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A rivulet flowing down an inclined plane often does not follow a straight path, but starts to meander

spontaneously. Here we show that this instability is the result of two key ingredients: fluid inertia and

anisotropy of the friction between rivulet and substrate. Meandering only occurs if the motion normal to

the instantaneous flow direction is more difficult than parallel to it. We give a quantitative criterion for the

onset of meandering and confirm it by comparing to the flow of a rivulet between two glass plates which

are wetted completely. Above the threshold, the rivulet follows an irregular pattern with a typical

wavelength of a few cm.
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Meandering of rivulets down a vertical or inclined sur-
face is a well-known phenomenon [1–10], which is impor-
tant to understand the degree to which a solid surface is
covered by a liquid film: the width of a rivulet is typically
1 mm, while the transversal excursions of a meander may
be several cm. The small-scale meanders discussed in this
Letter also fall into a broader class of instabilities which
include river meandering [11] and the coiling of fluid jets
[12]. Most explanations of meandering are based on the
idea that centrifugal forces amplify the curved parts of the
stream [1,4,8], while others emphasize the role of noise
and surface disorder [9,10]. However, as yet there exists no
quantitative theory for the meandering of rivulets.

Most available experiments were performed in partial
wetting conditions, and on relatively rough substrates,
which suffer from contact angle hysteresis, and the pinning
of the rivulet on defects. Thus the mechanism of instability
remains hidden by noise, and quantitative comparison is
difficult. Instead, we present meandering experiments in a
situation of complete wetting, where hysteresis and surface
defects do not matter. To this end we confined a fluid with
low surface tension (e.g., silicone oil) between two parallel
plates (the Hele-Shaw geometry), so a rivulet forms as a
long liquid bridge or film connecting the two plates; see
Fig. 1. The insides of the glass plates are covered with a
thin fluid film since the silicone oil strongly favors wetting.
Previous meandering experiments in the same geometry
have only been reported with a surfactant aiding the stabil-
ity of the bridge [3,13]. This makes the results difficult to
reproduce, and poses questions as to the role of complex
surfactant rheology.

In this Letter, we show that a meandering instability
exists for several inert, Newtonian fluids between two glass
plates, thus establishing its universal nature. By varying the
flow rate, we show that the rivulet meanders above a well-
defined threshold. Based on a hydrodynamic description,
we derive an explicit and parameter-free criterion for the

threshold value of the critical flow speed above which
meandering occurs. We observe that the one crucial ingre-
dient necessary for meandering is that it is harder for the
fluid to move in a direction perpendicular to the instanta-
neous direction of the rivulet than it is to move in a down-
stream direction. An analogy would be that of a car that can
only overturn if the tires have sufficient traction.
Our experiment consists of a Hele-Shaw cell made

of two glass plates of dimensions 100 cm� 30 cm and
thickness 5 mm, arranged at an angle � relative to the
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FIG. 1 (color online). Silicone oil forms a rivulet between two
glass plates, whose cross section can either be a film (top) or a
liquid bridge (bottom). Dimensions are R ¼ 0:7 mm at the top
and R ¼ 0:5 mm at the bottom. On the left, close-up frontal
views of the glass plates, used to measure the rivulet width. On
the right, a schematic of the rivulet cross section. At low flow
rates and large plate separations b, a film forms (top); the rivulet
is imaged as a single black line, and the cross-sectional area is
A ¼ ð4� �ÞR2. At higher flow rates or small separation, a liquid
bridge appears (bottom), imaged as a bright line bounded by two
black lines. The area is A ¼ ð4� �ÞR2 þ bd.
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horizontal. The plate spacing b varies between 0.6 and
2 mm. A gear pump injects fluids of viscosity between
0.9 and 3 times that of water at the top of a cell through a
hypodermic needle; typical flow rates lie between 50 and
1000 mm3=s. The shape assumed by the rivulet in the
plane of the cell is followed by video recording, the cell
being lit by neon tubes on either side. Close-up views
(see Fig. 1) with a light source far behind the plates are
used to measure the width of the rivulet and thus its cross
section. Depending on the flow rate, two different states
are observed. At low flow rates, a thin liquid film, con-
nected to the plate through plateau borders, shows up as a
single dark line. At higher flow rates, a liquid bridge
appears as a bright line with dark borders (cf. Fig. 1).
In Figs. 2 and 3, detailed results are given for system A,
which is specified in Table I. Results for other parameter
values are also given in Table I.

At low flow rates, the rivulet remains perfectly straight
over the whole length of the Hele-Shaw cell. Moreover, its
width stays constant over the whole length of the cell,
indicating that the flow is fully developed from near the
inlet, and the mean flow speed is determined by a balance
of gravity and viscous friction. Above a critical flow rate

meandering patterns begin to develop, which are irregular
in general, and which are convected downstream, as shown
in Fig. 2. Typical wavelengths are of the order of a few cm,
much larger that the rivulet width of a few mm. The phase
speed u� of the meandering pattern is illustrated in Fig. 2.

In Fig. 3, on the top of each graph we show the mean
velocity �u of the flow inside the rivulet, and the phase
speed u� of the meandering pattern, for two different plate

spacings. We do not measure u� below the transition, since

it would require us to excite perturbations externally.
Instead, we extrapolate the data linearly to below the tra-
nsition. The mean velocity is calculated from �u ¼ Q=A,
where the cross-sectional area A is calculated according to
the diagrams in Fig. 1 (see caption); in general, A will
depend on Q. In the film regime, we measure the width 2R
of the dark line, where R is the radius of curvature of the
plateau border and b� 2R the length of the film. In the
liquid bridge regime we measure the width d of the bright
line as well as the width R of the dark borders, which is
now the radius of curvature of the meniscus bordering the
bridge. All surfaces are assumed to be arcs of circles, with
contact angle 0�. The phase speed u� is determined from a

linear fit to the spatiotemporal plot of the meandering
pattern (cf. Fig. 2).

FIG. 3. Experimental data for system A, b ¼ 1 mm (top) and
b ¼ 2 mm (bottom). The top graph shows the mean velocity
�u (h) and phase velocity u� (d) as function of flow rate Q. The

bottom graph shows the surface tension parameter
ffiffiffiffi
�

p
(j) and

velocity difference �u ¼ �u� u� (�), where u� is determined

from a linear approximation to the data, dashed line; we put
u� ¼ 0 if the linear approximation falls below zero. Theory

predicts a transition at the crossing. The shaded region marks the
observed threshold to within the error.

FIG. 2. Left: Two successive images of meandering patterns
(system A, Q ¼ 182 mm3=s), with �t ¼ 0:33 s between them.
The spatial shift, indicated by an arrow, shows the phase speed
u� ¼ 2:42 cm=s. Note the irregularity of the pattern. Right: A

spatiotemporal plot [same spatial scale, gray value proportional
to �ðx; tÞ]; the triangle indicates the measurement of u� in the

linear regime.
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To explain the observed instability theoretically, we use
the two-dimensional Navier-Stokes equation, as obtained
from averaging the flow in the z direction (perpendicular to
the plates), as customary for Hele-Shaw flow [15]. The
velocity field is u ¼ ðu; vÞ, whose components correspond
to the coordinate directions x; y, as shown in Fig. 2, and n is
the normal to the rivulet path �ðxÞ:

@tuþ �ðu � rÞu ¼ �kuþ ð��� kclunÞnþ gex: (1)

Here � is the effective line tension of the rivulet and kcl
the additional ‘‘contact line’’ friction associated with the
rivulet possessing a nonzero velocity un � u � n normal to
itself. For Poiseuille flow the friction factor is k ¼ 12�=b2

(� the kinematic viscosity) and � ¼ 6=5. Since the viscos-
ity is small, we expect our profile to be closer to a plug
flow and thus � to be close to unity [15,16]. In the absence
of a more precise estimate, and in the interest of simplicity,
we set � ¼ 1 in the following. The contact line friction
comes from the fact that normal motion causes a shear flow
in the junction between the thin film of thickness h cover-
ing the plates and the rivulet. This is analogous to the
Landau-Levich problem [17] viewed in a frame of refer-
ence moving with the plate which drags out the film.
Estimating the dissipation in the junction, one finds [18]

that kcl / �
ffiffiffiffiffiffiffiffiffi
b=h

p
=A.

A second contribution to the normal force comes from
the curvature � of the rivulet, since a curved rivulet has a
greater surface area. In the case of a liquid bridge of finite
width [cf. Fig. 1 (bottom)], it was shown in [19] that the
pressure difference across the meniscus in the small-speed
limit is �p ¼ ����=4. Thus, � ¼ 2�pb=ð	AÞ in (1),
since the acceleration is proportional to the total force
2�p‘b per length ‘ of the rivulet (accounting for the
two sides of the rivulet) divided by the mass 	‘A. Here
� the surface tension and 	 the density of the fluid. In the
film regime the interface is planar over a length b� 2R,
which contributes a factor � ¼ 2�ðb� 2RÞ=ð	AÞ,
the other part is curved with a radius of curvature R
[cf. Fig. 1 (top)]. A combination of the contribution of
both curved and straight interfaces gives the generalized
formula � ¼ �½2ðb� 2RÞ þ R��=ð	AÞ.

We now perform a linear stability analysis of (1), assum-
ing small deviations of the rivulet position �ðxÞ from the

vertical (cf. Fig. 2). For u, we can take the mean velocity
�u ¼ g=k, so the convection of the rivulet is described by

�t þ �u�x ¼ v; (2)

and the y component of the Navier-Stokes equation (1) is

vt þ �uvx ¼ �kv� kclðv� �u�xÞ þ ��xx; (3)

with subscripts denoting partial differentiation. In a linear
approximation, the normal velocity of the rivulet is related
to the velocity ( �u; v) relative to the plate by un ¼ v� �u�x.
Using (2), the variable v can be eliminated from (3),
leading to

�tt þ 2 �u�xt þ �u2�xx ¼ �ðkþ kclÞ�t � k �u�x þ ��xx: (4)

Note that the �u2 term stands for centrifugal forces such
as those invoked in [1,2,8,13], but inertia by itself does not
lead to instability. To illustrate this, let us consider an ideal
case in which the right-hand side of (4) is negligible. If one
seeks solutions of the form �ðx; tÞ / expðiqxþ 
tÞ, the
dispersion relation has the solution 
 ¼ �iq �u; i.e., there
is only propagation without amplification. If one includes
frictional terms proportional to k as well as surface tension
forces �, this only leads to damping of an initially excited
wave.
However, with contact line friction kcl the full dispersion

relation for (4) reads


 ¼ �iq �u� �k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��q2 þ �k2 þ ikcl �uq

q
; (5)

where �k ¼ ðkþ kclÞ=2. It is confirmed easily that the sec-
ond branch is always damped, while the first becomes
unstable if

k2cl �u
2 > 4 �k2�; (6)

i.e., when centrifugal forces overwhelm surface tension.
The friction term kcl singles out the momentary shape of
the rivulet as a preferred path, and thus acts as a constraint,
producing a force of constraint (i.e., a centrifugal force),
and leading to instability.
This idea can be expressed more formally by observing

that at the threshold (5) becomes 
 ¼ �i �uqk=ð2 �kÞ; thus,
the meandering pattern moves with a phase speed

TABLE I. Systems: [A] Polydimethylsiloxane oil in air, [B1] perfluorinated oil in air, [B2] perfluorinated oil in air, [C] 1M NaCl
solution in water, in a Hele-Shaw cell [14], and in 3D [12]. According to (8), the last two columns should agree.

b (mm) � (cP) 	 (g=cm3) g sin� (m=s2) � (mN=m) �u (cm=s) u� (cm=s) �u� u� (cm=s)
ffiffiffiffi
�

p
(cm=s)

A 2 3 0.9 9.81 17.7 31:4� 0:8 1:2� 0:1 30:2� 0:9 26:6� 0:5
A 1 3 0.9 9.81 17.7 25:7� 1:2 2:1� 0:1 23:6� 1:2 23:1� 0:8
B1 1 2 1.75 4.91 14 12:1� 0:5 1:1� 0:2 11:0� 0:6 12:3� 1:1
B2 0.6 0.9 1.75 9.81 13.6 17:6� 1:6 0:4� 0:1 17:2� 1:6 21:0� 2:3
C 3.0 1.0 1.04 9.81 0 0:027� 0:009 0:027� 0:006 0:0� 0:011 0

C (3D) 1.0 1.04 9.81 0 0.1 0.1 0.0 0
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u� ¼ k

2 �k
�u: (7)

This permits us to put the stability criterion (6) into a
parameter-free form:

ð �u� u�Þ2 > �; (8)

which is the main result of this Letter. According to (8),
centrifugal forces on the rivulet arise from the speed
�u ¼ �u� u� of a fluid particle in the frame of reference

of the pattern in which it moves. Note that the substantial
difference between �u and u�, evident in Fig. 3, results from

the fact that the inclined parts of the stream are slowing
down the motion of the meandering pattern because of the
extra resistance to normal motion of the contact line, a fact
expressed mathematically by (7).

All parameters appearing in (8) are experimentally ac-
cessible, so we can test our theory quantitatively, and
without adjustable parameters. In Fig. 3 (bottom graph),

we have plotted �u and
ffiffiffiffi
�

p
, which according to (8) should

cross at the transition; the meandering transition observed
by us experimentally is marked by the shaded region,
which indeed coincides well with the crossing of the two
curves. This is confirmed by all the threshold data reported
in Table I, for three different fluid systems, and for a range
of plate spacings. In particular, we included data from an
earlier work with two miscible fluids [12,14] (zero surface
tension). In that case, the transition occurs when u ¼ u�, a

finding in agreement with (8), but previously unexplained.
The theory also agrees in spirit with the opposite extreme
of pinned contact lines [8], for which u� ¼ 0, However,

pinning forces have to be included to explain the observed
threshold quantitatively [8].

However, one aspect we do not yet understand is the
selection of a typical wavelength, as illustrated in Fig. 2.
Above the threshold, (5) predicts all wavelengths to turn
unstable at the same time, since there is no maximum in the
dispersion relation which would select a most unstable
wavelength. One physical effect we have not yet taken
into account is the regularization at short wavelengths,
which are of the order of the width of the rivulet.
However, this will not explain the observed wavelengths,
which are much larger than the rivulet width. Rather,
we suspect that selection occurs on account of a nonlinear
mechanism. This is consistent with the irregular

appearance of meanders, whose shape is quite far from
sinusoidal, and which exhibit a very considerable spread in
wavelength.
In conclusion, we have presented a theory for the mean-

dering of rivulets, which agrees quantitatively with experi-
ment. While large-scale meandering, for example, of
rivers, is governed by very different mechanisms, we be-
lieve nonetheless that the basic physical principle behind
the instability is the same as the one described by us. On
one hand, the driving force ultimately comes from the
inertia of the fluid. On the other hand, for this force to
act one needs a reference frame, which in the case of rivers
is furnished by the existence of a river bed.
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