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The breakup of low-viscosity droplets like water is a ubiquitous and rich phenomenon. Theory predicts
that in the inviscid limit one observes a finite-time singularity, giving rise to a universal power law, with a
prefactor that is universal for a given density and surface tension. This universality has been proposed as a
powerful tool to determine the dynamic surface tension at short time scales. We combine high-resolution
experiments and simulations to show that this universality is unobservable in practice: in contrast to
previous studies, we show that fluid and system parameters do play a role; notably a small amount of
viscosity is sufficient to alter the breakup dynamics significantly.
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Drop formation is a common phenomenon that occurs in
a broad range of industrial processes such as inkjet printing,
spraying, and cooling. In a typical laboratory experiment, a
drop is formed at the end of a syringe tip, and its detach-
ment is filmed using a high-speed camera. Surface tension
drives the flow that shrinks the diameter of the filament
connecting the drop to the syringe, and both fluid inertia
and fluid viscosity slows it down. The filament can be
observed to thin in a nonuniform way, which eventually
leads to the pinch-off of the drop (see Fig. 1) occurring at a
critical time tc. In the case of negligible viscosity, based on
the idea that the minimum neck radius Rmin is the only
characteristic length scale close to pinch-off, one predicts
the power law [1,2]

Rmin ¼ A

�
γ

ρ

�
1=3

ðtc − tÞ2=3; ð1Þ

where γ and ρ are the surface tension and the density of the
liquid, respectively.
Potential flow simulations and similarity theory [3–5]

confirm Eq. (1), with A ¼ 0.717… a universal constant
[4–6]. The profile near the pinch point converges toward a
double cone, one set inside the other with opening angles of
18° and 112° [4,7] [cf. Fig. 3(c) below]. This means that
eventually the profile must overturn [3,4,8], as indeed seen
in the last stages of pinch-off, shown in the last two panels
of the simulations shown in Fig. 1. It is expected that the
above potential flow theory applies as long as the viscous
length scale lν ¼ ν2ρ=γ is much smaller than Rmin [6,9],
where ν is the kinematic viscosity of the liquid. These

trends have been confirmed by experiment and simulation
[7,10,11], and Eq. (1) has been proposed as the basis of a
method to measure surface tension on a millisecond time-
scale [12,13].
However, a careful analysis of past measurements in the

inertial regime reveals a considerable variation of the
prefactor A. Some of the values found in the literature
are 0.45–0.5 [10], 0.55 [14], 0.57–0.68 [7], or 0.97 [15].

FIG. 1. High-speed image sequence (upper panel) of a drop of
water dripping from a faucet of 2 mm in radius. Lower panel:
numerical simulation of the same problem using the Basilisk
code, showing 2D cuts through the axis. Note the overturning of
the upper surface of the main drop in the last two frames. The
scale bar represents R0 ¼ 2 mm. The dimensionless time to
pinch-off τ ¼ ðtc − tÞ=t� is indicated on the top of the figure.
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Recently there has been a growing appreciation of the fact
that the approach to asymptotic power laws like Eq. (1) can
be slow [16–18], and may pass through one or several
transient regimes before the final universal regime is
reached.
One obstacle to resolving the inconsistency in the

measured values of A is that at the very last instant before
the breakup, the drop profile overturns [7,19]. As seen in
the cross sections produced from numerical simulation
(lower row of Fig. 1, 4th panel), the neck ends in a sharp tip,
which lies inside an indentation formed on the top of the
drop. The corresponding experimental image, taken from
the side, shows a projection onto the plane, which produces
a flat top of the drop, where overturning has occurred; the
end of the neck is obscured. This means that the neck radius
can only be measured before overturning, at a typical size
Rmin ≃ 5 μm [20].
Since the asymptotic value of A refers to the profile

having attained its final double cone shape after over-
turning occurs, conventional optical techniques are inca-
pable of determining its asymptotic value. To circumvent
these optical limitations, and to probe length scales well
below the optical resolution, Burton and Taborek [11]
measured the electrical resistance r through the drop,
whose main contribution comes from where the neck is
thinnest, and thus scales like the resistivity ρr of the
material, divided by Rmin. The resistance was found to
scale in accordance with Eq. (1) down to nanometer length
and nanosecond time scales. However, in order to calculate
Rmin from r, the shape of the interface is needed. An
approximate formula leads to a value of A ¼ 0.10 [11],
much smaller than the theoretical expectation or the result
of previous optical measurements.
In this Letter, to arrive at a definitive answer as to the

validity of the scaling law (1), we use a combination of
experiment (using both optical and electrical measure-
ments) and high resolution numerical simulations. We
show that the correct asymptotic value of A is unobservable
for all practical purposes. On the one hand, the initial
dynamics leaves its imprint and is slow to converge onto
Eq. (1). On the other hand, the effect of viscosity is felt even
if Rmin is greater than lν by several orders of magnitude, as
is usually the case, e.g., for water, with lν ¼ 14 nm.
Different liquids allow us to perform pinch-off experi-

ments with different ratios γ=ρ. We used decane from
Sigma Aldrich and highly ultrapure water from a Millipore
Milli-Q system. Surface tensions γ were verified independ-
ently using the pendant drop method (Kruss Easy Drop);
we used γwater ¼ 72 mNm−1 and γdecane ¼ 24 mNm−1. A
syringe pump (Harvard Apparatus) supplied the solutions
at the needle tip at a slow rate (needle tip radii: R0 ¼ 0.2
and 2 mm), so we can observe the detachment of a single
drop at a time.
A high-speed camera (Phantom V701, Vision Research)

equipped with a microscope tube lens (Microscope

objectives Zeiss, 4× to 10× magnification and Navitar
12×) recorded pinch-off events at up to 100 000 frames per
second with a spatial resolution as low as 1.6 μm=pixel. We
paid particular attention to a stable setup, and used micro-
scope objectives with very high contrast and low depth of
field. Drop profiles were extracted using a homemade
MATLAB routine, from which RminðtÞ was found.
The numerical technique used to simulate the pinch-off

of low-viscosity pendant drops is a variation of that
described in detail in Ref. [21]. It was previously applied
to study the effect of surface contamination on the
dynamics of pendant drops [22]. The main features of
the method are the use of an analytical mapping to convert
the numerical domain into a rectangular one and imple-
mentation of the Newton procedure to solve the nonlinear
system of equations needed for a fully implicit treatment of
the discretized equations. The numerical Jacobian required
by the method is built with the help of analytical functions
and the collocation matrix provided by the spatial discre-
tization of the mapped domain. With this method we can
accurately capture the dynamics of the pendant drops until
the appearance of overturning.
However, the analytical mapping fails after overturning

and, like the experimental optical measurements, cannot be
used to study the subsequent dynamics. Therefore, closer to
pinch-off and in order to compare with the electrical
measurements in the mercury liquid bridge experiment,
we used a numerical scheme based on a finite element
volume-of-fluid (VOF) method provided by the “Basilisk”
software [23]. It uses QUADTREES [24] to allow efficient
adaptive grid refinement of the interface close to the pinch-
off region (see Supplemental Material, Sec. A [25]).
The main results of our fluid pinch-off experiments are

presented in Fig. 2 for decane and water, using two different
capillary sizes to assess the influence of the initial conditions.
In the limit of slow dripping, the dimensionless parameters of
the experiment are the Bond number Bo¼ ρgR2

0=γ and the
Ohnesorge number Oh¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

lν=R0

p ¼ ν=
ffiffiffiffiffiffiffiffiffiffi
ρR0γ

p
. We calcu-

lated instantaneous values of A from the slope of
ðRmin=R0Þ3=2 ¼ A3=2τ as a function of the dimensionless

breakup time τ ¼ ðtc − tÞ=t�, with t� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3

0=γ
q

the capil-

lary time. This procedure does not involve a determination of
the extrapolated time to pinch-off tc for the determination of
the prefactor A, and therefore does not make an assumption
on the validity of Eq. (1).
Surprisingly, for both liquids, over the range 2 × 10−3 <

τ < 1 before overturning (indicated by a cross), the
prefactor varies nonmonotonically between 0.4 and 0.6.
In addition, our mapping simulations perfectly capture the
experimental variation of the prefactor in all the cases
presented here until overturning. To follow the dynamics of
thinning beyond the point of overturning, we used Basilisk
simulations, which agree very well with data before over-
turning. Although Rmin is still greater than lν by more than
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2 orders of magnitude, A starts to decrease on account of
viscous effects (as an example, see the case of Decane for
large capillary at τ ∼ 10−3 in Fig. 2). To confirm that the
drop of the prefactor as a result of viscous effects is
physical, we plot in Fig. 2(b) the prefactor A as a function
of the dimensionless time ðtc − tÞ=tν, where tν ¼ ν3ρ2=γ2

is the characteristic viscous timescale. We find that this
collapses the drop of the prefactor A for late times,
confirming the physical origin of this behavior. Thus even
for the smallest Ohnesorge numbers the prefactor never
reaches the asymptotic value of 0.70 reported in Ref. [10].
This observation is well confirmed in the Supplemental
Material [25], where we simulate two artificial liquids with
the same control parameters except for Oh, which is varied
by almost 1 order of magnitude (see Supplemental Material
[25], Sup. Fig. 3).
To see whether the asymptotic state can be seen

experimentally, we push our experimental investigation
closer to pinch-off by measuring the resistance of a mercury
bridge [see Figs. 3(a),3(b)]. We use mercury for its low
resistivity ρr and on account of its small viscous length
scale lν ¼ 4.2 × 10−10 m, even smaller than that of water.
Our electrical circuit consists of a voltage-biased voltage
divider [11]. A mercury capillary bridge is formed between
two copper electrodes (radius R0 ¼ 1 mm); the upper one
can be translated vertically with a step motor. A droplet of
volume V0 ¼ 5 μL of fresh mercury is deposited on the
lower electrode. Prior to measurements, the mercury sur-
face is cleaned with concentrated sulfuric acid (H2SO4).
To prevent any further oxidation of the superficial layer

of mercury with air during the capillary bridge breakup, the

entire setup is placed in a chamber flushed continuously
with pure nitrogen. In fact, we believe surface contamina-
tion to be of minor importance for the asymptotic regime,
as the new surface is created faster than impurities can
arrive [28]. The maximum bandwidth of our oscilloscope
(RTO 1024, Rohde and Schwartz) is limited to 2 GHz, with
a sampling rate of 10 × 109 samples/s. The high-frequency
response of our system is evaluated by bringing the two
copper electrodes together in the absence of mercury,
which gives a step function with a rise time of 300 ps.
The recorded oscilloscope data represent the output voltage
VsðτÞ of the voltage divider circuit [11], which decreases
as the fluid neck becomes thinner [cf. Fig. 3(b)]. The
resistance rHg of the mercury bridge is found from
rHg ¼ rscopeðV in=Vs − 1Þ, with rscope ¼ 50 Ω the internal
resistance of the scope and V in ¼ 1 V the tension supplied
by the voltage generator (see Supplemental Material [25]).
To compare the measured r to numerical simulation, we

numerically calculate the current flow through the com-
puted profile, which is shown in Fig. 3(c) for different
values of Rmin and compared to the profile of the inviscid
similarity solution [5]. At Rmin ¼ 10−4 the computed
profile comes very close to the similarity profile, but then
overshoots to form an even larger angle than predicted on
the drop side. To compute the resulting electrical resistance,
we solve Laplace’s equation inside the liquid, with
Neumann boundary conditions on the surface [29] (see
Supplemental Material, Sec. B [25] for more details). The
resulting dimensionless resistance is shown in Fig. 3(d),
and indeed continues to evolve down to the smallest scales
considered. Owing to the continuous evolution of the

(a)

(b)

FIG. 2. (a) Prefactor A as a function of the dimensionless time to pinch-off τ for water and decane for different values of the capillary
size R0, the Ohnesorge number Oh, and Bond number Bo. Symbols indicate experimental results whereas solid lines were obtained from
two different simulation techniques: mapping (red) and Basilisk (black). After a nonmonotonic variation, A reaches a maximum value
and starts to decrease on account of viscous effects. The theoretical prediction for A is depicted as a horizontal dashed line. (b) The
prefactor A is plotted as a function of the characteristic viscous dimensionless timescale ðtc − tÞ=tν: all the curves (from basilisk
simulation) collapse into a single master curve for late times, showing that the drop of the prefactor results from viscous effects.
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self-similar profile, the resistance does not converge to the
value r ¼ 1.51ρr=Rmin found for the inviscid similarity
solution, and is considerably higher than r ¼ 0.97ρr=Rmin
estimated in Ref. [11]. We therefore compare directly the
simulated resistivity with that obtained by the experiment.
The electrical setup is coupled to the fast camera,

triggered by the oscilloscope of the breakup event; this
allows us to compare electrical with optical measurements
in the same experiment. The optical measurement works
over the range 0.05 ms < t < 0.1 s and 10 μm <
Rmin < 1 mm, while the electrical measurements have
much higher resolution: 1 ns < t < 0.7 μs and 10 nm <
Rmin < 10 μm. Our electrical resistance measurements are
presented in Fig. 3(e) and show quantitative agreement with
the simulation on timescales well below any where such a
comparison has been made so far. Only farther away from
pinch-off does our resistance measurement deviate from
simulation, as other electrical resistance effects start come
into play when the resistance is no longer dominated by the
neck region alone. However, for longer times we can use
the optical measurement done in the same experiment; these
also agree perfectly with the simulations [cf. Fig. 3(f)].
The electrical experiments alone do not allow us to unam-
biguously show the nonuniversality since the neck shape
is not known a priori. The simulations do provide the neck
shape and by comparing to the experiment these allow us to
unambiguously determine the radius at each time and there-
fore the prefactor A. The agreement with the experiments

provides the necessary evidence that the numerics work well.
Thus, taken together, the measurements and simulations give
the results for the prefactor A over a large range of length
scales and timescales [see inset of Fig. 3(f)]. The comparison
also shows that for low viscosity fluids such as mercury
(Oh ¼ 6.0437 × 10−4), the prefactor remains close to the
purely inviscid prediction until the effects of viscosity come
into play.
In conclusion, we study drop pinch-off in cases where

the inner (viscous) length scale is 5 (water) or 7 (mercury)
orders of magnitude greater than the outer length scale R0,
both experimentally and computationally. We find that the
dimensionless prefactor A exhibits a complex, nonmono-
tonic behavior over many orders of magnitude in time,
measured relative to the breakup time. We never found the
prefactor to fully reach the asymptotic value of A ¼ 0.717.
This indicates the existence of very slow transients, similar
to transients reported for more viscous fluids [17,18].
However, in those experiments the theoretical value of
the prefactor is reached eventually both for the viscous and
viscous-inertial regimes [18], indicating that in our experi-
ments the inertial transients are even slower and the
asymptotic value is not even reached for nanometric length
and nanosecond time scales; for smaller length scales and
timescales one may even wonder whether a continuum
hydrodynamics description remains valid. Apart from the
fundamental interest, the full understanding of the slow
time dependence of A is crucial to measure the dynamic

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Breakup dynamics of a mercury bridge (Oh¼ 6.0437 × 10−4) from the millimeter to the nanometer scale. (a) Electrical
resistance of a mercury capillary bridge between two electrodes as function of time. The upper electrode moves upwards, initiating
breakup; the bridge’s spatial profile is recorded simultaneously using high-speed imaging. (b) Typical measurement of voltage Vs over
the divider circuit as a function of time during the breakup process (note the nanometer timescale); at breakup (denoted here as t ¼ 0) the
voltage decreases suddenly. This is used to trigger fast imaging. (c) The shape of the liquid bridge RðzÞ is computed from a Basilisk
simulation, allowing us to calculate the resistance r of the filament in time. (d) The resistance as function of minimum radius, compared
to the asymptotic value of the inviscid solution, and the estimate by Burton and Taborek. (e) The measured resistance of the liquid bridge
data is well described by the simulations very close to the pinch-off point. (f) The dynamics of thinning of the liquid bridge before
overturning recorded by imaging techniques is also well captured by Basilisk simulations. In inset, the prefactor A of mercury is plotted
as a function of the dimensionless time to pinch-off τ.
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surface tension of liquids: if one wishes to determine this,
one has to take into account that fluid and system
parameters play an important role.
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