
PHYSICS OF FLUIDS 26, 072104 (2014)

Post-breakup solutions of Navier-Stokes
and Stokes threads

J. Eggers
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW,
United Kingdom

(Received 26 September 2013; accepted 2 July 2014; published online 21 July 2014)

We consider the breakup of a fluid thread, neglecting the effect of the outside fluid
(or air). After breakup, the solution of the fluid equations consists of two threads,
receding rapidly from the point of breakup. We show that the bulk of each thread
is described by a similarity solution of slender geometry (which we call the thread
solution), but which breaks down near the tip. Near the tip of the thread the thread
solution can be matched to a solution of Stokes’ equation, which consists of a finger of
constant spatial radius, rounded at the end. Very close to breakup, the thread solution
balances inertia, viscosity, and surface tension (Navier-Stokes case). If however the
fluid viscosity is large (as measured by the dimensionless Ohnesorge number), some
time after breakup the thread solution consists of a balance of surface tension and
viscosity only (Stokes case), and the thread profile can be described analytically.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890203]

I. INTRODUCTION

The breakup of a piece of fluid into two is a generic occurrence in free surface flow, and is
relevant to the description of sprays, in printing, and for many other applications.1, 2 At the point of
breakup the continuum description breaks down, so it is not clear how to continue the solution across
the singularity, for example, when integrating the equations of fluid motion numerically. Here we
address this issue, by constructing a solution valid after breakup, which is the unique continuation of
the similarity solution describing the pinching of a Newtonian fluid thread asymptotically close to
breakup.2, 3 This similarity solution, representing a balance of surface tension, inertia, and viscosity,
has been confirmed both by experiment4, 5 and numerical simulations.6 However, when the thread
radius falls below a certain viscosity-dependent scale, the thread becomes sensitive to thermal noise,
leading to a more complicated structure of nested similarity solutions.7 Here we will only deal with
the deterministic equations, and will not address the issues of noise. We also neglect the effect of
any outer fluid, such as air.8

The problem of continuation has been resolved fully for the breakup of an axisymmetric, purely
inviscid fluid neck, in which case the pre-breakup similarity solution is controlled by a single length
scale.2, 9, 10 The same similarity description applies to the post-breakup solution, which was treated
in Ref. 11. Solutions of a similar type (namely, the recoil of an inviscid fluid wedge) had already been
considered in Ref. 12, using the method of similarity solutions. To solve the similarity equations,
one still needs to solve an irrotational flow problem with a free surface, but the time dependence has
been eliminated. If further assumptions on the slenderness of the initial fluid wedge are made, the
complexity of the problem reduces further, and analytical solutions are available, see, e.g., Ref. 13.

However, asymptotically close to breakup the assumption of inviscid flow always breaks down
and viscosity becomes important, even if it is small.2 For this reason, and to describe fluids with larger
viscosity, we need to consider viscous similarity solutions (Navier-Stokes and Stokes problems),
for which the radial length scale becomes asymptotically small compared to the axial scale,2 and
the profile is slender. We aim to find a post-breakup solution, which consists of two disconnected
pieces of fluid, each of which corresponds to a liquid thread receding rapidly from the point of
breakup. The technical problem that is encountered is that while the bulk of the thread is described
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by a similarity solution (of the same structure as the solution before breakup), the slenderness
assumption underlying the solution breaks down at the tip, where the profile must be rounded.

Difficulties of this type are encountered frequently in lubrication or long-wavelength problems,
for example, at the end of a drop,14 the rim of a liquid sheet,15 or at corners.16 A geometry similar to
that of receding thread also occurs in the case of two bubbles, coalescing in a viscous medium.17 In
Ref. 14, it was argued that in some cases, such as a drop hanging from a faucet, the end is effectively
in static equilibrium. Hence, it can be treated by supplementing the long-wavelength equations with
the full expression for the mean curvature. In Ref. 18, conditions introduced at the end point lead
to an unphysical finite-time singularity at the tip, after which the model description breaks down.
Another solution is needed near the end, to be matched to the long-wavelength model.

The continuation of the pre-breakup solution to times after rupture was first treated in Ref. 19
for the Navier-Stokes case. It was shown that each receding thread is again described by a similarity
solution, which satisfies the requirement that it has to match the pre-breakup solution away from the
pinch point. Since the geometry is slender, the problem is reduced to a set of ordinary differential
equations.3 However, an additional boundary condition is still missing at the tip, which in Ref. 19
was derived from a regularity condition, imposed on phenomenological grounds. This leads to a
unique solution of the similarity problem after breakup.

An alternative procedure has been used to treat the Navier-Stokes and Stokes problems,20 based
on the idea of a liquid quasi-spherical “blob” at the end of the thread, that picks up mass as the jet
retracts. Originally, this approach had been applied to inviscid problems.21–24 The “blob” solution
at the end is chosen so as to satisfy global mass and momentum conservation; however, this does
not determine the shape of the blob. In fact, we know that in the case of the inviscid post-breakup
solution,11 the end is part of the similarity solution, and not in quasistatic equilibrium. The spherical
shape used in Ref. 20 also does not match the similarity solution in the viscous thread; in addition,
the initial condition for the similarity solution will depend on the point where the two solutions are
patched together.

In the present paper we address the matching problem between the viscous, slender similarity
solution describing the bulk of the receding thread and the tip region, see Fig. 1. The overall shape of
the thread is shown in the inset. We show that at the tip we need to solve the full axisymmetric flow
problem. In a local frame of reference, the inertial contributions drop out, so one only has to solve
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FIG. 1. Inset: the receding thread as constructed in this paper for Stokes flow at a dimensionless time t′ = 0.1 after breakup.
Lengths are measured with respect to some externally prescribed scale r0. Main figure: a blowup of the radius function
h(z, t) near the tip. The dashed line is the self-similar solution to the long-wavelength equations (the thread solution), valid
away from the tip; its end is shifted by t′Zm relative to the tip position z′

ti p . The dotted line is a solution to the axisymmetric
Stokes equation (the finger solution), valid near the tip. They can be combined to construct a global solution (solid line).
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Stokes’ equation. As noticed in Ref. 15 for the case of a receding viscously dominated sheet, the
fluid swept up by the end leads to a spatially uniform increase in thickness, and does not collect into
a blob at the end of the thread. Thus the “inner solution” (in the language of matched asymptotics25)
consists of a finger receding at constant speed, and whose spatial scale increases linearly in time, as
well as uniformly in space (Fig. 1, dotted line). We will call this inner solution the “finger solution.”

The finger solution matches the similarity solution describing the receding liquid thread away
from the tip (Fig. 1, dashed line); this is known as the “outer solution” in matched asymptotics.
We will call this part of the solution the “thread solution.” The matching condition for the receding
thread results in the same tip condition already used in Ref. 19 for the construction of the similarity
solution, but in a more rigorous fashion. In addition, we now supply the correct solution on the scale
of the tip. The solid line is the global solution to the receding thread problem, obtained by combining
inner and outer solutions into a composite solution,25 as we will describe later on.

This paper is organized as follows: We begin with the case of a very viscous fluid, which means
that the dimensionless Ohnesorge number,2

Oh = η√
ρr0γ

, (1)

is very large. Here η is the fluid viscosity, ρ is the density, γ the surface tension, and r0 is a length
scale prescribed externally. Then excluding a short time after breakup, inertia can be neglected
everywhere, not just at the tip. As a result, the thread solution (outer solution) can be obtained
analytically, which simplifies the treatment.

Next we construct the finger (or inner) solution from Stokes’ equation with a free surface, and
show that it matches the outer thread solution. We then show that the same matching can be achieved
for the similarity solution with inertia (the Navier-Stokes case), which is generic in the sense that it is
always seen asymptotically close to breakup. Finally, we discuss possible experimental verification
of the observed scaling.

II. SELF-SIMILAR STOKES SOLUTION

To construct the similarity solution valid away from the tip, we first derive the long-wavelength
equations valid for a slender thread, which become particularly simple if inertia is neglected.2

The main complication in finding the pre-breakup solution lies in the appearance of a non-local
constraint,26, 27 which corresponds to the tensile force T(t) inside the fluid thread, see Ref. 28. In
Subsection II A we show, starting from the Stokes equation, that this force is zero after the thread
has broken, which is clear on physical grounds. This greatly simplifies the problem, and permits to
find a similarity solution in analytical form.

A. Slender thread description

Consider an axisymmetric piece of fluid which ends in a tip (see the inset of Fig. 1), at the apex
of which the local radius h(z, t) goes to zero. Without inertia, the interior of the thread is described
by Stokes’ equation, subject to a normal stress γ κn, where n is the outward normal to the surface;
κ is (twice) the mean curvature of the interface, given by

κ = 1

h(1 + ∂zh2)1/2
− ∂zzh

(1 + ∂zh2)3/2
(2)

for an axisymmetric surface. The expression (2) remains finite as the tip is approached. If σ is the
stress tensor, the equations can be summarized concisely by

∇ · σ = 0 in the thread, σ · n = −γ nκ on the surface. (3)

We follow the arguments of Ref. 29 to show that the tensile force vanishes in the configuration
shown in Fig. 1. Integrating ∇ · σ over a volume V bounded by the thread surface and a plane
perpendicular to the axis, we find from the divergence theorem and from the boundary condition
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that

0 =
∫

S
n · σd S =

∫
Cr (z)

n · σd S +
∫

O
n · σd S =

∫
Cr (z)

ez · σd S − γ

∫
O

nκd S, (4)

where Cr(z) is the cross section of the thread at z, and O is the open surface from Cr(z) to the end of
the thread.

It follows from the surface divergence theorem (see Ref. 30, p. 239) that∫
O

nκd S = −
∫

∂O
mds, (5)

where

m = er∂zh + ez

(1 + ∂zh2)1/2
(6)

is tangential to the surface O, and pointing away from V . Performing the line integral along the
circumference of O on the right-hand side of (5), the radial component of (6) drops out, and we
obtain ∫

O
nκd S = − 2πhez

(1 + ∂zh2)1/2
. (7)

Combining (4) and (7), we arrive at the exact relation29∫ h(z,t)

0
ez · σrdr = − γ ezh

(1 + ∂zh2)1/2
(8)

for the force balance on the cross section of the thread. Multiplying (8) by the basis vector ez, this
gives ∫ h(z,t)

0

(
−p + 2η

∂vz

∂z

)
rdr = − γ h

(1 + ∂zh2)1/2
, (9)

where p(r, z, t) is the pressure, and vz(r, z, t) is the axial component of the velocity.
In a region where the thread is slender we have, following Ref. 31, p. 887,

p(r, z, t) = γ /h − η∂zv0 + O(r2, r∂zh, ∂zh2), (10)

where vz(z, r, t) = v0(z, t) + O(r2). Thus performing the integral over the radius in (8) we have

h2

2

(
γ

h
− 3η∂zv0

)
= γ h,

where we have used that ∂zh � 1. In other words,

0 = γ h + 3η∂zv0h2, (11)

which is the standard result for a slender thread,2 but with vanishing tensile force T(t) = 0 on the
left-hand side. The equation of motion for h(z, t) is the statement of mass conservation:2

∂h

∂t
+ ∂z

(
v0h2

) = 0. (12)

To simplify (11) further, we pass from an Eulerian to a Lagrangian description, where z(s, t) is
the position of a fluid volume, labeled by s.2 With the transformations

∂z

∂s
= 1

h2
,

∂z

∂t
= v0, (13)

mass conservation (12) is satisfied identically. Introducing the Lagrangian profile h(z, t) = H(s, t),
(11) transforms into2

∂ H

∂t
= vη

6
, (14)

where vη = γ /η is the capillary speed. Equation (14) is the desired slender thread description in
Lagrangian variables.
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B. Thread solution

We begin with what will be the outer solution in our matching problem, describing the receding
thread, except for a small region near the tip. It is shown as the dashed line in Fig. 1. We write the
solution to (14) in the form of a similarity solution:

H = t ′r0χa(ζ ), ζ = s ′/t ′δ, (15)

where χa(ζ ) is the similarity function in Lagrangian coordinates; t ′ = vη(t − t0)/r0 is the dimen-
sionless time distance from breakup, and s ′ = (s − s0)/r3

0 the corresponding spatial variable. Here
r0 is a length scale prescribed externally, chosen the same as before breakup; s0 and t0 are the particle
label and the time, respectively, where breakup occurs. The two pieces of the post-breakup solution
are the mirror images of one another. Therefore, we will consider only the case ζ > 0. The main
difference from the pre-breakup solution is that t′ is chosen with the opposite sign, making it positive
for t > t0. The axial similarity exponent δ is as yet undetermined. Using (15), (14) transforms

χa − δζχ ′
a = 1/6, (16)

where the prime denotes the derivative with respect to the argument. The similarity equation (16)
has the solution

χa = χ−ζ 1/δ + 1/6, (17)

with χ− a constant of integration.
To find χ− and δ, we demand that (17) matches the pre-breakup solution:19 in the limit t′ →

0, both solutions have to coincide at some finite spatial distance � away from the pinch point. This
means that the similarity solution χa after breakup must have the same asymptotic behavior for ζ

→ ∞ as the similarity solution χb before breakup, found in Ref. 26. It was shown in Ref. 27 that the
only stable pre-breakup solution has the axial exponent δ0 ≈ 2.175, while the asymptotic behavior
is χb ≈ χmζ 1/δ0 , where χm = 1/(12(δ0 − 1)). For this to match to (17) for ζ → ∞, we identify
χ− = χm and δ = δ0, which determines all the free parameters of the post-breakup solution. In
summary, the profile of the post-breakup solution is

χa = χmζ 1/δ + 1/6, δ = 2.1748717 . . . . (18)

To calculate the velocity vm of the end of the thread, we note that using (13),

∂v0

∂s
= ∂(H−2)

∂t
= − 2

H 3

∂ H

∂t
= − vη

3H 3
. (19)

The end is located at ζ = 0 in similarity variables, since it must be at a constant value s = 0 in
Lagrangian coordinates. We will see below that the end of the thread solution does not exactly
correspond to the tip of the whole solution, since there is a small part of the finger solution that
protrudes from it, see Fig. 1. Integrating from a point in the bulk to the end, we find in the limit
t′ → 0:

vm

vη

= 1

3

∫ ∞

0

ds

H 3
= t ′δ−3

3

∫ ∞

0

dζ

χ3
a

= At ′δ−3, (20)

where

A = π22−δ33−δδ(1 − δ)(2 − δ)

3χδ
m sin(πδ)

≈ 620.5 .

To find the actual shape of the thread solution in real space, we have to integrate the first
transformation of (13) over s. In Eulerian coordinates, the similarity form of the profile is2

h(z, t) = t ′r0φa(ξ ), ξ = z′

t ′β , (21)
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where β = δ − 2 ≈ 0.175, and z′ = (z − z0)/r0, with z0 the point of breakup. Thus from the first
equation of (13), the transformation is

dξ

dζ
= 1

φ2
a

= 1

χ2
a

. (22)

To find the similarity profile φa(ξ ) after breakup, we integrate (22) using (18) to find

ξ − ξm =
∫ (

φa −1/6
χm

)δ

0

dζ(
1/6 + χmζ 1/δ

)2 . (23)

Here ξm is the end of the thread solution in similarity variables: z′
m = ξmt ′β , and thus

vm = vηξmβtβ−1. (24)

Comparing this to (20), we obtain ξm = A/β.
We call the thread profile given by (21), (23) the (Stokes) thread solution, shown in Fig. 4 below.

The integral in (23) can be written in terms of Lerch’s � function,32 but for the purposes of matching
it is more useful to have an accurate description near the end. Expanding the integrand, we have(

1/6 + χmζ 1/δ
)−2 = 36

(
1 − 12χmζ 1/δ

) + O(ζ 2δ),

and thus

�ξ ≡ ξ − ξm = 36

[(
φa − 1/6

χm

)δ

− 12χm

1 + 1/δ

(
φa − 1/6

χm

)1+δ
]

.

Solving for φa, we obtain

φa = 1

6
+ χm

(
�ξ

36

)1/δ
[

1 + 12χm

1 + δ

(
�ξ

36

)1/δ

+ O
(
�ξ 2/δ

)]
. (25)

To obtain an analytical expression for the thread far from the end, we found it useful to derive
an alternative expression to (23). To this end we rewrite (22) in the form

dξ

dφa

dφa

dζ
= 1

φ2
a

,

and calculate
dφa

dζ
from (18) with φa = χa. The result is

dξ

dφa
= δ

χδ
m

(φa − 1/6)δ−1

φ2
a

, (26)

which can be integrated to yield33

�ξ = δ

χδ
m

∫ φa

1/6

(φ − 1/6)δ−1

φ2
dφ = δ

χδ
m

[
φδ−2

a

δ − 2
F

(
2 − δ, 1 − δ; 3 − δ;

1

6φa

)
− π (δ − 1)62−δ

sin(πδ)

]
.

(27)
Using the series expansion of the hypergeometric function F to first order, this yields

φa = 1 − δ

6(3 − δ)
+

[
(δ − 2)

χδ
m

δ
�ξ + π (δ − 2)(δ − 1)62−δ

sin(πδ)

]1/(δ−2)

+ O
(
�ξ 1/(2−δ)

)
, (28)

which turns out to be a good approximation to the full profile for φa � 1/3.
Similarly, to calculate the similarity function ψa(ξ ) of the Eulerian velocity field v0, defined by

v0(z, t) = vηt ′β−1ψa(ξ ), (29)

we use (19) to obtain

∂ψa

∂ξ
= − 1

3φa
. (30)
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Combining this with (26) we have

dψa

dφa
= − δ

3χδ
m

(φa − 1/6)δ−1

φ3
a

, (31)

which is integrated to give

ψa − ψm = − δ

3χδ
m

∫ φa

1/6

(φ − 1/6)δ−1

φ3
dφ = − δ

3χδ
m

[
φδ−3

a

δ − 3
F

(
3 − δ, 1 − δ; 4 − δ;

1

6φa

)

+π (δ − 1)(δ − 2)63−δ

2 sin(πδ)

]
, (32)

where ψm = ξmβ according to (24). To obtain an expansion of ψa, valid near the end, we use (30)
together with the expansion (25) to obtain

ψa = ψm − �ξ

[
2 − 12χmδ

1 + δ

(
�ξ

36

)1/δ

+ O
(
�ξ 2/δ

)]
. (33)

III. MATCHING

The most striking property of the similarity solution (25) is that φa = 1/6 is finite at the end ξ

= ξm, so that hm = r0t ′/6 = vη(t − t0)/6, whereas clearly the radius should be zero at the tip (see
Fig. 1, dashed line). The reason is that near the tip the axial scale is comparable to the radial scale,
which is different from the scaling of the thread solution (21). Demanding that the radial scales
match, we have

�
(ax)
ti p ∝ �

(r )
ti p ∝ �

(r )
thread ∝ t ′, �

(ax)
thread ∝ t ′β, (34)

where �(r) and �(ax) refer to the radial and axial scales, respectively, of the finger solution and the
thread solution, see Fig. 1. Since β ≈ 0.175 < 1, �

(ax)
ti p � �

(ax)
thread in the limit t′ → 0, which means

that on the scale of the thread solution, the tip is of vanishing size, corresponding to a jump from
zero to 1/6 in similarity variables.

To explain why the matching between the finger and the thread solutions works, consider (25),
valid near the tip. It follows that the slope of the interface for �ξ � 1 is to leading order given by

∂zh = t ′1−βφ′
a(ξ ) = t ′1−β χm

36δ

(
�ξ

36

)− 1+β

2+β

. (35)

To show that this is consistent with a finger of constant width near the tip, we have to identify an
overlap region whose typical scale is intermediate between �

(ax)
ti p and �

(ax)
thread (Ref. 25, p. 57). We

choose �
(ax)
match = t ′3/4, which will also serve us in the Navier-Stokes case to be discussed below;

any power between β and 1 would have done. Evaluating the slope (35) at �
(ax)
match , we find �ξmatch

= t′3/4 − β , and so ∂zh ∝ t ′ 5−3β

8+4β → 0 in the matching region. Thus the receding thread in the matching
region looks indeed like a finger, which we will describe now. Note that (35), evaluated in the limit
�ξ → 0 at constant t′, in fact diverges. However, this would correspond to both inner and outer
variables going to zero; what is relevant to the matching is the consistency of both inner and outer
solutions in an intermediate region of overlap. We will demonstrate the matching using a more
formal expansion of the inner and outer solutions in Subsection III B below.

A. Finger solution

The inner solution (or finger solution) consists of a finger of constant spatial radius. As an
illustration, we show the simulation of a retracting cylindrical drop, which is rounded at the end,
in Fig. 2; inertial effects have been neglected. Similar simulations, but for the case of arbitrary
viscosity, have been carried out in Refs. 34 and 35. Steady retraction was found for large viscosities,
while a bulbous end forms as viscosity is decreased. An analogous solution in two dimensions

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

137.222.114.243 On: Mon, 21 Jul 2014 13:19:45



072104-8 J. Eggers Phys. Fluids 26, 072104 (2014)

-20 -10 0 10 20
-1.5

-1

-0.5

0

0.5

1

1.5

FIG. 2. A cylindrical viscous drop retracts under the action of surface tension, as described by Stokes’ equation. As the drop
shortens, it becomes thicker, but retains its cylindrical shape away from the tip. The receding tip is described by the thread
solution (40), (41) below. The boundary integral method used to simulate the free-surface dynamics is that of Ref. 29.

(a retracting sheet) has been studied in Ref. 15, using long-wavelength theory. It was found that in
the limit of large viscosities, the thickness of the sheet increased uniformly, without forming a “blob”
at the end, just as seen in Fig. 2 for the axisymmetric case. Both the axial and radial scales expand
linearly in time, and the shape of the finger converges onto a universal similarity profile, which we
describe now. We begin with the solution far away from the tip, where the radius is uniform. Let us
take the apex of the finger to be at the origin, with the cylindrical drop to the right. Far away from
the tip, we expect the flow field to be a uniform extensional flow

vz(z, r, t) = −az/t, vr (z, r, t) = ar/2t, (36)

where a is a constant and vz is determined up to an additive constant only. This is an exact solution
of Stokes’ equation at constant pressure, as we show now.

Integrating ∂t h(z, t) = vr (z, h, t), we find that the finger radius is

h = h0ta/2. (37)

From the normal stress boundary condition, we find

p = γ

h
+ 2η

∂vr

∂r
,

which is indeed constant in space. Combining with (9) and integrating over the radius, we have that

h2

2

(
−γ

h
+ 3

∂vz

∂z

)
= −γ h,

having used ∂zh = 0. Inserting (36) and (37), it follows that

3
a

t
= −3

∂vz

∂z
= vη

h
= vηt−a/2

h0
,

and so a = 2 and h0 = vη/6. In conclusion, the finger width behaves like

h f = vηt

6
, (38)

matches (21), (25), while the velocity field away from the tip is

vz(z, r, t) = −2z/t + const, vr (z, r, t) = r/t. (39)

This suggests a similarity solution for the finger in which all length scales are rescaled by t. If
x(q) = (z(q), r(q)) is a parametric representation of the retracting finger (with its apex chosen as the
origin), we are looking for similarity solutions

x = vη(t − t0)X ≡ t ′r0X, (40)

where the prefactor t′r0 corresponds to that of the thread solution (21). If, in addition, v(q) =
(vz(q), vr (q)) is the velocity on the surface, in view of (39) the velocity is in similarity form

v = vηV. (41)

In components, the similarity functions are X(Q) = (Z(Q), R(Q)) and V(Q) = (Vz(Q), Vr (Q)),
where Q parameterizes the similarity profile. According to (38), we have that far from the tip the
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finger radius is R = 1/6 in similarity variables, while (39) becomes Vz = −2Z + Vm and Vr = R,
where Vm is a constant to be determined.

The free surface condition for the motion of the interface reads(
∂x(q)

∂t
− v(q)

)
· n = 0, (42)

which in similarity variables becomes

(X(Q) − V(Q)) · N = 0, (43)

where N is the normal to the similarity profile.
To find the velocity on the boundary, we use a boundary integral description. In the case of a

drop of viscosity η with an inviscid exterior, the equation reads2

v(x1)

2
= −vη

∫
S
κJn dS2 +

∫
S

vKn dS2, (44)

where J and K are the free-space Green’s functions

J(r) = 1

8π

[
I
r

+ rr
r3

]
, K(r) = − 3

4π

rrr
r5

, r = x1 − x2, (45)

and S is the surface of the drop. Using the similarity transformations (40) and (41), (44) becomes

V(x1)

2
= −

∫
S
κsJN dS2 +

∫
S

VKN dS2, (46)

where κs is the mean curvature of the similarity profile. To determine the finger solution, we have to
solve Eqs. (43) and (46), subject to the boundary conditions

Vr = R = 1/6, Vz = −2Z + Vm, (47)

for Z → ∞, and R = Vz = 0 at the tip Z = 0.
To find the similarity solution numerically, we use a version of the code that produced Fig. 2.

Every few time steps, all coordinates were rescaled so as to keep the drop radius at the asymptotic
value of 1/6, in accordance with (47). This causes the drop to become shorter, so in the same step,
an extra piece of fluid was inserted at the center of the drop, to keep the drop length at a value 20
times longer than its radius. This ensures that the two tips do not influence each other, and that far
from the tip, the velocity field has its asymptotic form given by the boundary condition (47).

The similarity solution obtained from this computation is shown in Fig. 3. It is seen that the
finger solution quickly reaches a constant radius of 1/6, and that the radial and axial components
of the velocity field have the expected asymptotics (47), with Vm ≈ 0.25. Inserting the similarity
profiles into (43), we have confirmed that the kinematic condition is verified to less than 1% of the

0 0.25 0.5 0.75
0

0.05

0.1

0.15

0.2

R

1/6

Zm Z
0 0.25 0.5 0.75

-1

-0.5

0

V z

Z

V 1/6

V −2Z

rV ,Vrz

m

FIG. 3. Similarity solution of the retracting finger. The profile is shown on the left, where the dashed line indicates a cylinder
of constant radius having the same volume. The radial and axial components of the velocity field at the surface are on the
right, with the asymptotic behavior for large Z indicated.
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size of the individual terms. A similar similarity solution should exist in the large viscosity limit
of a retracting sheet.15 Note that while the flow field is fully three-dimensional at the tip in both
problems, we found that a naive long-wavelength solution, based on (11) but with 1/h replaced by
the mean curvature (2), yields a solution which is rather close to the true profile based on the full
Stokes equation.

Indeed, to understand the approach of the profile R(Z) toward its uniform value R = 1/6 as Z
→ ∞ one can use the long-wavelength equations (11) and (12), since the solution is very close to
being flat. We use a similarity ansatz analogous to (40), (41):

h = vη(t − t0)R(Z ), v0 = vηV (Z ), (48)

where Z = z/(vη(t − t0)). Inserting into (11), (12), we find

R − Z R′ + R′V RV ′/2 = 0, 3V ′ R = −1, (49)

where the prime denotes differentiation with respect to Z. Eliminating V between the two equations,
we arrive at

R′′ (1 − 6R) = 2R′2

R
. (50)

Writing R(Z) = 1/6 + ε(Z), we find

ε′′ε = −2ε′2,

whose only decaying solution is ε = B/Z, so that

R(Z ) = 1

6
+ B

Z
+ O(Z−2) (51)

for Z → ∞. We do not require the numerical value of B; to find it, a more detailed calculation would
be required.

B. The matched solution

To see in more detail how the finger solution is matched to the thread solution, we use the
standard procedure (Ref. 25, p. 57) of introducing an intermediate variable

ξ = z′ − z′
m

�
(ax)
match

≡ z′ − z′
m

t ′3/4
,

and expanding both the inner and outer solutions in ξ . As can be seen in Fig. 1, the end of the
thread solution at z′

m is shifted relative to the tip at z′
ti p, owing to the presence of the rounded finger

solution. The shift between the two, which is Zm in the inner variable, will be determined from
volume conservation below, and we have

z′
m − z′

ti p = t Zm . (52)

Then at constant ξ , the outer variable �ξ = ξ t ′3/4−β goes to zero, while the inner variable
Z = ξ t ′−1/4 + Zm tends to infinity. Now expansion of the outer solution yields according to (25)

h = t ′r0φa(�ξ ) = t ′r0

⎡
⎣1

6
+ χm

(
ξ

36

)1/(2+β)

t ′ 3−4β

8+4β + . . .

⎤
⎦ ≈ t ′r0

6
(53)

for t′ → 0. On the other hand, according to (51) the inner solution behaves as

h = t ′r0 R(Z ) = t ′r0 R(ξ t ′−1/4 + Zm) = t ′r0

[
1

6
+ Bt ′1/4

ξ
+ . . .

]
≈ t ′r0

6
, (54)

which is identical to (53) in the limit t′ → 0. Note that the corrections to the leading behavior t′r0/6
do not match between (53) and (54), as the equations they are based upon are themselves valid to
leading order in t′ only.
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Having established that both inner and outer solutions have the same functional form in the
overlap region, it remains to determine the relative horizontal position of one solution relative to the
other, which is set by Zm, cf. (52). Observe that the thread solution (15) conserves volume exactly,
as the tip is located at s′ = 0, which is a constant. Thus if s′ = s+ is another particle label away from
the point of breakup, where the solution is essentially static, the total volume is

V =
∫ z+

zm

h2dz =
∫ s+

0
ds = s+,

which is constant. Using volume conservation, we can determine the placement of the finger solution:
for any t′, the volume of the full solution must be that of the thread solution (15). This procedure is
illustrated on the left of Fig. 3, where the dashed line shows a cylinder of radius 1/6, which has the
same volume as the finger solution. This means that the apex of the finger solution is shifted relative
to a cylinder of constant radius by a distance Zm in similarity variables. Rewriting (52) slightly, we
find that the true tip position is at

z′
ti p = ξmt ′β − t ′ Zm . (55)

We now show that Zm = Vm/3, with the velocity shift Vm ≈ 0.25 found above. Namely, the
similarity form of the velocity profile away from the tip is −2Z + Vm , which must coincide with
the velocity profile inside the cylinder solution (dashed line on the left of Fig. 3); this linear profile
conserves volume exactly for a constant radius R = 1/6. Thus the velocity at Zm, at the end of
the cylinder, is −2Zm + Vm . However, since the end of the cylinder moves like tZm, we have
−2Zm + Vm = Zm , as claimed. By differentiating (55), we find the velocity of the tip, which is
smaller by a correction −Zm relative to the leading order estimate (20).

Note that it is consistent to compare the volume of the finger solution to that of a cylinder of
constant radius, which corresponds to the leading-order term in (25). Taking into account the first
correction, the volume up to a scale t′ from the tip (which is the scale of the finger solution) is∫ z′

m+t ′

z′
m

h2dz ≈ t ′3

36
r3

0

[
1 + 361−1/δχm

3(1 + 1/δ)
t ′3/δ−1

]
.

But 3/δ − 1 ≈ 0.38, and so the correction goes to zero with t′ → 0.

C. Composite solution

Now we are in a position to construct a solution to the receding thread problem which is valid
uniformly in space, combing the inner and outer solutions.25 The idea is to add the two solutions
together, and to subtract the function valid in the overlap region, which is h = t′r0/6. Taking into
account the shift (55) of the tip position relative to ξmt′β , this leads to the global or composite
solution

hcomp

r0
= t ′ R

(
z′ − z′

ti p

t ′

)
+ t ′

{
0, z′ − z′

ti p ≤ Zmt ′

φa

(
z′−z′

ti p

t ′β − t ′1−β Zm

)
− 1

6 , z′ − z′
ti p > Zmt ′ , (56)

shown as the solid line in Fig. 1. It is seen that (56) matches smoothly between the finger solution
(dotted line) as the apex is approached, while merging with the thread solution (21) on scales greater
than the tip size t′r0/6 ≈ 0.017. Note the disparity in scale between the size of the inner solution and
the axial extend of the thread.

To construct the globally valid solution for the z-component vz of the velocity field, we have
to add the outer solution (29) to the inner solution (41), subtracting the velocity in the overlap
region. To find the latter, note that taking the time derivative of (55) the velocity at the tip is
vt i p/vη = vm/vη − Zm . According to the above, the limit of the inner velocity away from the tip is
Vm − 2Z = 3Zm − 2Z . Combining the two, we obtain the z-velocity in the overlap region as

v/vη = vm/vη + 2 (Zm − Z ) , Z = z′ − z′
ti p

t ′ . (57)
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FIG. 4. The z-component vz of the velocity on the surface of the receding thread for t′ = 0.1. as described by (21) and (23).
The inset shows how the finger solution is fitted in, on a much smaller scale set by t′. The thread solution (21), shown as the
dashed line, is almost perfectly cylindrical on this scale. The finger solution (40) is fitted in such that volume is conserved.

The overlap velocity (57) is also obtained from the outer solution (41), by taking the limit of small
�ξ in the expansion (33). Thus, we obtain the following composite solution for the velocity,

vcomp

vη

= vti p

vη

+ Vz (Z ) +
⎧⎨
⎩

0, Z ≤ Zm

t ′β−1
[
ψa

(
z′−z′

ti p

t ′β − t ′1−β Zm

)
− ψm

]
+ 2 (Zm − Z ) , Z > Zm

,

(58)
shown in Fig. 4 for t′ = 0.1. Once more the global solution is seen to interpolate smoothly between
inner and outer solutions. Once more, note the extremely high speed of retraction, although the value
of t′ is quite modest.

This completes our description of the case where inertia is negligible. However, even if the
viscosity is very large, inertia will become relevant sufficiently close to the singularity.2 The reason
is that according to the Stokes solution, the inertial term in the Navier-Stokes equation grows faster
than the viscous term, so the approximation is no longer self-consistent once they have become of
the same order. Thus on a sufficiently small scale, or for fluids whose viscosity is not very large,
inertia has to be included in the description.

IV. NAVIER-STOKES CASE

A. Thread solution

In the case that inertia is included, the outer (thread) solution has to be replaced by another
similarity solution:19

h(z, t) = �ν t ′φa

(
z′

t ′1/2

)
, v(z, t) = �ν

tν
t ′−1/2

ψa

(
z′

t ′1/2

)
, (59)

with the intrinsic length and time scales �ν and tν , respectively. We will in this section refer to (59)
as the thread solution, and once more denote the similarity profile of the post-breakup Navier-Stokes
solution by φa. The dimensionless time distance is now t′ = (t − t0)/tν , and z′ = (z − z0)/�ν . Since
the radial scale t′ is much smaller than the axial scale t′1/2 for small t′, long-wavelength equations14

can be applied. We will see that as far as the tip region of the thread solution is concerned, all results
of Secs. II and III carry over, but with the exponent β ≈ 0.175 being replaced by β = 1/2. The
reason is that near the tip, the Navier-Stokes solution is dominated by viscosity, so the equations are
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effectively the same, except that the axial length scale is somewhat shorter, but still asymptotically
large compared to the radial scale. Inserting (59) into the long-wavelength equations, one obtains a
pair of ordinary differential equations for φa, ψa:19

φa − ξφ′
a/2 + ψaφ

′
a = −ψ ′

aφa/2, (60)

−ψa

2
− ξψ ′

a

2
+ ψaψ

′
a = φ′

a/φ
2
a + 3

(ψ ′
aφ

2
a )′

φ2
a

, (61)

which determine the shape of the receding thread. However, appropriate boundary conditions still
need to be found at the tip.

As in the Stokes case, the radial variable is proportional to t′, and the radius at the end of the
thread solution is

hm = �ν t ′φa (ξm) = vη(t − t0)φa (ξm) . (62)

Since for t′ → 0 the axial scale is again much larger than the radial scale, the tip region of the thread
solution looks like a cylinder of constant radius φa(ξm). Requiring it to match to the finger solution
(40), which has the asymptotic radius h f = vηt/6, it follows that

φa(ξm) = 1/6, (63)

as was concluded in Ref. 19.

B. Matching

We now show that on the matching scale �
(ax)
match = t ′3/4, intermediate between the axial scale

of the finger solution t′ and that of the thread solution t′1/2, inertia drops out and we are allowed to
use the same finger solution (40) as in the Stokes case. This is to be expected on the basis of the
scaling given in Ref. 15, where the Stokes length over which a finger of constant radius persists (as
opposed to a “blob”) is given by

√
�νh ≈ √

�ν t ′/6 � �
(ax)
match .

To show this explicitly and to make sure that the two descriptions match on the scale �
(ax)
match ,

we demonstrate that a solution of (60), (61) agrees with the finger solution for large Z. To perform
this comparison, we have to pass into a frame of reference moving with the tip. Since the end
is at z′

m = ξmt ′1/2, it moves at speed vm/vη = ξmt ′−1/2/2. In similarity variables, the scale �
(ax)
match

corresponds to t′1/4; therefore, if we introduce the intermediate variable ξ = t ′−1/4(ξ − ξm), the
distance �

(ax)
match from the tip is a time-independent quantity. The transformation of the profiles to the

variable ξ reads

φ̄(ξ̄ ) = φa(ξ̄ + ξm), ψ̄(ξ̄ ) = t ′−1/4
(
ψa(ξ̄ + ξm) − ξm/2

)
, (64)

and in rescaled variables, the similarity equations (60), (61) become

φ − ξφ
′
/2 + ψφ

′ = −ψ
′
φ/2 (65)

t ′1/2φ
2
[
−ψ/2 − ξψ

′
/2 + ψψ

′] − t ′1/4φ
2
ξm/4 =

{
φ + 3ψ

′
φ

2
}′

, (66)

respectively.
The tip region (of size t′) corresponds to the limit ξ → 0. Since by construction, ψ(0) = 0,

expanding to linear order we find ψ ∝ ξ . Thus, to leading order as ξ → 0, (65) yields φ = −ψ
′
φ/2,

so it follows that

ψ = −2ξ + higher order terms. (67)

In terms of ψa, this means that

ψa = ξm/2 − 2(ξ − ξm) + higher order terms. (68)
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On the other hand, in the limit t′ → 0 inertial terms drop out, and (66) becomes

φ + 3ψ
′
φ

2 = T , (69)

where T is a constant of integration. Comparison to (11) shows that T corresponds to the tensile
force in the thread. Since the free end cannot support a force, its value must be zero. Indeed, inserting
φ = 1/6 on account of (63), as well as (67), shows that T = 0, in agreement with (11). Converting
(67) to real space, we find on the scale of the tip:

v − vm

vη

= t ′−1/2 (ψa − ξm/2) = t ′−1/4ψ = −2t ′−1/4ξ = −2t ′−1/2 (ξ − ξm) = −2
z′ − z′

m

t ′ ,

which matches the far field behavior (57) of the finger solution.
In conclusion, we have to solve (60), (61) subject to the conditions (63), (68) at the tip, which

are the conditions derived in Ref. 19, but using a more ad hoc argument. We will recapitulate only
very briefly the main results of Ref. 19. An expansion around ξm gives

φa = 1/6 + φ1 (ξ − ξm)2/5 + O (ξ − ξm)3/5 , (70)

note that the exponent 2/5 agrees with the exponent 1/δ = 1/(2 + β) in (25), if we put β = 1/2, as is
appropriate for the Navier-Stokes solution. This is to be expected, since the two similarity solutions
are in fact equivalent near the tip, as we have demonstrated.

Together with (68), (70) determines the thread solution in terms of two free parameters ξm and
φ1. These two parameters are determined uniquely by the requirement that the post-breakup solution
has to match the pre-breakup solution φb,ψb for ξ → ±∞. Since the solution is asymmetric in the
Navier-Stokes case, this leads to two different solutions on the left and right of the point of breakup
(or vice versa).

Namely, the behavior of the pre-breakup solution is

φ(ξ )/ξ 2 → a±
0

ψ(ξ )ξ → b±
0

}
for ξ → ±∞. (71)

On one side the solution is very flat (which by convention we are taking as the limit ξ → −∞),
corresponding to a fluid thread, while on the other side a0 is much larger, where the solution matches
to a drop, see Fig. 5 below. The pre-breakup solution selects unique values of the constants a±

0
and b±

0 , for example, a−
0 ≈ 6.047 × 10−4 for the thread side, and a+

0 ≈ 4.635 for the drop side.19

Adjusting ξm and φ1 on either side such that integration of (60), (61) yields the same constants

FIG. 5. The composite post-breakup solution for the Navier-Stokes case. Note the strong asymmetry; on the left is the
“thread,” on the right the “drop.’.
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a±
0 , b±

0 , we find19 ξ−
m ≈ 17.452, φ−

1 ≈ 0.06183 for the thread, and ξ+
m ≈ 0.4476, φ+

1 ≈ 0.6180 for
the drop side. This completes the construction of the post-breakup solution in the Navier-Stokes
case.

C. Composite solution

To construct a global solution, valid uniformly, we proceed similar to the Stokes case, as in
Subsection III C. Namely, we add the two solutions together, and subtract the solution in the overlap
region, which in our case is the constant solution h = �ν t′/6. The outer solution is the thread solution
(59), which has an axial scaling exponent β = 1/2. As described above, two very different similarity
profiles φa(ξ ) are produced by using boundary conditions at the tip appropriate for the thread and
the drop side of the problem.

The inner solution is the finger solution (40), which can be written in the form

h(z′, t ′) = �ν t ′ R
(

z′ − z′
ti p

t ′

)
, (72)

where R(Z) is the finger profile shown in Fig. 3. Note that in the Navier-Stokes solution, time is
non-dimensionalized using �ν , so that t′ = (t − t0)/tν .

Then the result for the global or composite solution is

hcomp = �ν t ′ R
(

z′ − z′
ti p

t ′

)
+ �ν t ′

⎧⎨
⎩

0, z′ − z′
ti p ≤ Zmt ′

φa

(
z′−z′

ti p

t ′1/2 − t ′1/2 Zm

)
− 1

6 , z′ − z′
ti p > Zmt ′ , (73)

which is plotted in Fig. 5; note the tip which is rounded slightly. The tip position ztip is given by
(55), but with β = 1/2:

z′
ti p = ξmt ′1/2 − t ′ Zm . (74)

V. DISCUSSION

We begin by discussing the different types of solutions expected to be observed as function
of the Ohnesorge number (1), which is a non-dimensional measure of the size of the viscosity.
The relative size of the viscous, inertial, and surface tension contributions after breakup mirrors the
transitions observed as breakup is approached,2 but in reverse order. Namely, the size of inertial
and viscous contributions in the long-wavelength equation is given by ρvvz and ηvzz , respectively.
Evaluating both terms for the Stokes solution, one finds that inertia dominates, if2

t − t0
�ν

� Oh
4−4β

2β−1 . (75)

This quantifies our earlier statement that even at large viscosities, the Navier-Stokes solution is
observed first. Only after the time estimated by (75) does a crossover to the Stokes solution occur.

A similar argument applies to the case of very small Oh. If one estimates the relative size of
viscous and inertial terms based on the inviscid similarity solution,11 one finds that viscosity becomes
important if

t − t0
�ν

� 1. (76)

Thus, the Navier Stokes solution once more applies at very early times, but crosses over to the
inviscid solution once the tip size becomes comparable to the viscous length �ν , which is about
10 nm for water. If the Ohnesorge number is of order one, one still has the requirement that the
thread width must be much smaller than the external scale r0, for the similarity approach to apply.

The asymmetry of the two sides of the post-breakup solution in the Navier-Stokes case is
illustrated in Fig. 5. The “thread” side is very flat, while the profile on the “drop” side grows very
quickly. However, note the difference in scale of the radial and axial axes of Fig. 5. In fact, the profile
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on the right is still slender. The asymmetry of the breakup has important practical consequences, for
example, for the breakup of liquid jets. In the surface tension driven breakup of jets one observes a
sequence of drops, separated by slender necks; at elevated viscosities the necks become thinner and
thread-like.2 This pattern matches neatly with the asymmetric post-break solution shown in Fig. 5:
it is clear that the left part of the solution matches well onto the neck, the right onto the drop.

The thread solution dictates that the point of breakup is close to the drop, from where the neck
will be receding. Almost at the same time, a corresponding event will occur at the next drop, but
with a thread solution that is flipped over. Eventually, almost the entire neck recedes into another,
smaller drop, which is known as the “satellite” drop. Hence the outcome of jet breakup is typically a
sequence of “main” drops, separated by smaller satellite drops.2 This bimodal distribution of drops
adversely affects the quality of ink-jet printing, since different drop sizes are guided to different
locations, producing a diffuse image.

Experimental verification of the thread retraction has proved difficult.2 The reasons are twofold:
first, in the case of high viscosities an instability sets in during pinching of the thread, driven by
thermal noise or other random perturbations.7 As a result, the thread is often observed to break at
several places, making it difficult to clearly identify a similarity solution. Second, the retraction
speed of the thread predicted by (74) is quite high, placing high demands on the temporal resolution.
For a typical experiment analyzed in Ref. 31, 6.7 μs after breakup, the speed is about 37 m/s. As
a result, the effect of air drag on the thread might be important. High retraction speeds are due to
the fact that ξ−

m ≈ 17.5 is quite large; it would be worthwhile to track the tip of the other (drop)
side carefully, whose speed at the same value of t′ is smaller by about a factor of 1/40. Note that the
speeds in the Stokes case are even larger, as the prefactor A in (20) is about 621, and the exponent
β − 1 ≈ −0.825 is more negative.

A possible resolution is to work with fluids at moderate values of the viscosity, so that inviscid
breakup is observed at first, which then crosses over to the Navier-Stokes breakup we are interested
in. For example, experiments were reported in Ref. 6 at an Ohnesorge number Oh ≈ 0.163, and no
effect of random breakup was observed. In agreement with (76), the transition to the Navier-Stokes
regime occurs when the minimum thread radius is about �ν ≈ 96 μm. The thermal instability is
expected to set in a threshold radius of about

hthres = 5�ν

(
�T

�ν

)0.4

,

where �T = √
kB T/γ is a thermal length which is about a nanometer at room temperature. As a

result, instability is predicted to set in at about hthres ≈ 0.05�ν , which would leave a considerable
range for the thread solution to develop.
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