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We consider a suspension of noninteracting flat elastic particles in a Newtonian fluid. We model a flat
shape as three beads, carried along by the flow according to Stokes law, and connected by nonlinear
springs, chosen such that the energy is quadratic in the area. In analogy with common dumbbell models
involving two beads connected by linear springs, we solve the stochastic equations of motion exactly to
compute the constitutive law for the stress tensor of a flat elastic particle suspension. A lower convected
time derivative naturally arises as part of the constitutive law, but surprisingly the rheological response in
strong extensional and strong contracting flows is similar to that of the classical Oldroyd-B model
associated with dumbbell suspensions.
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The presence of elastic particles (e.g., high molecular
weight polymers), is known to profoundly change the flow
properties of complex liquids [1–3], such as blood, saliva,
and many other biological and manmade substances. For
example, the extensional flow accompanying the breakup
of a liquid drop leads to the formation of long and thin
threads, caused by the stretching of molecules in the flow
[4–6]. To model such behavior, the equations of fluid
motion are usually augmented with an extra, “polymeric”
or “particle” contribution σp to the stress tensor, found by
solving an additional constitutive equation, which couples
the evolution of σp to the flow [1,7].
The derivation of such an equation using a realistic

molecular description of a polymer has not been achieved.
Instead, most constitutive equations have their basis in
phenomenological models consistent with the invariances
of the system as well as with thermodynamics, allowing for
adjustable parameters to account for specific properties of
the system [8,9]. In particular, Oldroyd [10] pointed out
that for the description to be independent of the choice of
coordinate system (known as frame invariance), the ordi-
nary convected time derivative of the stress tensor has to be
augmented with extra terms, which can only take two
distinct forms: the upper-convected and lower-convected
derivatives (and linear superpositions thereof). However,
without reference to a specific microscopic system, the
phenomenological approach does not reveal which frame-
invariant derivative to use, although the rheological
responses can be very different.
To address this, highly simplified model systems (known

as dumbbell models, seen on the left of Fig. 1) have become

very popular. They consist of two spherical beads, con-
nected by a (harmonic) spring; their state is thus defined by
the vector l ¼ r1 − r0 alone. If both beads are convected
passively by the flow, the material time derivative l̇ (which
we denote by a dot) is vðr1Þ − vðr0Þ; assuming that the flow
varies on scales much larger than the particle size, we can
expand v into a Taylor series to find to lowest order:

l̇ ¼ l ·∇v; ð1Þ

FIG. 1. Left (dumbbell model): Two beads, separated by a
length vector l, connected by a linear spring. Right (minimal flat
elastic particle model): Three beads define a vector a ¼ l1 × l2

normal to the plane of a triangle with surface area jaj=2 that
mimics a flat particle. An energy E ¼ Ka2=2 is produced by three
identical nonlinear springs that connect each bead along the
triangle’s heights to the bases as shown. Spring constants are
proportional to the square of the corresponding base lengths.
Thus, for triangle sides as labeled here, springs connected to
beads at r0, r1, and r2 have spring constants Kjl1 − l2j2, Kjl2j2,
and Kjl1j2, respectively.
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with the strain rate tensor ð∇vÞαβ ¼ ∂αvβ and α; β ¼ x, y, z.
Using this together with Stokes drag law [11], and adding
thermal noise, the thermal average of the polymeric stress
yields the Oldroyd-B model [2], which has become an
almost canonical description of a polymeric fluid [3], and
which contains the upper-convected derivative only.
However, depending on the geometry of the immersed
particles, the lower-convected derivative should generically
come in as well [12].
In order to improve our intuition, and to expand the

lexicon of distinct rheological models with an explicit
microscopic underpinning, we develop in this letter an
exactly solvable particle model that only contains the
lower-convected derivative as part of its constitutive equa-
tion. According to long-established intuition [13], and
supported by a recent penetrating analysis of ellipsoidal
particles [14], our model involves ideally flat geometries,
that are deformed by the flow. As a convenient abstraction,
we consider three nearby Stokes beads (see Fig. 1, right)
and two vectors l1 ¼ r1 − r0 and l2 ¼ r2 − r0 that
uniquely define an “area vector”

a ¼ l1 × l2; ð2Þ

which is normal to the plane of the beads, and whose
modulus is twice the area of the triangle defined by
the beads.
In this Letter, we proceed by first deriving an equation of

motion for the area vector a [Eq. (4)], which represents the
kinematics of a flat particle in flow. When deriving the
equation of motion for a suitable fabric tensor that encodes
thermally averaged states of such particles, this kinematics
naturally leads to a lower convected derivative [Eq. (15)].
Finally, by deriving the stress contributions that are due to
the flat particles’ elasticity and expressing them in terms of
the fabric tensor [Eq. (19)], we arrive at a closed set of
constitutive equations for a dilute suspension of flat elastic
particles.
If each of the vectors l1 and l2 evolves according to (1),

we find that ȧ ¼ l̇1 × l2 þ l1 × l̇2 ¼ l1 ·∇ðv × l2Þþ
l2 ·∇ðl1 × vÞ. Using the vector identity [15]

l1 ·∇ðv × l2Þ þ l2 ·∇ðl1 × vÞ ¼ −ð∇vÞ · ðl1 × l2Þ;
ð3Þ

which holds for ∇ · v ¼ 0, it follows that in an incom-
pressible flow the area vector obeys

ȧ ¼ −a · ð∇vÞ⊤; ð4Þ

instead of (1) for a length vector, as expected from the
dynamics of a surface area element [16].
We now calculate the contribution σp of a flat elastic

particle suspension to the stress tensor, which is usually
done in two steps [2,17]: first, one derives the equation of

motion for a “fabric tensor,”which characterizes the state of
the suspended particle. Second, the stress is calculated
from the fabric tensor by a constitutive relation. As shown
in [14], the equation of motion for a fabric tensor
L ¼ clhl ⊗ li, appropriate for a linear dumbbell (where
h·i denotes a thermal average), automatically involves the
upper-convected derivative. On the other hand, in deriving
the equation of motion for a fabric tensor A ¼ caha ⊗ ai
(constants cl and ca serve to make fabric tensor dimen-
sionless), based on our flat particle model (see Fig. 1, right),
we now show that the upper-convected derivative is
replaced by the lower-convected derivative.
According to Stokes law [11], the motion of a bead ri

relative to the fluid equals the force Fi, divided by the drag
coefficient ζ ¼ 6πηrb, where η is the fluid viscosity, and rb
the radius of a bead:

ζðṙi − vðriÞÞ ¼ Fi ≡ −∂riEðaÞ; i ¼ 0; 1; 2: ð5Þ
For simplicity, we focus on the deterministic part of the
equation, and add thermal noise later. From now on, we
assume a quadratic energy Eðl1;l2Þ ¼ Ka2=2. We present
a possible mechanical realization of this energy below (see
Fig. 1, right). Because of the translational invariance of
Eðl1;l2Þ, the particle dynamics separates into the motion
of its center of mass rc ¼ ðr0 þ r1 þ r2Þ=3 (which is
immaterial), and equations of motion for li, where
r0 ¼ rc − ðl1 þ l2Þ=3, r1 ¼ rc þ ð2l1 − l2Þ=3 and r2 ¼
rc þ ð2l2 − l1Þ=3. Thus transforming to li derivatives
and expanding vðriÞ − vðr0Þ ≈ ðri − r0Þ ·∇v as before, one
finds

l̇1 ¼ l1 ·∇v −
1

ζ

�
∂E
∂l2

þ 2
∂E
∂l1

�
; ð6Þ

and similarly for l2 via a permutation 1 ↔ 2. Equation (6)
is a generalization of (1), describing the slip of beads
relative to the flow, as a result of interbead forces.
Using that

E ¼ Kðl2
1l

2
2 − ðl1 · l2Þ2Þ=2; ð7Þ

one finds

∂E
∂l1

¼ Kðl1l2
2 − l2l1 · l2Þ ð8Þ

(and correspondingly for l2), so that the last term in (6)
reads

∂E
∂l2

þ 2
∂E
∂l1

¼ l1ð2l2
2 − l1 · l2Þ þ l2ðl2

1 − 2l1 · l2Þ:

ð9Þ
Then from the product rule ȧ ¼ l̇1 × l2 þ l1 × l̇2, and
repeating the calculation leading to (4), we arrive at

ȧ ¼ −a · ð∇vÞ⊤ −
9KR2

ζ
a: ð10Þ
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Here, R2 ¼ 2½l2
1 þ l2

2 − ðl1 · l2Þ�=9 denotes the mean-
squared distance of the three beads to the center of mass rc
and is thus a measure of the flat particle’s size [15]. In order
to make (10) amenable to a statistical analysis in analogy
to the classical dumbbell model [2], we assume a size-
dependent bead drag ζ ¼ 9R2ζa (ζa a constant), which
makes (10) linear in a. This assumption is consistent with
the expectation of how elastic membranes interact with
surrounding shear flow [18], which is in itself a challenging
problem that has been studied in various contexts [19–23].
While mechanistically, the assumed drag could, in princi-
ple, be realized using beads that adjust their sizes appro-
priately, it also illustrates crucial subtleties that are involved
in the modeling of flat particles and their interaction
with flow.
Adding thermal noise to the area vector dynamics [24],

we arrive at

ζaðȧþ a · ð∇vÞ⊤Þ ¼ −Kaþ ξ; ð11Þ

where ξ denotes fluctuations around equilibrium with
hξi ¼ 0 and hξαðtÞξβðt0Þi¼2kBTζaδαβδðt− t0Þ. The corres-
ponding Fokker-Planck equation for the probability dis-
tribution Pða; tÞ to find a particle with area vector a at time t
then reads [24]

∂P
∂t

þ ∂

∂a
· J ¼ 0; ð12Þ

where the probability current is given by

J ¼ −a · ð∇vÞ⊤P −
K
ζa

aP −
kBT
ζa

∂aP: ð13Þ

The thermal average to compute the fabric tensor is given
by A ¼ ca

R
a ⊗ aPða; tÞda, such that the dynamics of the

fabric tensor can be determined from the material derivative

1

ca

dAαβ

dt
¼
Z

aαaβ∂tPda¼
Z

ðδαγaβ þ δβγaαÞJγ da; ð14Þ

having used (12) and then integrated by parts. Inserting (13)
into (14), the first two terms on the right of (13) are
expressible directly in terms of Aαβ, the last term, integrat-
ing once more by parts, and using that P is normalized,
yields a constant. Thus the equation of motion (14) for the
fabric tensor, our first main result, becomes

A
▵

¼ −
2K
ζa

Aþ 2cakBT
ζa

I≡ −
1

λ
ðA − IÞ; ð15Þ

where

A
▵ ≡ ∂A

∂t
þ v ·∇Aþ ð∇vÞ · Aþ A · ð∇vÞ⊤ ð16Þ

is the lower-convected derivative, and I the unit tensor. Here
λ ¼ ζa=ð2KÞ is a relaxation time of a suspended particle,
and ca ¼ K=kBT has been chosen to makeA relax toward I
in equilibrium [17]. As anticipated, (15) is the exact analog
of the equation for the fabric tensor L of a dumbbell, but
written with the lower-convected derivative.
To compute the particle stress tensor σp ≡ σa coming

from our arealike elastic particles in the dilute limit, we use
the Kirkwood formula [25]

σa ¼ −ρ0
X2
i¼0

hri ⊗ Fii ¼ ρ0
X2
i¼1

�
li ⊗

∂E
∂li

�
; ð17Þ

where ρ0 is the number density of three-bead particles. In
reducing to a sum over internal forces in the second step,
we have used that the model flat particle is force-free, such
that F0 ¼ ∂l1

Eþ ∂l2
E, F1 ¼ −∂l1

E, and F2 ¼ −∂l2
E.

With Eðl1;l2Þ as given in Eq. (7), the stress tensor
becomes

σa ¼ ρ0Khl1 ⊗ l1l2
2 þ l2 ⊗ l2l2

1 − 2l1 ⊗ l2l1 · l2i;
ð18Þ

and using the Levi-Civita tensor product identity for
ϵαβγϵδϵκ on A ¼ cahðl1 × l2Þ ⊗ ðl1 × l2Þi yields

σa ¼ μ½ITrðAÞ − A�; ð19Þ

our second main result; here μ ¼ ρ0kBT is an elastic
constant. Crucially, σa is not simply proportional to the
fabric tensor, as would be the case for Oldroyd models A or
B, but contains an extra term involving the trace of A. It is
straightforward to show [15] that the total stress in Eq. (19)
corresponds to a particular case of Oldroyd’s 8-constant
model [1].
Finally, to complement model equations (15) and (19),

the velocity field satisfies the momentum balance

ρð∂tv þ v ·∇vÞ ¼ −∇pþ∇ · σa þ η△v; ð20Þ

where ρ is the density, and η the viscosity of the solvent.
To illustrate the consequences of (19), let us calculate σa

for the two-dimensional extensional flow

u ¼ ϵ̇x; v ¼ −ϵ̇y; ð21Þ

which is stretching at a rate ϵ̇ in the x direction, and
compressing in the y direction. Then the dynamics of the
corresponding diagonal components of A follow from
Eq. (15) as

Ȧxx ¼ ð−2ϵ̇ − λ−1ÞAxx þ λ−1; ð22Þ

Ȧyy ¼ ð2ϵ̇ − λ−1ÞAyy þ λ−1; ð23Þ
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while for the fabric tensor L of dumbbell particles, whose
dynamics are written with an upper-convected derivative,
the signs of strain rate contributions are reversed:

L̇xx ¼ ð2ϵ̇ − λ−1ÞLxx þ λ−1; ð24Þ

L̇yy ¼ ð−2ϵ̇ − λ−1ÞLyy þ λ−1: ð25Þ

Thus for ϵ̇ > λ−1=2, Lxx grows exponentially following the
stretching of the flow, while the lower-convected derivative
implies that Ayy grows, in the direction in which the flow is
contracting [5].
In the Oldroyd-A model, the particle stress is given by

σp ¼ −μðA − IÞ, while for the Oldroyd-B model, σp ¼
μðL − IÞ (and stress from solvent viscosity is to be added).
This means the Oldroyd-B model faithfully describes the
buildup of stress in the spring of a dumbbell, as the two
beads are convected by the flow (cf. Fig. 1, left). The
Oldroyd-A model, on the other hand, describes the rather
less intuitive situation of stress building up in a direction
orthogonal to the stretching. This prediction of the
Oldroyd-A model is, however, in stark contrast to our
present finding for the behavior of idealized flat particles:
Because the stress σa in Eq. (19) is not simply proportional
to A, but contains an additional trace contribution, the
stress in the extensional direction follows

σaxx ¼ μðTrðAÞ − AxxÞ ≈ Ayy ∝ A0
yyeð2ϵ̇−λ

−1Þt; ð26Þ

and once more grows exponentially. Thus, surprisingly, the
behavior of our flat elastic particle model is similar to that
of a classical dumbbell model, even though the fabric
tensor dynamics is given in terms of a lower-convected
derivative. The two models, however, remain distinct. In an
axisymmetric extensional flow, as it arises during the
pinch-off of a polymeric thread [4,5], the buildup of axial
stress is weaker in our flat particle model then in the
dumbbell model. As a result, no uniform thread is formed,
as is observed during the pinching of solutions of elastic
polymers [4,5,26]. On the other hand, the response of our
model to a simple shear flow of rate γ̇ is identical to that of
the Oldroyd-A model: the first and second normal stress
differences are N1 ¼ −N2 ¼ 2μλ2γ̇2 [1].
In conclusion, we have constructed an exactly solvable

microscopic model for a dilute suspension of flat elastic
particles, whose coarse-grained dynamics is described by
the lower-convected derivative. Nevertheless, the rheologi-
cal properties of this suspension are remarkably similar to
those of conventional linear “dumbbell” particles.
In fact, even though this is assumed widely [12], it is

very difficult to realize a flat particle model that would give
rise to the Oldroyd A model macroscopically, and in which
stress builds up orthogonally to the direction of an exten-
sional flow. The reason is that elastic forces in an overall
force- and torque-free flat particle must be acting within the

plane of that particle. This precludes the possibility of
stresses being generated in the direction normal to the
particle’s surface, which would be required to achieve the
Oldroyd A-like rheological properties described above.
A mechanical realization of the flat elastic particles

introduced in this model is depicted in Fig. 1 (right): three
identical nonlinear springs with vanishing rest length
connect beads along the triangle’s heights to each base
and have spring constants proportional to the square of the
corresponding base lengths. For example, the force F1 ¼
−∂l1

E acting on the bead at r1 can, according to (8), be
written as

F1 ¼ −Kl2
2P

⊥
2 · l1; ð27Þ

where P⊥
2 ¼ I − ðl2 ⊗ l2Þ=l2

2 is a projection that extracts
the component of l1 that is orthogonal to l2. Therefore, F1

is parallel to the height that originates at r1 and passes
through the base l2. From (27), we can identify the spring
constant Kl2

2. Similar arguments apply for the elastic
forces F2 and F0 ¼ −F1 − F2 acting on the beads at r2
and r0, respectively. More general microscopic particle
models can be considered, for example, by using both
length and area vectors as geometric building blocks.
Similarly, it would be interesting to study the nonlinear
dynamics and many-body effects in such a family of
minimal particle models in numerical simulations.
Finally, it would be interesting to explore the implica-

tions of our results for rheological measurements of red
blood cell suspensions [27–29], flat objects whose
mechanical properties have previously been interpreted
using insights from Oldroyd-B models.
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