided that the liquid does not change so that the (longest) relaxation time τ of
the polymer solution is the same.

To quantify these differences, we introduce an apparent (or effective) relaxation time τe such that
|ḣ/h| = 1/3τe in the exponential part of the elastic regime. As Fig. 1(b) suggests, τe increases as
the plate diameter increases. We show similar results for a dripping-onto-substrate (DoS) method
in Appendix A, where τe is found to increase with the nozzle diameter. In Appendix B, we also
show similar results for the classical step-strain plate separation protocol of a commercial (Haake)
CaBER device where τe is found to increase with the plate diameter. This suggests a universal
physical mechanism for the dependence of the filament thinning rate on the size of the system,
independent of the exact method used.

The apparent relaxation time τe measured with our slow stepwise plate separation CaBER
protocol is plotted in Fig. 2(a) as a function of the initial bridge radius h0 for various plate diameters
and droplet volumes for all three polymer solutions, data points of the same color corresponding
to the same R0 with different V ∗. We observe that τe increases with both R0 and V ∗ and that
all data points for a given solution collapse on a single curve when plotted against h0, which is
itself an increasing function of both R0 and V ∗. In other words, a given solution tested with two
different (R0,V ∗) sets but with the same h0 yields the same τe, as some examples show in Fig. 2(a).
This suggests that h0 is in fact the only relevant geometrical parameter of the problem. This is in
agreement with the accepted idea that polymer deformations during capillary thinning are influenced
only by the local extensional flow in the bridge/filament of maximum extension rate ε̇ = −2ḣ/h at
its thinnest point, while the top and bottom end droplets act as passive liquid reservoirs, their size
not directly influencing the pinch-off dynamics.
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FIG. 2. Apparent relaxation time τe against h0 for all three solutions for plate diameters 2R0 = 2, 3.5, 5,
and 7 mm (a) and for 2R0 = 2, 3.5, 5, 7, 10, 12.5, 15, 20, and 25 mm (b). In (a), data points of the same color
correspond to the same R0 with different droplet volumes V ∗ = V/R3

0 ≈ 1.3, 2.4, and 3.2 (only V ∗ ≈ 2.4 for
the HPAM solution). In (b), a single volume is used for each plate diameter (V ∗ ≈ 2.4 for the smallest plates
and 0.88 for the largest plates). The inset images show stable liquid bridges for 2R0 = 2 mm (a) and 20 mm
(b). The linear fit is for the PEOaq solution for h0 < 2 mm.

The apparent relaxation time varies significantly (up to a factor 4) within the typical range of plate
diameters used for CaBER experiments; see Fig. 2(a). However, τe cannot increase indefinitely with
increasing h0. In order to observe the expected saturation of τe for larger h0 values, we had to move
to much larger plate diameters, up to 2R0 = 25 mm. For plate diameters 2R0 � 10 mm, the top end
drop does not cover the top plate fully because of gravity, as shown in the inset image of Fig. 2(b).
In fact, there is always a thin liquid film covering the top plate due to the plasma treatment. For such
large plates, the top end drop is not at the center of the the top plate since the two plates are not
perfectly parallel.

In spite of this lack of full coverage for large plates, we find that the critical minimum bridge
radius h0 marking the onset of the Rayleigh-Plateau instability increases with R0, allowing us to
explore a wider range h0 values, as shown in Fig. 2(b) where the apparent relaxation time τe seems
to saturate to a maximum value τm, reported in Table I, at large h0. Since no clear plateau is observed,
especially for the PEOaq solution, the value of τm is only an estimation. In Fig. 2(b), we show only
one data point for each plate diameter, with V ∗ between 2.4 for the smallest plates and 0.88 for the
largest plates. Note that no change in behavior is observed in the τe(h0) curves in Fig. 2(b) at the
transition between fully covered (2R0 � 7 mm) and not fully covered top plates (2R0 � 10 mm),
around h0 ≈ 1.3 mm, strengthening the claim that the top and bottom end drops are passive liquid
reservoirs whose size and shape do not affect the filament thinning dynamics.

As shown by the inset images in Figs. 2(a) and 2(b), the bottom end drop becomes increasingly
larger than the top one as R0 increases since the Bond number Bo = ρgR2

0/γ ranges between
0.16 and 25. However, the thinning dynamics is not driven by gravity since the “filament” Bond
number Bo f = ρgL f h1/γ , comparing the typical capillary pressure γ /h1 in the filament to the
hydrostatic pressure ρgL f over the filament length L f , is only up to 0.1 for the largest plates. This
is also evident from the fact that filaments are not thicker at their base; see, e.g., the right inset
image in Fig. 1(a). This is consistent with the fact that, as we discuss in our longer companion
paper [15], the bridge thinning dynamics is well captured by the classical inertio-capillary and
visco-capillary (gravity-free) self-similar laws (close to the transition to the elastic regime) for
the PEOaq and PEOvisc solutions, respectively, for plate diameters where τe depends on h0 (hence
suggesting that the h0 dependence of τe is not caused by gravitational drainage). These apparent
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extensional relaxation times τe are compared with relaxation times inferred from shear rheology in
our companion paper [15].

Note that the PEO solutions used in Fig. 2(b) are not the same as the ones used in Fig. 2(a) and
have apparent relaxation times about 30% larger for 2R0 = 7 mm, while the shear viscosity was only
up to 10% larger, meaning that the shear rheology parameters in Table I are representative of both
solutions. These differences are due to slightly different preparation protocols, e.g., agitation times,
for a given recipe. These extra solutions were prepared because, by the time we had realized much
larger plates were needed to observe the saturation of τe, the previous solutions had considerably
aged, i.e., had lower τe values.

IV. INTERPRETATIONS

The apparent disagreement between experiments and Eq. (1) implies that either the liquid
changes, becoming less elastic for lower values of h0, or that the Oldroyd-B model, from which
Eq. (1) is derived, misses some important features of polymer dynamics in extensional flows. We
now consider some possible explanations.

A. Evaporation and degradation

First, although the relaxation time measured in filament thinning is known to increase with
polymer concentration [6,11], solvent evaporation cannot explain the observed increase of the
apparent relaxation time with increasing droplet size. Indeed, the bulk polymer concentration would
increase quicker for smaller droplets due to their larger surface to volume ratio, leading to larger
concentrations for smaller droplets, and hence larger τe, while the opposite is observed (lower τe

for lower h0). Besides, repeating an experiment several times over the course of 10 minutes does
not lead to a monotonic increase or decrease of τe over time, beyond small variations of less than
5%. This is not surprising since humidity is kept at high levels (>80%) in the CaBER chamber. The
latter observation also argues against polymer degradation as a possible explanation. Moreover, τe is
observed to increase with h0 for both PEO and HPAM solutions, even though HPAM is less fragile
than PEO.

Therefore, if the liquid is in fact the same for each experiment, the Oldroyd-B model fails to
describe the full polymer dynamics in the bridge/filament. In particular, differences in the history
of polymer deformations for different drop sizes could lead to different “initial” states of polymers
at the onset of the elastic regime, which could result in different filament thinning rates. We now
discuss whether finite extensibility of polymer chains, as described by the FENE-P model, can
account for such differences.

B. Elasto-capillary balance with FENE-P

Following Wagner et al. [16], for a uniaxial extensional flow, the polymeric part of the normal
stress is σp,zz = G( f Azz − 1) in the flow direction z where G is the elastic modulus and Azz is the
normal part of the conformation tensor A, which follows

Ȧzz − 2ε̇Azz = − f Azz − 1

τ
, (2)

where ε̇ is the extension rate, τ the relaxation time, and f = [1 − tr(A)/L2]−1 where L is the ratio
of the fully unravelled chain size to its equilibrium size. In this model the stress diverges as Azz

approaches its limit value L2.
In the elastic regime (t � t1), we assume that polymers are far from equilibrium and that the axial

stress dominates over the radial stress, i.e., Azz � 1 > Arr . Assuming negligible inertia and solvent
viscosity in the elastic regime, we use the elasto-capillary force balance equation

(2X − 1)
γ

h
= σp,zz = G f Azz , (3)
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with f = (1 − Azz/L2)−1 where X = 3/2 in the Oldroyd-B limit [17]. Assuming a small correction
due to finite extensibility, combining Eqs. (2) and (3) with ε̇ = −2ḣ/h leads to the ordinary
differential equation (3 + Azz/L2)Ȧzz = Azz/τ which has an implicit solution

t − t1
τ

= Azz − A1

L2
+ 3 ln

(
Azz

A1

)
, (4)

where A1 = Azz(t1) quantifies the amount of polymer stretching at the onset of the elastic regime
at time t1. The filament radius can be computed by noticing that h f Azz is a constant according to
Eq. (3), i.e.

h

h1
= f1A1

f Azz
, (5)

where f1 = (1 − A1/L2)−1 and h1 = h(t1) is the filament radius at the onset of the elastic regime. h
depends on three parameters: τ , h1, and the ratio A1/L2 quantifying how far chains are from being
fully extended at the onset of the elastic regime. Indeed, according to Eqs. (4) and (5), h is unchanged
upon multiplying both A1 and L2 by the same quantity. In the Oldroyd-B limit L2 → ∞ ( f = 1), we
recover the expected exponential trends Azz = A1 exp [(t − t1)/3τ ] and h = h1 exp [−(t − t1)/3τ ].
For a finite extensibility, the exponential regime holds until Azz approaches L2 where finite exten-
sibility effects arise. Ultimately, the stress diverges and h → 0 in finite time when Azz saturates to
L2, which occurs sooner as A1/L2 is closer to one. In particular, if A1/L2 is only slightly less than
1, meaning that polymer chains are already almost fully extended at the onset of the elastic regime,
finite extensibility effects are never negligible and Eq. (1) is never valid. In that case, increasingly
larger filament thinning rates are be observed as A1/L2 increases and Eqs. (4) and (5) predict that
the apparent relaxation time τe is well approximated by τe/τ ≈ 1 − A1/L2.

This theory is tested in Fig. 3(a) where the elastic regime (t � t1) of the PEOaq solution, tested
with different plate diameters, is compared with the predictions of Eqs. (4) and (5) where we have
chosen the maximum relaxation time τm (Table I) measured at large h0 as the relaxation time of
the FENE-P model. We use A1/L2 and h1 as fitting parameters to obtain a good agreement between
model and experiments. Most importantly, we have to impose that A1/L2 gets closer to one as
h0 decreases to capture the observed thinning rates, all larger than 1/3τm. For 2R0 = 2 mm, for
example, we need A1/L2 = 0.93, meaning that polymers are almost fully extended at the onset of
the elastic regime.

We emphasize here that in previous studies, where τe was believed to not vary with the plate size,
comparisons with the FENE-P model were performed using τe as the model’s relaxation time, and
it is quite remarkable that when using a larger value τm, one can still obtain a somehow exponential-
looking trend with the right thinning rate by tuning A1/L2 for τe < τm. Equally good fits can be
obtained for the PEOvisc and HPAM solutions, and the corresponding values of the fitting parameter
A1/L2 are plotted against h0 in Fig. 4(a) (light purple). These results suggest that the maximum
relaxation time τm measured at large plate sizes could be the "true" relaxation time, lower apparent
values τe being a consequence of polymers being too close to their finite extensibility limit at the
onset of the elastic regime to display their "natural" (far from full extension) relaxation behavior.

C. Calculating Azz(t ) from experimental h(t ) with FENE-P

In Sec. IV B, we used A1/L2 as a fitting parameter and showed that it should increase towards 1
as h0 decreases in order to successfully describe the elastic regime. However, values of A1 can in
fact be calculated from the flow history in the Newtonian regime (t < t1). Therefore, we now check
the consistency of the proposed interpretation for the variation of τe with h0 by calculating A1 from
the FENE-P model, examining whether polymers are indeed expected to be more stretched at the
onset of the elastic regime for smaller plate diameters or not.

To this end, we use Eq. (2) to calculate Azz(t ), using the experimental values of h(t ) for ε̇(t ) =
−2ḣ/h, although this expression is valid only at the thinnest bridge radius. In other words, we
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FIG. 3. (a) Experimental h(t ) for the PEOaq solution tested with different plate diameters. The elastic
regime (t � t1) is fitted by Eqs. (4) and (5) with relaxation time τ = τm (from experiments, Table I), using h1

and A1/L2 as fitting parameters. Fitting values of the parameter A1/L2 are given in the legend. (b) Experimental
h(t ) for the PEOaq solution tested with a single plate diameter 2R0 = 10 mm and corresponding values of Azz(t )
calculated from Eq. (2) with ε̇ = −2ḣ/h using the experimental values of h, with relaxation time τ = τm (from
experiments, Table I) where we vary the value of L2 from 10 to 108 (FENE-P) and L2 = ∞ (Oldroyd-B), using
Azz = 1 at h = h0 as the initial condition. The Ohnesorge numbers Oh = η0/

√
ργ h0 ranges between 0.02 and

0.007 for the PEOaq solution in our range of h0 values, which corresponds to plate diameters 2R0 between 2
and 25 mm.

calculate the predictions of the model for the experimental history of extension rates. In particular,
the extension rate history in the Newtonian regime (t < t1) sets A1. Hence, we do not assume large
polymer deformations (Azz 	� 1) since, as our slow stepwise plate separation protocol is designed
for, polymers are at equilibrium at the onset of capillary thinning, i.e., Azz = 1 when h = h0. We
use f = (1 − Azz/L2)−1 since when f is not close to 1 anymore, the axial stress dominates over
radial stress. In order to circumvent the issue of calculating ḣ from experimental values of h, we
introduce a function y(t ) such that Azz = y/h4, which gives Ȧzz + 4(ḣ/h)Azz = ẏ/h4, so that Eq. (2)
becomes τ ẏ = h4 − y/[1 − y/(h4L2)], which does not involve ḣ anymore. To solve this equation,
we use a standard ODE solver, using spline interpolation to create a t → h(t ) function based on
experimental values of h. This equation can be integrated analytically in the Oldroyd-B limit, as
shown by Bazilevsky et al. [18].

The results are shown in Fig. 3(b) for the PEOaq solution tested with a plate diameter 2R0 =
10 mm, with τ = τm (Table I) for the relaxation time of the FENE-P model, along with various
values of L2, including the Oldroyd-B limit L2 → +∞. As expected, values of Azz calculated from
FENE-P coincide with Oldroyd-B until it saturates when reaching L2. In particular, the value of A1

becomes independent of L2 when L2 is sufficiently large and becomes indistinguishable from the
values predicted by the Oldroyd-B model.

D. Comparing fitting and calculated A1 values

The values of A1 = Azz(t1) calculated in Sec. IV C from the experimental values of h(t ) in the
Newtonian regime (t < t1), using the FENE-P model with τ = τm, are plotted in Fig. 4(a) against
h0 for all three solutions (dark blue). More precisely, we plot the ratio A1/L2 indicating how
close polymer chains are to being fully extended at the onset of the elastic regime (full extension
corresponding to A1/L2 = 1). This is because we want to compare these calculated values (dark
blue) with the values of A1/L2 used as a fitting parameter (light purple) in Sec. IV B to fit the
elastic regime with Eqs. (4) and (5) [see Fig. 3(a)]. We hence need to choose a value of L2. For

073302-8



BEWARE OF CaBER: FILAMENT THINNING RHEOMETRY …

103

10 1

100

(a) (b)

103

103

104

105

FIG. 4. (a) Values of A1/L2 used as fitting parameters [light purple, see, e.g., Fig. 3(a)], and values
calculated from the FENE-P model [dark blue, see, e.g., Fig. 3(b)] for τ = τm and values of L2 discussed in the
text, against h0 for all liquids and plate diameters. (b) Same values of A1 calculated from the FENE-P model
(dark blue), compared with (h0/h1)4 (light orange). All values of A1 calculated from FENE-P are the same as
in Oldroyd-B except for the PEOvisc solution at low h0 where Oldroyd-B values are shown with empty blue
symbols. The Ohnesorge numbers Oh = η0/

√
ργ h0 ranges between 0.02 and 0.007 for the PEOaq solution,

between 0.1 and 0.03 for the HPAM solution and between 2 and 0.6 for the PEOvisc solution in our range of h0

values, which corresponds to plate diameters 2R0 between 2 and 25 mm.

each liquid, we choose L2 such that, at the largest h0, the calculated value (dark blue) of A1/L2

coincides exactly with the fitting value (light purple). We obtain L2 = 4.9 × 104 for the PEOaq

solution, L2 = 2.0 × 104 for the PEOvisc solution, and L2 = 6.2 × 103 for the HPAM solution. The
order of magnitude is consistent with the microscopic formula [11]

L2 = 3

[
j sin2 (θ/2)Mw

C∞ Mu

]2(1−ν)

, (6)

which gives L2 between 4.5 × 104 and 1.3 × 105 for PEO of molecular weight Mw = 4 ×
106 g/mol, for typical solvent quality exponents ν between 0.55 and 0.5 (theta solvent) found for
PEO in water-based solvents, where Mu is the monomer molecular weight, θ = 109◦ the C-C bond
angle, j = 3 the number of bonds of a monomer, and C∞ = 4.1 the characteristic ratio [19]. We find
that, while the fitting values of A1 (light purple) increase towards L2 as h0 decreases, the calculated
values of A1 (dark blue) do so only for the PEOvisc solution, for which a good agreement is found
with the fitting values, and do not for the PEOaq and HPAM solutions for which A1 is fairly constant.
For these last two, no other value of L2 can lead to a better agreement since decreasing L2 would
just shift all calculated values towards the upper limit A1/L2 = 1.

In order to better understand this, we compare these calculated values of A1 (dark blue) with their
upper limit (h0/h1)4 (light orange) in Fig. 4(b). This upper limit corresponds to a relaxation time τ

so large that polymer relaxation [right-hand side of Eq. (2)] is always negligible in the Newtonian
regime (t < t1), a case where Eq. (2) (with ε̇ = −2ḣ/h) can be integrated as Azzh4 = h4

0. Differences
in values of (h0/h1)4 among the three polymer solutions are due to differences in h1 stemming from
different elastic moduli G, as we discuss in our longer companion paper [15] where we show that
the Oldroyd-B model gives h1 ∝ (GH4/γ )1/3 where H → h0 for large relaxation times. We find in
Fig. 4(b) that A1 is very close to the (h0/h1)4 limit for the PEOaq and HPAM solutions at low h0,
meaning that polymer relaxation is indeed negligible, and that the ratio between the two increases
as h0 increases, meaning that relaxation becomes more important. This is consistent with the fact
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that the Deborah number De = τm/τR decreases from 500 (�1, i.e., negligible relaxation) at the
lowest h0 to 5 at the highest h0, where τR = (ρh3

0/γ )1/2 is the Rayleigh time scale relevant for the
thinning dynamics of such low-viscosity liquids, with Ohnesorge numbers Oh = η0/

√
ργ h0 which

are up to 0.02 for PEOaq and up to 0.1 for HPAM (at the lowest h0 values), i.e., Oh � 1. The reason
why the calculated values of A1 are fairly independent of h0 for these two liquids, hence resulting in
an impossible match with the fitting values of A1/L2 (light purple) in Fig. 4(a), is therefore because
these calculated values of A1 are close to their upper limit (h0/h1)4, which are fairly independent of
h0 themselves [at least for sufficiently low h0; see Fig. 4(b)]. Note that the scaling h1 ∝ h0 implied
by the constant values of (h0/h1)4 is discussed in our longer companion paper [15].

By contrast, the calculated values of A1 for the PEOvisc solution are increasing as h0 decreases,
allowing for a good match with the fitting values of A1/L2 (light purple) in Fig. 4(a). This is because,
unlike for the two other solutions, polymer relaxation [right-hand side of Eq. (2)] is not negligible
in the Newtonian regime (t < t1), as indicated by the greater difference between A1 and the upper
(relaxation-free) limit (h0/h1)4 for the PEOvisc solution in Fig. 4(b). This is due to the slower
thinning dynamics in the Newtonian regime, caused by a larger shear viscosity with Ohnesorge
numbers Oh = η0/

√
ργ h0 ranging between 0.6 and 2 in our range of h0 values. Indeed, since all

three solutions have comparable relaxation times, slower thinning dynamics mean that polymer
relaxation is more important, i.e., A1 < (h0/h1)4. The reason why A1 decreases as h0 increases for
the PEOvisc solution is because the ratio between A1 and (h0/h1)4 increases with h0. This is because
relaxation is increasingly important as h0 increases since the timescale of the Newtonian thinning
dynamics, expected to scale as τR ∝ h3/2

0 or as τvisc = η0h0/γ ∝ h0 depending on Oh, increases with
h0, resulting in lower Deborah numbers (based on either τR or τvisc).

E. Numerical simulations

Hence, the FENE-P model can explain the increase of the apparent relaxation time τe with h0 only
for the PEOvisc solution, which is the most dilute one and with the highest solvent viscosity out of
our three solutions. This is checked further by numerical simulations of the axisymmetric problem
(with gravity) using the full FENE-P constitutive equation. We use as fixed model parameters the
values of ηs and ηp from the shear rheology, the high-h0 limit τ = τm for the relaxation time, and
the value of L2 = 2.0 × 104 used in Sec. IV D [Fig. 4(a)] for which the simplified analytical model
in Secs. IV B and IV C could rationalize the apparent relaxation times τe. The equations to be solved
are the same as in Rubio et al. [20], and the numerical methods are detailed in Appendix C. The
initial condition is established by starting from a stable liquid bridge with a plate-to-plate distance
Lp just below the instability threshold value and slightly increasing Lp to trigger the pinch-off.

The results are shown in Fig. 5 for the three smallest plates and the corresponding experimental
droplet volumes in terms of the time evolution of the minimum bridge/filament radius. Simulations
are found to start at a bridge radius close to h0, which validates the numerical method to set the initial
condition. We find that simulations are able to capture the Newtonian regime quite well and provide
a reasonable agreement with experiments in the elastic regime. In particular, the filament thinning
rate varies with the plate diameter, consistent with experiments, while the Oldroyd-B model would
give the same (constant) thinning rate 1/3τm. Simulations could not be continued far enough to
compare with the full experimental time window. Like in Fig. 3(a), Fig. 5 also features the analytic
solution of Eqs. (4) and (5) for the elastic regime (t > t1).

V. CONCLUSIONS AND DISCUSSION

We have shown experimentally that the thinning rate of filaments of various polymer solutions
is not necessarily just a material property but may depend on the size of the system in CaBER with
both slow (stepwise) and fast (step-strain) plate separation protocols as well as in DoS experiments,
consistent with previous observations for dripping experiments [13]. Although all filaments are
observed to thin exponentially, as predicted by the Oldroyd-B model [see Eq. (1)], we show that,
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FIG. 5. h(t ) from experiments and simulations for the PEOvisc solution for different plate diameters.
Simulations are performed for 2R0 = 2, 3.5, and 5 mm only, using the FENE-P model with τ = τm and
L2 = 2.0 × 104. The elastic regime is fitted by Eqs. (4) and (5) with τ = τm where, like in Fig. 3(a), A1/L2

and h1 are used as fitting parameters. The Ohnesorge numbers Oh = η0/
√

ργ h0 ranges between 2 and 0.6 for
the PEOvisc solution in our range of h0 values, which corresponds to plate diameters 2R0 between 2 and 25 mm.

for CaBER with slow stepwise plate separation, the inferred apparent relaxation time τe increases
with the minimum bridge radius h0 marking the onset of capillary thinning, which is an increasing
function of both the plate diameter and droplet volume, and that τe saturates at large h0 values
corresponding to plate diameters >10 mm significantly larger than typical CaBER plates. These
observations hence suggest that CaBER relaxation times reported in the literature are not universal
since testing a given polymer solution with different plate diameters and droplet volumes can yield
significantly different results.

The fact that Bazilevsky et al. [1], who used both fast and slow-retraction CaBER methods,
reported no variation of τe with the drop volume V (without providing the data to support their
claim) might be due to the fact that its dependence on V is weak [weaker than its dependence on R0;
see Fig. 2(a)] and that, for a given plate diameter, V can be varied only up to a critical value above
which the drop does not fit on the plate.

We demonstrate that the variation of τe with h0 is not caused by solvent evaporation or polymer
degradation and cannot be universally explained by finite extensibility effects described by the
FENE-P model. These observations suggest that the single-mode Oldroyd-B and FENE-P models
miss some important features of polymer dynamics in extensional flows. The FENE-P model
could explain the variation of τe only for the most dilute solution with the most viscous solvent,
which is consistent with the fact that (i) the FENE-P model is derived for dilute solutions and
that (ii) inertio-capillary oscillations are absent for this solution. However, since the value of the
finite-extensibility parameter L2 was chosen to optimize the agreement with experiments, we do
not exclude that this agreement may also be a coincidence, although this value agrees with the
microscopic prediction of Eq. (6).

A physical interpretation for this deformation-history-dependent filament thinning rate is still
needed, strengthening the already established need for better constitutive equations. Other shortcom-
ings of the FENE-P model, such as coil-stretch hysteresis and the increase of τe with the polymer
concentration in the "dilute" regime (c < c∗), were previously explained by a conformation-
dependent drag (CDD) model accounting for the action of both chain stretching and intermolecular
hydrodynamic interactions on the friction coefficient [21,22]. Future works will determine if such
models are also able to capture the system-size dependence of the effective relaxation time discussed
in this paper.
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FIG. 6. (a) h(t ) from DoS experiments with different nozzle diameters for the PEOaq solution. We report
the values of the maximum diameter 2R∗

0 of the top end drop which is between the inner and outer nozzle
diameter. Insert images correspond to the steadily hanging drop (left) and to four times labeled 1 to 4 indicated
on the h(t ) curve for 2R∗

0 = 3.27 mm. (b) τe vs h1 for the PEOaq solution from DoS compared to the values of
Fig. 2(b) from CaBER with the slow stepwise plate separation protocol described in Sec. II B.
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APPENDIX A: DRIPPING-ONTO-SUBSTRATE (DoS)

In DoS experiments, a horizontal substrate (here a plasma-treated aluminium plate) is moved
slowly upward until being in contact with a liquid droplet hanging steadily from a nozzle. As shown
in the image sequence in Fig. 6(a), a fast spreading of the liquid on the plate leads to the pinch-off
of the bridge connecting the substrate to the nozzle. This transiently leads to the formation of an
exponentially thinning filament, as shown by the time evolution of the minimum bridge/filament
radius h in Fig. 6(a), where the PEOaq solution is tested with four different nozzle diameters. As in
CaBER experiments, the apparent relaxation time extracted from the filament thinning rate increases
with the droplet size, here quantified by the nozzle diameter. This apparent relaxation time τe is
plotted in Fig. 6(b) for both CaBER and DoS experiments against the filament radius h1 marking
the onset of the elastic regime, which, unlike h0 in CaBER, is easily definable in both methods. The
relatively good collapse of the data points on a single curve suggests a universal physical mechanism
for the dependence of the apparent relaxation time on the size of the system, independent of the
exact method used. We checked that τe also increases with the nozzle diameter when the droplet
spreads on a "small" plate (about two times larger than the nozzle and made of non-plasma-treated
aluminium), where spreading stops before the viscoelastic filament is formed.

APPENDIX B: STEP-STRAIN CaBER

To further test the universality of the dependence of the apparent relaxation time on the system
size, we also performed experiments with a Haake CaBER-1 commercial extensional rheometer
(Thermo Haake GmbH, Karlsruhe, Germany) with plate diameters 2R0 between 2 and 20 mm. This
was achieved by sticking aluminium plates of prescribed diameters to the 6 mm diameter plates
provided with the rheometer where, as shown in Fig. 7(d), the top plate was shortened to ensure
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TABLE II. Parameters of experiments with the Haake CaBER-1 commercial extensional rheometer.

2R0 (mm) �0 � f t f (ms) ε̇0 (s−1) V ∗

2 1.00 3.98 20 69.3 3.1
3.5 1.00 3.95 20 68.5 3.2
7 1.00 3.97 20 69.0 3.1
10 0.80 3.13 20 68.1 2.5
20 0.41 1.64 20 69.3 1.3

that the total length would remain unchanged, allowing us to use the readings of the software to
control the plate separation distance Lp. We chose an exponential plate separation profile of the
form Lp(t ) = L0 exp (ε̇0t ) with initial and final separation distances L0 and L f and with extension
rate ε̇0 = t−1

f ln(L f /L0) where t f is the duration of the separation profile. Values of these parameters
are shown in Table II for each plate diameter where �0 = L0/R0 and � f = L f /R0 are the initial
and final aspect ratios. The initial gap is filled by a nearly cylindrical liquid bridge, yielding a liquid
volume V ≈ πR2

0L0 and a nondimensional liquid volume V ∗ = V/R3
0 ≈ π�0 given in Table II. We

choose �0 = 1 for the smallest plates, consistent with Miller et al. [12], and lower values for the
largest plates for which, due to gravity, it was no longer possible to fit the sample in a �0 = 1
initial gap. We keep the final-to-initial distance L f /L0 close to 4 and choose the smallest available
strike time t f = 20 ms to maximize the extension rate ε̇0 ≈ 69 s−1 and hence the Weissenberg
number Wi0 = τ ε̇0, which, since the apparent relaxation times about to be discussed are larger
than 30 ms, is larger than 2 and therefore within the range considered by Miller et al. [12]. This
ensures that polymer chains do not relax during the (hence rightfully named) initial step strain or
step stretch. Experiments of Miller et al. [12] for a fixed plate diameter 2R0 = 3 mm and initial
aspect ratio �0 = 1 showed that the (apparent) relaxation time τe (inferred from the exponential
thinning regime) doesn’t depend on the step-strain parameters � f (varied between 3 and 15) and
Wi0 (varied between 0.5 and 12) for polymer solutions.

We used the PEOaq and PEOvisc solutions of Fig. 2(b) that we label here PEOaq,old and PEOvisc,old

since they were about 7 months old by the time we tested them on the Haake CaBER-1 rheometer
compared to when they were tested with the slow stepwise plate separation protocol. The time
evolution of the mid-filament radius hmid measured by the laser micrometer is shown in Fig. 7(a)
for the PEOaq,old solution and in Fig. 7(b) for the PEOvisc,old solution for all plate diameters. The
relaxation time τe inferred from the exponential part of the thinning dynamics, calculated from the
filament thinning rate |ḣ/h| defined as 1/3τe, is plotted against the plate diameter in Fig. 7(c) for
both liquids. We find that τe increases significantly as the plate diameter increases for the PEOvisc,old

solution. For the PEOaq,old solution, τe increases by a factor 2 for 2R0 between 2 and 7 mm and
reaches a plateau for 2R0 � 7 mm. This initial increase is not caused by experimental error, as
indicated by the small error bars estimated by repeating the experiment three times for each plate.
These results confirm that the apparent relaxation time increases with the plate diameter regardless
of whether the plates are separated slowly or rapidly in CaBER. The range of plate diameters
3–8 mm used with the Haake CaBER-1 rheometer is shown in gray in Fig. 7(c) to emphasize that,
generally speaking, there is no reason to consider any apparent relaxation time measured in this
range as "the" relaxation time.

The apparent relaxation times of Fig. 2(b), measured with the slow stepwise plate separation
CaBER protocol described in Sec. II B, are shown in Fig. 7(c) for reference. Values of τe are in
general lower for the PEOaq,old solution compared to the PEOaq (fresh) one, consistent with the
expected ageing of the solution over the 7 months separating the two sets of experiments, which was
confirmed by shear rheology experiments revealing a 29% decrease in η0. On the other hand, values
of τe are found to be higher for the PEOvisc,old compared to the PEOvisc (fresh) one. The (constant)
shear viscosity was also found to be higher by about 24% which, since ηs � ηp, can be explained
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FIG. 7. (a, b) Time evolution of the mid-filament radius hmid(t ) for the PEOaq,old (a) and PEOvisc,old (b)
solutions tested with plate diameters 2R0 = 2, 3.5, 7, 10, and 20 mm on a Haake CaBER-1 extensional
rheometer. The time t1 corresponds to the onset of the exponential regime. The legend is the same for both
panels, and the inset picture in (b) shows an example of thinning filament for the PEOvisc,old solution tested
with the 20 mm diameter plates, the air-liquid interface being highlighted with dashed lines. (c) Apparent
relaxation time τe against the plate diameter with, for reference, the values from Fig. 2(b) for the PEOaq and
PEOvisc solutions tested with the slow stepwise plate separation protocol described in Sec. II B. The shaded area
corresponds to the range of plate diameters 3–8 mm available for a Haake CaBER-1 extensional rheometer. (d)
Sketch of the original (left) and modified (right) design allowing for a change in plate diameter.

by an increase in the solvent viscosity, which cannot be caused by evaporation since the solution
was sealed. A possible explanation could be the development of microorganisms. The change in
apparent relaxation times is therefore not necessarily caused by the change in plate separation
protocol, consistent with Bazilevsky et al. [1] who found no significant difference in τe for solutions
tested with both slow and fast protocols.

APPENDIX C: NUMERICAL METHOD

The FENE-P model was solved with a variation of the method described by Herrada and
Montanero [23]. The physical domains occupied by the liquid is mapped onto a rectangular
domain through a coordinate transformation. Each variable and its spatial and temporal derivatives
appearing in the transformed equations were written as a single symbolic vector. Then we used
a symbolic toolbox to calculate the analytical Jacobians of all the equations with respect to the
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symbolic vector. Using these analytical Jacobians, we generated functions that could be evaluated
in the iterations at each point of the discretised numerical domains.

The transformed spatial domain is discretized using nη = 11 Chebyshev spectral collocation
points in the transformed radial direction. We used nξ = 801 equally spaced collocation points
in the transformed axial direction ξ . The axial direction was discretised using fourth-order finite
differences. Second-order backward finite differences were used to discretise the time domain. We
used an automatic variable time step based on the norm of the difference between the solution
calculated with a first-order approximation and that obtained from the second-order procedure. The
nonlinear system of discretized equations was solved at each time step using the Newton method.
The method is fully implicit.
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