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A prototypical problem in the study of wetting phenomena is that of a solid plunging into or being
withdrawn from a liquid bath. In the latter, dewetting case, a critical speed exists above which a three-
phase contact line is no longer sustainable and the solid can no longer remain dry. Instead, a liquid film
is being deposited on the solid. Demonstrating this transition from a dry to a wetted solid to be of
hydrodynamic origin, we provide the first theoretical explanation of a classical prediction due to
Derjaguin and Levi: instability occurs when the outer, static meniscus approaches the shape corre-
sponding to a perfectly wetting fluid. Our analysis investigates the conditions under which the highly
curved contact line region can be matched to the static profile far away from it.
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FIG. 1. A plate is being withdrawn from a liquid bath with
speed U at an angle �. If the speed is below a critical value Uc,
the fluid forms a contact line with the solid, at which the slope
of the interface is �e. Above Uc, the solid is wetted by a
macroscopic film, whose thickness is governed by the classical
theory of Landau, Levich, and Derjaguin (LLD) [4,5].
The forced wetting or dewetting of a solid is an im-
portant feature of many environmental and industrial
flows. In typical applications such as painting, coating,
or oil recovery it is crucial to know whether the solid will
be covered by a macroscopic film or not. If a solid is being
withdrawn from a liquid bath (dewetting, see Fig. 1), a
contact line is observed only for low speeds, in which case
the solid remains dry (top diagram). If, however, a criti-
cal speed Uc is exceeded [1,2] (typically a few cm/sec),
the contact line is no longer stable and a macroscopic film
is deposited on the solid (bottom diagram). This is in
marked contrast to a solid plunging into a liquid (wet-
ting), in which case the velocity can be quite high (m/
sec), while still maintaining a contact line [3].

The thickness of the wetting film shown in the bottom
diagram of Fig. 1 is set by a balance of viscous forces and
surface tension, which counteracts the viscous pull, as
described 60 years ago by Landau, Levich, and Derjaguin
(LLD) [4,5]. Lowering the speed once more, the LLD film
is sustained down to much lower speeds than Uc until the
film thickness corresponds to the range of intermolecular
forces [2]. In this Letter, we will present a quantitative
theory for the maximum speedUc for which the solid can
remain dry, based on a detailed description of the flow
near the three-phase contact line.

It is well known [6,7] that viscous forces become very
large near a moving contact line, and are controlled only
by some microscopic cutoff �, for example, a slip length
[6,8]. As a result of the interplay between viscous and
surface tension forces, the interface is highly curved, and
the interface curvature � at the contact line is set by ��1

and increases with speed. The contact line speed U is
properly measured by the capillary number Ca � U�=�,
where � is the viscosity of the fluid and � the surface
tension between fluid and gas. Below we will show that
� / Ca1=3=�.

Away from the contact line, on the other hand, viscous
forces are negligible, and the meniscus shape is set by the
competition between surface tension and gravity [4,5].
0031-9007=04=93(9)=094502(4)$22.50 
The scale of this static profile is thus set by the capillary
length, ‘c �

����������������
�=�	g�

p
, and its shape is determined by the

apparent contact angle �ap the interface makes with the
solid on a macroscopic scale. If the solid is at rest, �ap is
the same as the equilibrium angle �e at the three-phase
contact line between liquid, solid, and gas [9]. If the solid
is however pulled away from the liquid, interface bending
causes the angle �ap, measured macroscopically, to fall
below �e.

It was first proposed by Derjaguin and Levi [10], and
later reiterated by others [11], that the contact line dis-
appears if �ap reaches zero. This notion was confirmed
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experimentally [1] by measuring the height of the me-
niscus around a fiber being withdrawn from a liquid.
Another important set of experimental observations
[12] was performed by displacing fluids of different vis-
cosities and equilibrium contact angles �e from a capil-
lary tube by pushing air into the tube: below a critical
speed the tube was left dry, above it a fluid film was
deposited on the walls of the tube. It was found that this
critical speed corresponds to Ca=�3e exceeding a critical
value, strongly pointing to a hydrodynamic mechanism
for the instability.

In this Letter, we show that the existence of the contact
line is determined by the interplay between the small-
scale fluid motion near it (contact line region), and the
static interface profile away from it (static region).
Namely, the interface profile of the contact line region
has to match onto the static profile, whose curvature is of
order ‘�1

c . Since the curvature of the contact line region
increases with speed, above a critical capillary number
the contact line curvature will be too high for such a
matching to be possible. This argument will enable us
to explain the Derjaguin-Levi criterion of vanishing ap-
parent contact angle from fundamental hydrodynamic
principles.

We now turn to the geometry of Fig. 1 in more detail,
but for the purpose of mathematical analysis restrict
ourselves to the case of small angles � and �e. In this
regime of small slopes, the equations of motion simplify
considerably, since the flow field can be effectively elim-
inated from the problem [9,13], leading to an equation for
the thickness h�x� (see Fig. 1) of the fluid film alone. It is
well appreciated that this so-called lubrication approxi-
mation works very well in describing the interface profile
near the contact line, faithfully describing experiments
up to angles of about 100 � [14].

To relieve the corner singularity at the moving contact
line, we allow the fluid to slip across the solid surface,
using the Navier slip law [8]

ujy�0 �U � �
@u
@y

��������y�0
(1)

at the plate. The resulting lubrication equation for the
interface shape h�x� then is [13]

3Ca

h2 � 3�h
� h000 � h0 � �; (2)

where we consistently used the small-angle approxima-
tion tan��� 
 �, and lengths are nondimensionalized with
the capillary length ‘c.

The left hand side of (2) corresponds to viscous forces,
diverging as the contact line position h�0� � 0 is ap-
proached, but weakened by the presence of slip. Close to
the contact line, viscous forces are balanced by surface
tension forces (first term on the right), resulting in a
highly curved interface near the contact line. The other
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two terms stem from gravity and only come into play at
greater distances. As the simplest possible case, we also
assume that the microscopic angle at the contact line
h0�0� � �e is independent of speed. Far away from the
interface, the surface coincides with that of the liquid
bath, so the third boundary condition is h0�1� � �.

We now examine the contact line region and the static
region in turn, to investigate the conditions under which
they can be matched. Near the contact line, where h is
small and the interface is highly curved, the left hand side
of (2) is balanced by the first term on the right.
Momentarily forgetting about slip as well, (2) reduces to

h000 � 3Ca=h2; (3)

whose solution can be expressed in terms of Airy func-
tions [15]. This exact solution provides us with the key to
understanding the fundamental difference between the
case Ca> 0, investigated here, and Ca< 0, which would
correspond to the solid plunging into the liquid. Namely,
if Ca< 0 (wetting), (3) has a solution whose curvature
vanishes for x=�� 1, so it can be matched onto the static
solution. If, on the other hand Ca> 0 (dewetting), the
interface curvature predicted by (3) cannot fall below a
lower bound. If this lower bound becomes too large as
speed increases, the outer (static) meniscus can no longer
accommodate the mismatch in curvature, and the contact
line must disappear.

Namely, dewetting solutions of (3) (i.e., Ca> 0) main-
tain a finite curvature h00�x� at large distances x=�� 1
from the contact line [15]:

�1 � �3Ca�1=3
�
21=6�
�Ai�s1�

�
2
> 0; (4)

where s1 is the largest root of

�Ai�s1� � �Bi�s1� � 0; (5)

and Ai;Bi are Airy functions.
The constant � can be determined by matching the

solution of (3) to the cutoff region x 
 �, where one finds
h0�x� 
 
9Ca ln��=�22=3�2x���1=3. Comparing this to the
first order expansion of the full Eq. (2) near the contact
line [8,16],

h0�x� � �e �
3Ca

�2e

1� ln�x�e=���; (6)

we find �2 � ��e=3�� exp
��3e=�9Ca���=22=3 �O�Ca�.
The matching described here was investigated in greater
detail for the wetting case in [16]. We found that higher
order corrections in Ca were surprisingly weak, and de-
pended only very little on the type of cutoff used at the
contact line. Thus, we are confident that the same holds
true in the present case.

Among all possible interface profiles near the contact
line, the one with the smallest possible curvature (4) is of
special significance, since it matches best onto the static
094502-2
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outer solution, whose curvature is of order one. From (4) it
is seen that minimum curvature corresponds to the con-
dition that Ai�s1� must be maximal among solutions of
(5). By choosing � � �cr � ��Bi�smax�=Ai�smax� we
can in fact ensure that Ai assumes its global maximum
0:535 66 . . . , which occurs for s � smax � �1:0188 . . . .
Thus we have singled out a unique solution of (3) which
minimizes the curvature

�cr1 �
Ca1=3�e

�
exp
��3e=�9Ca��

181=3�
Ai�smax��
2
; (7)

the value (7) of which increases with capillary number as
expected.

Now we turn to the static part of the meniscus, which
follows from (2) in the limit of vanishing speed Ca � 0.
The solution for the slope is

h0�x� � �� ��ap � ��e�x; (8)

which still contains the apparent contact angle �ap as a
parameter. The curvature at the contact line is h00�0� �
�� �ap; thus, the largest curvature � which is physically
realizable is achieved if the apparent contact angle is zero.

To construct a complete solution, we have to match the
local solution near the contact line (inner solution) to the
static solution (8) (outer solution). This means that the
curvature �1 the inner solution attains for x=�� 1 must
be the same as the curvature �� �ap of the outer solution
at the position of the contact line. As illustrated in Fig. 2,
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FIG. 2. The full line marks the critical capillary number
Cacr above which no contact line exists, as determined by
numerical integration of Eq. (2) for � � �e � 1. The dashed
line is the prediction of the present theory, �cr1 � �. Below
Cacr, the curvature of the inner and the outer solution has an
overlap region, so they can be matched. Above Cacr no such
solutions exist.
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for capillary numbers below a critical one there is an
overlap in curvature between the two solutions.
Increasing Ca above this critical value Cacr, �cr1 rises
above the maximum value � of the curvature the outer
solution can attain, and no contact line solution is pos-
sible. The critical value Cacr which separates the two
regions is thus given by �cr1 � � or

Ca cr �
�3e
9

�
ln
�

Ca1=3cr �e
181=3�
Ai�smax��

2��

��
�1
: (9)

The critical capillary number is proportional to �3e (with a
weak logarithmic correction), the constant of propor-
tionality depending on the inclination of the plate and
on the slip length. By contrast, the theory proposed by de
Gennes [17] is based on the local structure of the contact
line alone, and therefore misses any dependence on ge-
ometry. In a companion paper [16], we in fact show that
the local contact line structure used in [17] is an artifact
of the approximation being used.

For our procedure to be consistent, though, we need to
make sure that the inner and the outer solution have
sufficient spacial overlap to be matched. The inner and
outer solutions at Cacr are, in summary, h0crinner �
Ca1=3cr f�x�2� and h0crouter � ��1� e�x�, where f is a univer-
sal function given by the appropriate solution of (3). Thus,
if �2 � 1 the large-x=� limit of h0crinner overlaps with the
small-x limit of h0crouter, which translates into �� Ca1=3.

In Fig. 3 we show the result of a numerical integration
of (2) for � � 10 at the critical capillary number. The
interface slope follows the static solution perfectly almost
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FIG. 3. A comparison of the full solution at the critical
capillary number with the inner and outer solutions. We plot
the slope of the interface, so h0�0� � �e � 1 for the full
solution, and h0�0� � 0 for the outer solution, consistent with
the condition by Derjaguin and Levi. The other parameters are
3� � 10�4 and � � 10, so from (9) we obtain Cacr � 0:0191.
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up to the contact line, where it has to turn over, while the
static solution extrapolates to zero. Coming from the
interior, the inner solution describes the full profile
equally well up to the turning point. Note that there are
no adjustable parameters in Fig. 3; we simply took the
inner and outer solutions in the critical case. In fact, even
for � � 1, when there is not yet much overlap between the
inner and the outer solution, Eq. (9) already works ex-
tremely well in describing the loss of the stationary
solution, as shown in Fig. 2. Again, no parameter was
adjusted to achieve this comparison.

It is important to note that our approach is not limited
to the moving plate geometry studied here, nor is it
restricted to a specific contact line model, since it is based
entirely on hydrodynamic arguments away from the con-
tact line. We have used the simplest possible contact line
model, assuming the microscopic contact angle to be
independent of speed. If there are other sources of dis-
sipation at the contact line, in addition to viscous dissi-
pation in the bulk of the liquid, the microscopic angle will
be effectively speed dependent [18,19]. In the dewetting
case, it will be forced toward smaller values, leading to a
disappearance of the contact line at smaller speeds. If, for
example, van der Waals forces are dominant near the
contact line [20], the slip length � in (9) needs to be
replaced by

�������������������
A=�6���

p
=�6�e�, which is the microscopic

parameter characterizing the range of van der Waals
forces. Here, A is the Hamaker constant.

To generalize to a different geometry, one has to replace
(8) by the appropriate static solution for the problem at
hand. This is done almost trivially for the case of a
vertical wall [21], and easily extended [13] to the flow
in a narrow capillary, to be able to compare directly to
experiments [12]. Hocking [13] found that the present slip
theory correctly predicts Cacr=�

3
e to be a constant, but

overestimates this constant by a factor of 2, if reasonable
values for the slip length � are assumed. The materials
used in the experiment [12] have considerable contact
angle hysteresis, pointing to surface roughness. This
will tend to lower the critical speed for the appearance
of the Landau-Levich film [22]. New sets of experiments,
using the plate geometry, are under way to clear up these
questions [23].

Another important generalization is to higher dimen-
sional problems, in which the contact line does not re-
main straight. An instability toward inclined contact
lines was observed in [11], as well as in recent experi-
ments with drops running down an inclined plane [24]. To
explain the characteristic inclination angle of such a
contact line, one needs to identify a characteristic speed
of forced dewetting [11,25], which our present approach
effectively provides.
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In conclusion, in this Letter we explain the fundamen-
tal difference between a solid being withdrawn or plung-
ing into a liquid bath. We show that the maximum
capillary number for which a contact line can exist is
Cacr � A�3e, where A depends on geometry.

Special thanks are due to Petr Braun for numerous
insightful discussions. Daniel Bonn and Christophe
Clanet made very helpful comments on earlier versions
of this manuscript.

Note added.— I very recently became aware of a paper
[O.V. Voinov, J. Colloid Interface Sci. 226, 5 (2000)],
which proposes ideas similar to those of this Letter.
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[23] D. Quéré and M. Fermigier (private communication).
[24] T. Podgorski, J. M. Flesselles, and L. Limat, Phys. Rev.

Lett. 87, 036102 (2001).
[25] H. A. Stone, L. Limat, S. K. Wilson, J. M. Flesselles, and

T. Podgorski, Comptes Rendus Physique 3, 103 (2002).
094502-4


