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3.1 Introduction

In this set of notes, we will pursue two different themes:

(a) Pinch-off
Very often free-surface singularities are associated with topological transitions,
e.g., one piece of material breaking into two, or several pieces being joined
into one. Such a transition cannot be smooth, and therefore is associated with
a singularity of the underlying equations of motion. Imagine for example a
dripping tap (see Fig. 3.1). At the moment of pinch-off, a new structure is
born: a drop. We would like to understand the exact form and evolution of the
interface near the moment of drop detachment. How is the solution continued
across the singularity? Is this continuation unique?

(b) Making small things
Other free-surface singularities are steady, yet produce very small structures on
the surface of a liquid. This is best seen in a home experiment: pour olive oil into
a glass beaker already filled with oil (see Fig. 3.2). At small speeds of impact
the surface is hardly disturbed. On increasing the height of impact, the stream
of oil produces a crater which ends in a very sharp cusp, and joins the stream
on the other side. Viewed from the side, the crater is visible as a silvery dip. As
the height of fall is increased, suddenly a thin sheet of air will shoot out from
the tip of the cusp, which is wrapped around the region of impact, and visible
from the side as a silvery sliver. Soon the beaker is filled with air bubbles, as

Fig. 3.1 A drop of water about to pinch off. Source: Wikipedia.
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Fig. 3.2 A stream of viscous fluid impacting on a surface of the same fluid. The speed of
impact is increasing from left to right. Photos by E. Lorenceau.

the air sheet becomes unstable at its lower end. This is the mechanism by which
air is entrained into viscous liquids, for example when beating an egg.
What is interesting about this sequence of events is that it contains a potential
mechanism to make small things, without ever fashioning a tool that works on
the desired length scale. Instead, we harness the non-linear character of the
hydrodynamic equations to focus flow into very small structures.

What are the big ideas at work here?

1. The hydrodynamic equations of motion evolve toward singularities spontan-
eously, producing very small scales.

2. Scaling: the singular evolution is self-similar; this means that the same shapes
reappear on smaller and smaller scales.

3. Universality: the singularity imposes a unique structure with a limited number
of free parameters.

For each case, we will discuss a particularly simple example below, which hopefully
will elucidate the general aim.

3.2 Bubble pinch-off in a viscous fluid

We consider an axisymmetric gas bubble (or another low-viscosity liquid), in a viscous
liquid. For example, Fig. 3.3 shows a drop of water dripping into a very viscous oil
which is slightly lighter than the water. As a result, the drop of water falls, and
eventually pinches off.

3.2.1 Equation of motion

Fig. 3.4 shows the flow geometry of a slender axisymmetric bubble in a viscous fluid.
We consider the special case that

(i) the outer fluid is sufficiently viscous for inertia to be negligible: we will describe
it using Stokes’s equation,

(ii) the viscosity of the inner fluid (or gas) is sufficiently small so that it has no
dynamical effect at all.
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(a) (b)

(c) (d)

Fig. 3.3 A water drop dripping through silicone oil, whose viscosity is about 104 times greater
than that of water [2]. (Photo courtesy of S. Nagel and I. Cohen). A parabola is fitted to the
first profile (a), and then shifted toward the axis to obtain an optimal fit. In (d), the parabola
intersects with the axis to give two separate pieces.

air

viscous fluid

h(z)

z

Fig. 3.4 Sketch of a pinching bubble.

In this particular limit, the dynamics are particularly simple [2]. Indeed, from
incompressibility we have

∇ · v =
∂vz
∂z

+
∂vr
∂r

+
vr
r

= 0.

Assuming that the interface is almost flat so that the flow is approximately radial
(v ≈ vrer), it follows that

vr =
A(t)
r

.
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But since the flow has to move with the interface, we have vr(h) = ḣ; in other words,

v =
ḣh

r
er. (3.1)

For a radial flow, the Laplacian of a vector is [8]:

�v =
(
∂2vr
∂r2

+
1
r

∂vr
∂r

− vr
r2

)
er = 0,

so Eq. (3.1) solves the Stokes equation with a constant pressure distribution. At
the boundary, the normal stress jump across the interface must balance the Laplace
pressure γ/h:

γ

h
= σrr + pin = −Δp(t) − 2η

ḣ

h
,

where pin is the pressure in the interior. For h→ 0, the pressure jump Δp is negligible,
so the equation becomes simply

∂h

∂t
= − γ

2η
= const. (3.2)

3.2.2 Pinch-off

After rescaling (the unit of time, for example), Eq. (3.2) becomes

ḣ = −1. (3.3)

Of course this problem can be solved easily: if h0(z) is the initial condition at time
t = 0, then the solution of Eq. (3.3) is

h(z, t) = h0(z) − t. (3.4)

Thus the initial profile is translated rigidly toward the x-axis; based on an analysis of
Eq. (3.4) one could obtain a complete description of the pinch-off process without much
ado. However, here we are going to do it the hard way by deploying the machinery of
local self-similar analysis using the equation of motion, (3.3). It will turn out that most
of the steps we will be going through are very similar to those encountered in more
difficult problems involving partial differential equations (only simpler), so hopefully
this will be educational.

We want to study the neighborhood of the singular point where h goes to zero. We
assume that this occurs at time t = t0, and at z = z0 in space. We will study the limit
of the time distance t′ = t0− t from the singularity going to zero. The spatial distance
from the pinch point is denoted by z′ = z − z0. To describe the dynamics close to the
pinch point, we use the self-similar ansatz

h(z′, t′) = t′αH(ξ), where ξ =
z

t′β
. (3.5)
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This corresponds to a scale-invariant dynamics, which lacks any intrinsic length scale.
Plugging Eq. (3.5) into the equation of motion (3.3) yields

−αt′α−1H + βt′α−1ξH ′ = −1.

To make sure that terms balance in the limit t′ → 0 we must have α = 1 and we
obtain the similarity equation

H − βξH ′ = 1. (3.6)

Note that the exponent β, which describes the width of the singularity in space, is
as yet undetermined. This situation, in which the scaling is not determined by the
intrinsic structure of the equation, is known as “self-similarity of the second kind” [1].

The solution to Eq. (3.6) is

H = 1 + aξ1/β , (3.7)

where a is a constant of integration. This describes the inner solution close to the
pinch point. To make sure that this solution is consistent globally, two conditions
must be met:

(i) A matching condition, which stipulates that at some finite distance Δ from the
pinch point the solution is static on the time scale t′ of the singular region. This
means that the limit

lim
t′→0

h(Δ, t′) = h(Δ, 0) > 0

must be finite, or in other words the singularity only occurs at a point rather
than a finite interval. Using the similarity description in Eq. (3.5), it follows that

lim
ε→0

[
εH

(
Δ
εβ/α

)]

must be finite for Δ both positive and negative. This implies that H(ξ) must
satisfy the boundary condition

H(ξ) = a±ξα/β , ξ → ±∞. (3.8)

In our case, from the solution (3.7) we find

H ∝ ξ1/β ,

so Eq. (3.8) is satisfied automatically if a 	= 0. Indeed, if a were zero, the drop
would have to shrink to zero everywhere in space, which is clearly not consistent
with boundary conditions (for example a constant radius at the nozzle).
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(ii) A regularity condition on ξ ∈ R, which guarantees that the solution (3.7) does
not have any (other) singularities except the pinch-off singularity being described
by Eq. (3.5). But this means that 1/β must be a positive integer; otherwise, Eq.
(3.7) would have a singularity for ξ = 0. In addition 1/β must also be even and
a > 0; otherwise, the denominator would become negative.

In other words, we find a discrete spectrum of exponents

βi =
1

2(i+ 1)
, i = 0, 1, . . . . (3.9)

The similarity profile is

H̄(ξ) = 1 + aξ2(i+1), i = 0, 1, 2, . . . , (3.10)

with a > 0. The fact that β is determined by a regularity condition is a characteristic
property of self-similarity of the second kind. However, we still have an infinite set
of possible solutions and the question arises as to which solution will be realized in a
particular physical situation. To answer to this question, we will have to look at the
stability of solutions.

3.2.3 Stability

To study the dynamics we introduce the new time variable τ = − ln t′, so the solution
is represented in the coordinate system (ξ, τ):

h(z′, t′) = t′αH(ξ, τ). (3.11)

Now since dτ/dt′ = −1/t′, the equation of motion (3.3) becomes

Hτ = H − βξH ′ − 1, (3.12)

which we will call the dynamical system. The crucial advantage of this description is
that any similarity solution H̄(ξ) is a fixed point of the dynamical system (3.12). Thus
the stability can be studied with the simple exponential ansatz

H(ξ, τ) = H̄(ξ) + δeντP (ξ), (3.13)

where ν is the eigenvalue and P the eigenfunction. If ν is positive, the solution will be
driven away from the fixed point.

Inserted into Eq. (3.12), the eigenvalue equation becomes

νP = P − βξP ′ ≡ LP. (3.14)

Again this equation is easy to solve, with the result

P = ξ(1−ν)/β .
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For each βi there is a discrete sequence of eigenvalues determined by the regularity
condition (1 − ν)/βi = j, where j = 0, 1, 2, . . . Thus finally we obtain

P = ξj , ν
(i)
j = 1 − j

2(i+ 1)
. (3.15)

The sequences for the first two similarity solutions are

ν(0) = 1, 1/2, 0,−1/2, . . . , ground state
ν(1) = 1, 3/4, 1/2, 1/4, 0,−1/4, . . . , 1st excited state.

It thus seems as if all similarity solutions were unstable, since they all have posi-
tive eigenvalues. Their number increases with the order i of the solution. However, this
conclusion is premature; we have overlooked the fact that in our similarity description
everything is defined with respect to z0 and t0, whose actual values should not mat-
ter. However, if the initial condition is perturbed (with some small amplitude ε, for
instance), the space and time coordinates of pinch-off will change as well: z0 = z0(ε),
t0 = t0(ε). Thus no break-up will in fact occur at the unperturbed coordinates z0(0)
and t0(0), which can only mean that the dynamics has diverged from the self-similar
dynamics. Instead, to see singular behavior, the origin (z0, t0) has to be adjusted to
remain at the singular point.

This can be investigated more formally by observing that for any Δ,

h(Δ) = t′αH̄
(
z′ + Δ
t′β

)
≡ t′αH(Δ) (ξ, τ)

is a similarity solution of Eq. (3.3). If h(Δ) is expanded in Δ, we find

H(Δ) (ξ, τ) = H̄(ξ) + Δt′−βH̄ξ +O(Δ2) ≡ H̄(ξ) + Δeβτ H̄ξ. (3.16)

This means that the term linear in Δ must be a solution of Eq. (3.14) with eigenvalue
ν = β and eigenfunction

H̄ξ = 2(i+ 1)aξ2i+1 = 2(i+ 1)aP (i)
2i+1(ξ).

An almost identical calculation, but perturbing the time coordinate instead of the
spatial coordinate, yields another positive eigenvalue of ν = 1. The vanishing eigen-
value of the ground state comes from shifting a, which corresponds to the arbitrariness
of the axial scale. The corresponding eigenfunction is

∂H̄

∂a
= ξ2(i+1) ≡ P

(i)
2(i+1)(ξ).

Inspection of the ground-state sequence of eigenvalues for the ground state shows that
this accounts for all the non-negative eigenvalues. All other eigenvalues are negative,
and so the ground-state solution is stable. By contrast, the eigenvalue series ν(1), apart
from the values 1, 1/4, and 0, still contains 3/4 and 1/2 as positive eigenvalues. As a
result this solution (and even more so those of higher order), is unstable.
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In conclusion, there is a unique similarity solution Hb which is stable, describing
the pinch-off before the singularity:

h(z′, t′) = t′Hb(ξ), Hb(ξ) = 1 + aξ2. (3.17)

Geometrically, this corresponds to a parabola which is shifted at a constant rate in the
direction of the axis (see Fig. 3.3). By fitting the parabola at some initial time, good
agreement is achieved in the pinch region. Indeed, the stability calculation provides
us with information on how the self-similar behavior in Eq. (3.17) is approached, as
other possible similarity solutions decay away.

Summing up all eigensolutions of the linear problem (3.14), we obtain

h(z′, t′) = t′

⎧⎨
⎩1 + aξ2 +

∞∑
j=0

ajt
′j/2−1ξj

⎫⎬
⎭ .

However, we have seen that by changing the values of z0, t0, and a, the first three
eigenfunctions are generated. Thus by adjusting their values suitably, the first three
terms in the sum can be made to vanish and we obtain

h(z′, t′) = t′

⎧⎨
⎩1 + aξ2 +

∞∑
j=3

ajt
′j/2−1ξj

⎫⎬
⎭ , (3.18)

where the correction is seen to vanish in the limit t′ → 0. Corrections are controlled by
the smallest (by absolute value) scaling exponent, which is 1/2 in this case. In critical
phenomena, this would be called the Wegner exponent [12].

3.2.4 Continuation

In Fig. 3.5 we summarize what we have done so far and indicate how to go beyond.
On the left we start from a smooth profile h0(z), which generically will have a single
quadratic minimum at zmin where the radius is hmin. According to Eq. (3.4), this
profile is to be shifted rigidly toward the z-axis until it touches. The neighborhood of
the point zmin is the singularity we have investigated so far. If we continue beyond
the singular time t0 = hmin the profile intersects the z-axis.

While parts with h(z, t) negative clearly make no sense in terms of the physical
interpretation as a radius, Eq. (3.4) can still be interpreted as the continuation of Eq.
(3.4) across the singularity. Namely, the solution after the singularity can be defined
as the parts of Eq. (3.4) for which h(x, t) is positive (see Fig. 3.5 (right)). At the
bottom, we have drawn a cross section through the drop only for the pieces for which
h is positive. After the singularity the domain is multiply defined, as a result of the
solution having undergone a topological transition. In the absence of an exact solution
like Eq. (3.4) there are two different ways to deal with the fact that the drop has split
up into different pieces, as illustrated in Fig. 3.6. In the first method, we only consider
places where h > 0, and develop an equation of motion for the boundaries of the drop
as well as for the drop profile itself. In the second method (bottom), we regularize
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t’>0 t’=0 t’<0

h(z,t) z

Fig. 3.5 A simple model for the experimental sequence of drop pinch-off shown in Fig. 3.3.
At t′ = 0, the radius goes to zero, for t′ < 0, the drop consists of two pieces (bottom row).
In the top row it is shown how the dynamics are generated by a simple shift of the profile at
a constant rate. After the profile has intersected with the x-axis two fluid threads retract on
either side of the pinch point.

the dynamics so that it is defined everywhere in space, but where the inside and the
outside of the drop represent two different “phases,” from which the position of the
drop can be reconstructed. We now describe both methods in turn.

3.2.4.1 Sharp interface description

The dynamics after the singularity is formulated in the “physical” domain alone, and
the boundary between a drop and its exterior is represented by a sharp interface.
In that case, apart from the dynamics in the interior of the drop itself one needs a
separate equation for the motion of the interface position. In the context of numerical
methods one speaks of “front tracking” [7]. Since the condition for a boundary point zb
is h0(zb) = t an equation of motion for the boundary point is found by differentiating
with respect to time: żbh′(zb, t) = 1, where the prime denotes the derivative with
respect to the spatial argument. Considering for simplicity two boundary points only
(see Fig. 3.5), we arrive at the following post-break-up dynamics:

∂h

∂t
= −1, z < z

(1)
b or z > z

(2)
b (3.19)

∂z
(i)
b

∂t
=

1

h′(z(i)
b , t)

, i = 1, 2. (3.20)
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Fig. 3.6 A profile after the singularity, as described by Eq. (3.19) (top). The solution is defined
for z < z

(1)
b and z > z

(2)
b . At the bottom is a solution of Eq. (3.21) with the same boundary

conditions and ε = 0.05. This solution is defined for all z, and tends toward the continuation
in the limit ε→ 0.

After break-up, the equation of motion (3.19) has to be solved in two separate domains,
while the boundary points are tracked using Eq. (3.20).

3.2.4.2 Diffuse interface description

The split into two or more domains brings with it the complication of having to
solve several separate problems at the same time, and to trace the boundaries of each
domain. To avoid this complication and to solve the problem in a single domain, one
can look at the same phenomenon using a regularized version of the equation of motion
(3.3) which does not exhibit “singularities” h→ 0. For example, consider

∂h

∂t
= −1 +

ε

h(z, t)
, h(z, 0) = h0(z). (3.21)

Now the “repulsive” term ε/h ensures that h(z, t) never goes through zero, but rather
forms a thin “thread” of thickness ε.
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Fig. 3.7 A thin thread of water remains between the two pieces. (Photo courtesy of S. Nagel
and I. Cohen.)

As illustrated in Fig. 3.6, in the limit of small ε the regularized model in Eq. (3.21)
describes essentially the same problem as the continuation in Eq. (3.19). Outside the
two domains of this solution, a thin “thread” remains whose thickness is ε. In fact,
such a thin thread (about 8 μm) is observed in the actual experiment [2] (see Fig. 3.7),
owing to the presence of the inner fluid. The viscous stresses in the thin thread delay
further thinning. However, we do not claim that Eq. (3.21) is a good model of this
effect; here we are merely interested in illustrating the principle of regularization.

What is the structure of the continued solution shortly after “pinch-off” (defined by
the original dynamics in Eq. (3.3))? This question can be answered by an asymptotic
analysis of Eq. (3.21). Here we cheat a little, and simply use the exact solution of Eq.
(3.21). Namely,

dt =
h

ε− h
dh,

and so

t0(z) − t = h+ ε ln(h− ε). (3.22)

Clearly, at places where the left-hand side is negative (which occurs after the
singularity of the unregularized equation) we must have h→ ε.

The (extrapolated) break-up time is shifted by an amount ε:

t0(0) ≈ h0(0) + ε ln(h0(0)),

where h0(0) is the minimum height at the initial time t = 0. More generally, since Eq.
(3.22) must match onto the solution Eq. (3.18) for h� ε we have

t0(z) − t ≈ t′(1 + aξ2) + ε ln(h0),
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which determines t0(z). Inserting this back into Eq. (3.22), we obtain

t′(1 + aξ2) = h+ ε ln
h− ε

h0
.

We solve this for h→ ε, where we expect the solution to be of the form h ≈ ε+ε2δ(x, t).
Then

t′(1 + aξ2) = ε+ ε2δ + ε ln
ε2δ

h0

and neglecting terms quadratic in ε,

h = ε+
h0

eε2
exp

{
t′ + az′2

ε

}
, (3.23)

valid for t′ < 0 and ε → 0. From Eq. (3.23) one reads off the following features:
the length of the filament of thickness ε is determined by the requirement that the
expression in the exponent remains negative. The boundary of this region is determined
by t′ + az2

tip = 0, or

ztip = ±
√

−t′
a
. (3.24)

A straightforward analysis shows that the width of the transition region at the edge
of the thread (the interface thickness) is

δb ≈ ε

az′tip
, (3.25)

which goes to zero for ε→ 0. This means the diffuse interface description approaches
the dynamics described by Eqs (3.19) and (3.20) in a pointwise fashion.

3.2.4.3 Similarity description of continuation

Above we have addressed the problem of continuation in two different ways: first
geometrically and then by regularizing the dynamics. However, a simple geometrical
formulation is not always available to us, and the regularized dynamics is often com-
plicated and not amenable to analytical treatment. It is therefore very useful to look
at a third way of treating the problem, namely using the similarity description. So far
we have used it to describe the dynamics before the singularity, and the solution for
t′ > 0 is described by Eq. (3.17).

We look for similarity solutions after breakup (t′ < 0) of the form:

ha = |t′|Ha (ξ) , ξ = z/|t′|1/2, (3.26)

so that |t′| remains positive. Note that |t′| = t − t0, so the time derivatives change
sign, and we obtain a new similarity solution

H − ξH ′/2 = −1, (3.27)
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with solution

Ha = −1 + āξ1/β ; (3.28)

both ā and the exponent β are undetermined at this point.
The values of ā and β must be found by matching to the prebreak-up solution.

Namely, at a finite (but arbitrarily small) distance Δ from the pinch point, the solution
must remain the same as one passes through the singularity. Thus one obtains the
matching condition

lim
t′→0

hb(Δ, t) = lim
t′→0

ha(Δ, t). (3.29)

Inserting the similarity solutions (3.17) and (3.28) into Eq. (3.29), we find that

1 + a
Δ2

|t′| ∼ −1 + ā

(
Δ

|t′|1/2
)1/β

in the limit t′ → 0. Clearly, this can only be satisfied if β = 1/2 and ā = a. In other
words, the matching procedure uniquely determines the post-break-up solution:

Ha = −1 + aξ2. (3.30)

There are two branches of solutions to Eq. (3.30), corresponding to the two receding
threads on either side of the pinch point. The tips of the threads are located at the
point h = 0; that is, at ξ± = ±1/

√
a. In terms of the physical variables this means

that the tip positions are at

ztip = ±|t′|1/2/√a (3.31)

in agreement with Eq. (3.24), obtained from the diffuse interface description in the
limit ε→ 0. Thus just after the singularity the two tips recede at a speed

żtip = ± 1
2
√
a
|t′|−1/2, (3.32)

which is diverging as the singularity is approached.
In conclusion, we find a unique continuation to a post-break-up solution, whose

parameters are determined by the dynamics before break-up. Close to the tip, the
assumption of a slender filament evidently breaks down. For example, a thin thread
remains (c. Fig. 3.7), which will alter the neighborhood of the tip. However, this
should not alter the asymptotics away from the tip, as the large-scale dynamics are
determined uniquely.

Geometrically, the solution (3.30) corresponds to a parabola which intersects with
the z-axis. A comparison to Fig. 3.3 (d) shows a satisfactory agreement of the experi-
ment with this result. It appears that the two pieces are a little closer together than
expected. A possible explanation is that the remaining thread pulls the two pieces
together, an effect not accounted for by the theory.
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3.3 Cusps on the surface of a viscous fluid

Singularities that form on the surface of a viscous liquid are very common, as we
saw for example in Fig. 3.2. Another prototypical experiment is shown in Fig. 3.8.
Two counter-rotating cylinders are mounted beneath the surface of a viscous liquid.
In the region of converging flow between the two rollers the surface becomes strongly
deformed and appears to end in a cusp, that is, a point where the two tangents to the
curve become parallel. At even higher rates of rotation (with a threshold value to be
determined) the cusp undergoes a bifurcation and a sheet of air shoots out from the
cusp and into the fluid.

However, the cusp-forming mechanism that leads to strong deformations of the
interface applies more generally, and is not restricted to quasi two-dimensional experi-
ments such as the one shown above. For example, imagine beating an egg to produce
a foam. The object is to entrain as much air as possible into the liquid. This happens
because cusp singularities first form on the free surface, which subsequently act as
seeds for air to enter the liquid. Note that if the free surface were to remain smooth it
would be very difficult for any other phase to enter the liquid. An interesting question
is to determine the nature of singularities in a very complicated (random) flow field,
such as that produced by the egg beater.

3.3.1 Cusp structure

We will see in subsection 3.3.2 that the tip is actually rounded on a small scale, but for
now we treat it as a perfect cusp around which we solve the viscous flow equations. This
is difficult because as yet we do not know the precise shape of the surface. However,
Fig. 3.9 suggests a simplification: viewed from a large scale, we have to solve the flow

ΩΩ

free surface

sheet of air

2rc

air

η viscous fluid

Fig. 3.8 Sketch of an experiment conceived by Joseph et al. [6], and perfected by Lorenceau
et al. [10]. Two rollers are counter-rotating below a free surface inside a viscous liquid. On the
line of symmetry, a sharp cusp is formed between them on the free surface. At even higher rates
of rotation, the cusp tip “opens” and a sheet of air shoots out into the liquid. As a result, air
is entrained into the liquid.
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fluid
viscosity η

h(y)
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y

ϕ

r

no
stress

cusp
tip

Fig. 3.9 A cusp singularity in a viscous fluid and the flow around the free surface (left). On
the right, a coarse-grained version of the same problem: flow in a slit plane. The boundary
condition on the upper half of the y-axis is one of no stress.

equations in a plane with a cut, which represents the cusp. Note that the geometry
resembles that of a crack in an elastic medium.

Solving Stokes’ equation in a plane is equivalent to solving the biharmonic equation
for the stream function ψ, that is

�2ψ = 0. (3.33)

The problem is solved most conveniently in polar coordinates, with the origin at the
tip of the cusp. Given ψ, the velocity field is calculated as

ur =
1
r

∂ψ

∂φ
, uφ = −∂ψ

∂r
.

The idealized problem is scale invariant, and therefore we are looking for similarity
solutions of the form

ψ = rλf(φ). (3.34)

Inserting Eq. (3.34) into Eq. (3.33), we find symmetric solutions of the form

f = A sin(λφ) + C sin((λ− 2)φ).

In Fig. 3.9 we have chosen for the cusp to lie along φ = π, so that Eq. (3.34) obeys the
boundary condition uφ = 0 on the line of symmetry φ = 0 automatically. By contrast,
the velocity perpendicular to the face of the cut is not zero. Indeed, in view of the
“near field” picture Fig. 3.9 (left), our goal is to calculate the velocity field uφ pointing
inwards toward the cusp, from which we will compute the shape of the free surface.
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Along the cut, i.e., for φ = π, we impose boundary conditions of zero shear and
zero normal stress:

nσt = σrφ = 0, nσn = σφφ = 0,

which in polar coordinates reads as

σrφ = η

(
1
r

∂ur
∂φ

+
∂uφ
∂r

− uφ
r

)
= 0 and σφφ = 2η

(
1
r

∂uφ
∂φ

+
ur
r

)
− p = 0, (3.35)

respectively. The pressure can be eliminated from Eq. (3.35) by taking the r-derivative
of the second equation and using the r-component of the Stokes equation:

∂p

∂r
= η

(
∂2ur
∂r2

+
1
r2
∂2ur
∂φ2

+
1
r

∂ur
∂r

− 2
r2
∂uφ
∂φ

− ur
r2

)
,

so in terms of the stream function, Eq. (3.35) becomes

1
r2
∂2ψ

∂φ2
+

1
r

∂ψ

∂r
− ∂2ψ

∂r2
= 0,

3
r

∂3ψ

∂r2∂φ
+

1
r3
∂3ψ

∂φ3
− 3
r2

∂2ψ

∂r∂φ
+

4
r3
∂ψ

∂φ
= 0. (3.36)

Evaluating Eq. (3.36) at φ = π, one finds the two conditions

(λ− 1) [λA+ (λ− 2)C] sinλπ = 0 and λ(λ− 1)(λ− 2) [A+ C] cosλπ = 0. (3.37)

Solutions to Eq. (3.37) either have to obey sinλπ = 0 or cosλπ = 0, while the other
equation yields a relation between the two amplitudes A and C. This means there is
an infinite sequence of solutions λ = ±i/2 where i is an integer. But since the velocity
is a derivative of ψ, the velocity will diverge if λ < 1. Thus the first possible solution
is λ = 1, which leads to the solution

ψ = (A− C)r sinφ.

This is the velocity of a uniform velocity v in the y-direction, streaming past the cusp;
let us take this stream to be v = −U . The next possibility is λ = 3/2, which solves the
second equation in (3.37) and yields C = 3A from the first equation. Thus the total
solution, from a superposition of the first two, is

ψ = Ur sinφ− 4Ar3/2 sin3 φ

2
(3.38)

valid near the tip. Evaluating this along the crack φ = π the Cartesian components of
the velocity field are

u = −uφ =
∂ψ

∂r
= −6Ay1/2, v = −U. (3.39)
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Now we return to the near-field description, illustrated in Fig. 3.8 (left). We use the
flow field (3.39), observing that a stationary free surface will be a streamline of the
flow. Therefore, we have

∂h

∂y
=
u

v
≈ 6A

U
y1/2.

Integrating this equation, we finally arrive at

h ≈ 4A
U
y3/2. (3.40)

We see that the cusp is characterized by a 3/2 similarity index. In particular this
occurs near the tip h � y so that the cusp indeed becomes narrow, justifying the
approximation as a slit of vanishing thickness.

3.3.2 A generic picture

The above calculation suggests that the power law index is very specific to the equa-
tions of viscous flow. But what happens for other cusps? Take for example a cycloid,
i.e., the trajectory of a point on the boundary of a unit circle, rolling on a line (see
Fig. 3.10). As the point hits the line it experiences a sudden reversal in its direction
of motion and the trajectory must have a cusp, as shown in the middle of Fig. 3.10.
What is the structure of this cusp? To answer this question, consider the trajectory
of a point which is a distance ε > 0 inside the circle. Then the reversal is no longer so
sudden, and one finds the rounded cusp shown on the left. If on the other hand the
point lies a distance −ε outside of the circle, the curve self-intersects, as shown on the
right.

From elementary kinematic considerations one finds that for general ε the curve is
described by

x = s− (1 − ε) sin s, y = 1 − (1 − ε) cos s, (3.41)
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Fig. 3.10 In the middle, we show the singular curve of a cycloid, i.e., the line traced out by
a point on the boundary of a rolling circle. On the left, the position of the curve is moved a
distance ε > 0 toward the center of circle, yielding a smooth curve. For ε < 0, i.e., a point
outside the circle, the curve self-intersects.
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where s parameterizes the curve. As ε is varied smoothly from negative to positive, the
curve transforms from a self-intersecting shape to an open curve, with a cusp forming
the moment the loop is opened. Instead of analyzing this particular case we ask for

the structure of a family of smooth curves x(s, ε) which have a critical point
∂x
∂s

= 0
for ε = 0.

To analyze this situation we expand the coordinates of the curve in s, which par-
ameterizes the curve assuming that the critical point occurs for s = 0. Then to leading
order, we obtain

x = x0 + a1s, y = y0 + a2s.

The parameters x0 and y0 can be eliminated by a translation and a2 = 0 after a suitable
rotation. For a critical point to occur at s = 0 a1 must also vanish. Otherwise, the
curve would be a straight line locally. Thus we put a1 = ε where ε = 0 is the critical
point. For the curve not to become degenerate, we must expand to higher order. Thus
to leading order y = s2/2, normalizing the prefactor to 1/2 by rescaling s. In the
other coordinate, we must go to higher order, since the choice x = εs + bs2 would
once more result in a degenerate curve at the critical point ε = 0. Thus we obtain a
third-order polynomial x = εs+bs2/2+as3/3. Using a shift in s and another rotation,
the coefficient b can be eliminated so we finally obtain the universal form:

x = εs+ as3/3, y = s2/2. (3.42)

At the critical point ε = 0 this gives x ∝ y3/2, exactly as Eq. (3.40) obtained previously
from quite a laborious calculation. However, this calculation only applies to the critical
case ε = 0, whereas Eq. (3.42) also describes cusps which are rounded at the tip whose
curvature at the apex is κ = ε−1. With ε as the scaling parameter, Eq. (3.42) has the
universal similarity form

x = ε3/2Xc(σ), y = εYc(σ), (3.43)
Xc = ±σ + aσ3/3, Yc = σ2/2,

with the similarity variable σ = s/ε1/2. The + sign corresponds to the open curve (see
Fig. 3.10 (left)), the − sign to a self-intersecting curve (see Fig. 3.10 (right)).

A local analysis of the generalized cycloid curve (3.41) of course leads to the same
family as Eq. (3.42) with self-intersecting curves for ε < 0. However, is there any
connection to the original fluid mechanics problem shown in Fig. 3.8? An ingenious
calculation by Jeong and Moffatt [5], based on an exact solution of the Stokes equation
including surface tension, shows that this is indeed the case: it yields precisely the
similarity form (3.43) of the tip! The Jeong–Moffatt solution is based on a particular
flow geometry, where the two cylinders shown in Fig. 3.8 are replaced by a single vortex
dipole. However, the generic result in Eq. (3.42) suggests that the cusp structure should
be independent of any particular flow geometry. What Eq. (3.42) cannot predict is the
actual value of the radius of curvature r of the cusp, which is proportional to ε. Instead
of reproducing the full calculation [5] which is quite intricate, we merely give a scaling
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Fig. 3.11 The radius of curvature r of a viscous cusp as function of the capillary number Ca.
Lorenceau, E., Restagno, F., and Quere, D. (2003). Fracture of a viscous liquid. Phys. Rev.
Lett., 90, 184501.

argument which explains the exponential dependence on surface tension. Namely, the
effect of surface tension is to generate a point force of strength 2γ (the two sides
of the cusp pulling with force γ per unit length in the y-direction) at a distance r
inside the cusp. This corresponds to the force being smeared out over the size r of the
cusp. At the tip this generates an upward velocity −2γ/(4πη) ln r which is the velocity
generated at a distance r from a point force. For the tip to be stationary, the upward
velocity has to be compensated by the downward-sweeping velocity U leading to

r ∝ e−2πCa, (3.44)

where the capillary number is Ca = ηU/γ. This exponential relationship (the size of
the cusp goes to zero very rapidly with capillary number) is confirmed experimentally
in Fig. 3.11.

3.3.3 Entrainment

We now turn to the phenomenon shown in Fig. 3.2. If the capillary number is increased
further (for example the speed of the jet impacting the liquid pool is increased, or the
rollers in Fig. 3.8 increase their speed of rotation) the cusp undergoes a bifurcation
and a thin sheet of air shoots out from the tip of the cusp (5, 10; see also Fig. 3.8).
The idea is that the external fluid (often air) is dragged into the cusp and pushes it
open. A simplified calculation, which we present now, proceeds in three steps:

i. Calculate the pressure generated by the external fluid inside the cusp.
ii. Calculate the flow modification produced by the external load on the cusp faces.

iii. Calculate the modified interface.
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3.3.3.1 Pressure inside the cusp

According to Eq. (3.43), expressed in Cartesian coordinates, the cusp can be written
in the similarity form

h(y) = κ−3/4H(yκ1/2) (3.45)

where κ is the curvature at the cusp tip and

H(ξ) =
√
aξ(ξ +

√
2/a)

is a universal similarity function. All lengths have been made dimensionless by an
appropriate length scale, for example the distance between the rollers in Fig. 3.8. The
parameter a is simply a reminder of this arbitrariness in the choice of reference scale; it
can be scaled to unity by an appropriate choice of reference scale. The crucial feature
of Eq. (3.45) is that the profile is slender (h′ � 1) except of course at the tip itself.

Thus the flow of air inside the cusp can be described using Reynolds’ lubrication
idea: the flow field is expanded in the x-direction (normal to the cusp walls):

v = a0(y) + a2(y)x2 + . . .

We assume that the viscosity of the interior fluid is smaller by a factor λ relative to
that of the outer fluid (the viscous liquid). The flow field itself is predominantly in
the direction of the cusp (y-direction); we only need to consider the y-component of
Stokes’s equation, ∂yp = λη�v. Since the channel is narrow gradients in the transverse
direction are greater than those in the downstream direction, and so �v ≈ ∂2

xv. Thus
we obtain p′(y) = 2ληa2 where the pressure can be considered a function of y only.

Since the channel is closed at the cusp tip the total flux must vanish and we have

0 =
∫ h

0

vdx = ha0 +
a2

3
h3,

or a0 = −a2h
2/3. As before, we consider a constant stream of liquid −U at the exterior

of the cusp. So owing to the no-slip boundary condition we have −U = v(h) = 2a2h
2/3,

and finally

p′ = −3λη
U

h2
. (3.46)

Thus our first result shows that the pressure increases strongly as the cusp be-
comes narrower. It is this pressure increase which keeps two moving mechanical
parts from touching, which was the original application of lubrication theory. We
should also mention that the assumption of a constant external streaming is not
strictly correct [3], but rather that there is a slow logarithmic variation. Although
we can still use Eq. (3.46) in this case we will disregard this feature in the interest of
simplicity.
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3.3.3.2 The modified velocity field

Now we calculate how the velocity field in the exterior of the cusp is modified by
the presence of the lubrication pressure in Eq. (3.46). To that end, we come back
to the slit geometry shown in Fig. 3.9 (right). However, instead of the stress-free
homogeneous problem considered so far (which contributes the base flow) we now
consider a normal stress nσ = pn on the face of the cusp where p is the lubrication
pressure. As illustrated in Fig. 3.12 this leads to a perturbation to the velocity in the
x-direction, away from the cusp. This inhomogeneous problem can be solved by using
complex potential theory [11]. The result is

u(λ)(y) =
1
η

∫ ∞

0

p(y′)m(y′/y)dy′, (3.47)

m(x) = (1/2π) ln((1 +
√
x)/(1 −√

x)),

corresponding to an integral over the pressure distribution over the cusp.

3.3.3.3 The modified interface

Now the x-component of the velocity is made up of two contributions: the unperturbed
velocity field u(0) and u(λ) produced by the lubrication pressure. Since the free surface
is a streamline of the flow, we have

h′ = −(u(0) + u(λ))/U. (3.48)

Qualitatively, the cusp becomes unstable because u(0) and u(λ) have opposite signs
(see Fig. 3.12): Namely, as p increases, the x component of the velocity field decreases,
making the gap narrower. But as a result, p increases even more, eventually leading
to a bifurcation.

x

y
air
viscosity λη 

fluid
viscosity η 

h(y)

u(λ)

v(0)

u(0)

Fig. 3.12 A schematic of the flow inside and outside of the cusp.
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This mechanism is best analyzed by recasting everything in the scaling variables of
Eq. (3.45), which implies that the x-scale is κ−3/4 and the y-scale κ−1/2. First, from
Eq. (3.48), u(0) must scale like κ−3/4κ1/2 = κ−1/4. From Eq. (3.46) plub is estimated as
plub ∼ λκ, and thus u(λ) ∼ λκ1/2 from integrating once. The two opposing velocities
become comparable at some critical value of the parameter s = λκ3/4.

Using this scaling, in terms of the similarity variable ξ = yκ1/2 we have

h(y) = κ−3/4 (H(ξ) +Hc(ξ)) ,

where H ′
c = −κ1/4u(λ)/U is the correction to the profile. If we put p = λκP (ξ) we

obtain

P ′ = − 3ηU
(H +Hc)2

from Eq. (3.46). Note that the capillary pressure at the cusp tip is of order κ, so
a typical lubrication pressure is smaller by a factor of λ � 1. Thus the tip region
remains unchanged during the bifurcation, which is due to the pressure on the flanks
of the cusp alone. Transforming Eq. (3.47) into similarity variables, we obtain

u(λ) =
λκ1/2

η

∫ ∞

0

P (ζ)m(ζ/ξ)dζ = −λκ
1/2

η
ξ

∫ ∞

0

P ′(ζ)M(ζ/ξ)dζ

where M ′(x) = m(x), integrating by parts in the second step. Now we finally have

H ′
c(ξ) = −3sξ

∫ ∞

0

M(ζ/ξ)
[H(ζ) +Hc(ζ)]2

dζ, (3.49)

which is the equation controlling the stability of the cusp.
We will show that there is a critical value sc of s above which Eq. (3.49) has no

more solutions. But this means that

κc = s4/3c λ−4/3, (3.50)

i.e., the cusp curvature at which the transition occurs increases as the viscosity ration
becomes smaller. Instead of solving Eq. (3.49) numerically, we will now present a
simplified treatment which permits us to calculate the bifurcation analytically. The
idea is to pretend that Hc can be written as Hc ≈ cξ3/2, where c is to be determined.
Then we find that

(H +Hc)
2 =

(√
a− c

)2
ξ

(
ξ +

√
2√

a− c

)2

.

In other words, the form of the profile remains unchanged; only the parameter a has
shifted.
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To be able to close Eq. (3.49) we pretend that we can replace M(x) by its
asymptotic form for large arguments: M(x) ≈ 2x1/2/π. Then Eq. (3.49) turns into

3c
2
ξ1/2 =

6s
π
ξ1/2

∫ ∞

0

ζ1/2dζ

(H +Hc)
2 = 6sξ1/2

21/4√√
a− c

.

In other words, we obtain the equation

c =
21/4s√√
a− c

≡ f(c). (3.51)

The way in which Eq. (3.51) leads to a bifurcation is illustrated in Fig. 3.13. On
the left, we plot f(c) and c versus c—that is intersections correspond to solutions of
(3.51). Changing s merely corresponds to shifting f(c) up and down. This means there
is a critical value sc such that the two curves just touch. For lower values of s there is
no solution, for larger values there are two solutions. Thus if the solutions are plotted
with s and c on the axes, one obtains the bifurcation diagram shown on the right of
Fig. 3.13, known as a saddle-node bifurcation.

To find sc, note that

f ′(c) =
21/4s

2(
√
a− c)3/2

= 1

at the bifurcation. Since Eq. (3.51) must also be satisfied, we find

cc =
2
3
√
a, sc = 23/4

(√
a

3

)3/2

. (3.52)

As a caveat we reiterate that the simplified theory of Eq. (3.49) presented here is by
no means systematic, but nicely illustrates the mechanism of instability.
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Fig. 3.13 (Left) Construction of the solution; the solid circle marks the stable solution, the
open circle the unstable one. (Right) The bifurcation diagram.
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For s > sc there are two solutions, the larger one of which (as shown in the upper
branch of the bifurcation diagram) is stable, while the smaller one is unstable. Namely,
on the lower branch upon increasing the control parameter s, c increases. This means
that the cusp profile H−Hc becomes narrower, increasing the effect of the gas further:
this is an unstable situation. On the other hand, on the upper branch, the situation is
reversed, and upon increasing s the system is brought back to its original state. Thus
the solution corresponding to a narrower channel is stable, the other unstable. This is
the typical situation for a saddle-node bifurcation, which is found in many systems.
For example, the entrainment of a liquid film by a solid plate is governed by the same
type of bifurcation [4].

Combining Eq. (3.44) and Eq. (3.50), we find that

Cac = C − 2 ln 10
3π

log10 λ. (3.53)

The same quantities are plotted in Fig. 3.14. Unfortunately, the slope from a fit to the
data is about −0.22, smaller than expected from Eq. (3.53).

3.3.4 Creation of a sheet

After the bifurcation, a sheet of the outer fluid (air) shoots out from the cusp tip. The
simplest experiment to analyze this is that of a jet falling into a pool, illustrated in
Fig. 3.15. In the absence of the upward pull 2γ the profile relaxes to a gravity-capillary
balance. The jet enters smoothly, lubricated by the air. Thus the solution falls into
two parts, which we treat separately. In the end, the two pieces need to be stitched
together in a consistent fashion. This procedure is known as “matched asymptotics.”
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Fig. 3.14 The critical capillary number Cac for various combinations of liquids as well as
liquids and air [10]. The viscosity of the outer fluid is η0, so λ = η0/η. Lorenceau, E., Restagno,
F., and Quere, D. (2003). Fracture of a viscous liquid. Phys. Rev. Lett., 90, 184501.
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Fig. 3.15 A schematic of the transition shown in Fig. 3.2. Below the transition, a sharp cusp
is observed. Above it, a cylindrical sheet of air penetrates the fluid.

3.3.4.1 Thin film (inner solution)

In the spirit of lubrication theory, we expand the velocity field in the “thin” direction,
y (see Fig. 3.16 (right)):

u = −U + by +
p′

2η0
y2.

The jet entering at speed U is taken as y = 0. Near the point x = 0, where the jet
enters the pool, the fluid in the pool is still stationary and thus u(h) = 0. It thus
follows that b = U/h− p′h/(2η0) and the velocity field becomes

u = U
(y
h
− 1

)
− p′

2η0

(
y2 − yh

)
.

x

0

thin film (inner solution)

static meniscus (outer solution)

U

jet

x

y

U

n at rest

h(x)η
0

Fig. 3.16 (Left) The structure of the plunging jet problem. The outer fluid (air) forms a thin
film, matched to an outer meniscus. (Right) The lubrication problem for the air film.
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Finally, from the normal stress boundary condition at the top of the film we have
p = γκ = −γh′′.

The flux q through the film is

q = −
∫ h

0

udy =
Uh

2
+
p′h3

12η0
,

and so the lubrication equation can be written in the form

h′′′ =
12Ca0

h3

(
h

2
− q

U

)
(3.54)

where Ca0 = Uη0/γ is the capillary number based on the air viscosity η0. In the limit
of small Ca0 Eq. (3.54) has a similarity solution

h = Caα0H(ξ), ξ = x/Caβ0 , (3.55)

with

q

U
= QCaα0 .

Plugging this into Eq. (3.54), the terms are of the same order in the limit Ca0 → 0 if
α− 3β = 1 − 2α or β = α− 1/3 and the similarity equation becomes

H ′′′(ξ) =
12
H3

(
H

2
−Q

)
. (3.56)

Note that since β < α, the solution is flat in the limit Ca0 → 0, making the use of the
lubrication theory consistent.

The boundary conditions on Eq. (3.56) are such that for ξ → −∞ the solution
approaches a flat film: H(−∞) = Hf and Q = Hf/2. On the other hand in the outer
limit toward the meniscus (see Fig. 3.16) the film thickness grows quadratically, which
can be confirmed from an analysis of Eq. (3.56). Thus in the limit ξ → ∞ (the outer
limit), H has the expansion

H = aξ + bξ2,

where the constant a can be absorbed into a shift of ξ. Below we will match the
quadratic growth for ξ → ∞ to the outer solution. To that end we need a connec-
tion between b and the film thickness Hf , which we obtain by integrating Eq. (3.56)
numerically from the film toward the outer solution.

First, we rescale Eq. (3.56) according to g = H/Hf and η = ξ61/3/Hf to obtain

gηηη =
1
g3

(g − 1) . (3.57)
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To understand the parameters involved, we expand around the film solution: g = 1+ε.
Plugging this into Eq. (3.57), one obtains the linearized equation

ε′′′ = ε.

Thus in the neighborhood of the film we have the solution

g = 1 + a1e
ξ + e−ξ

[
a2 cos

(√
3ξ
2

)
+ a3 sin

(√
3ξ
2

)]
.

But for this solution to converge into a film in the limit ξ → −∞, the amplitudes a2

and a3 must vanish. In addition, the amplitude a1 can be absorbed into a shift in ξ
so there is really no free parameter.

This makes the numerics very simple: we solve Eq. (3.57), starting with the initial
condition g = 1 + eηi , where ηi is sufficiently negative for the linearized version of the
equation to be valid. We then integrate forward to a large positive value of η; we see
from Fig. 3.17 that g behaves asymptotically like g ≈ (0.643/2)η2 and thus

H ≈ 2.123
2Hf

ξ2, ξ → ∞. (3.58)

3.3.4.2 Meniscus (outer solution)

As the film of air enters the pool the free surface has to deform from its horizontal
equilibrium to a vertical slope, where it merges with the air film, see Fig. 3.18. The
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Fig. 3.17 Plot of gηη as obtained by integrating Eq. (3.57) forward. The asymptotic value of
the second derivative is 0.643.
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Fig. 3.18 Schematic of the meniscus joining the pool and the film.

typical length scale of this part of the solution is the capillary length lc =
√

γ

ρg
. Note

that the deformation of the free surface has changed from being controlled by viscosity
to a surface tension–gravity balance. The reason is that the air film lubricates the entry
of the jet, isolating the jet from its exterior. As a result, the exterior remains essentially
unforced.

A balance of hydrostatic pressure and capillary pressure (in units of lc) gives (see
Fig. 3.18):

ph = a− x = − x′′

(1 + x′2)3/2
.

Integrating, we obtain

(x− a)2

2
+

1
(1 + x′2)1/2

= A ≡ 1,

since x′ = 0 for x = a. At the “contact line” x = 0 where the meniscus joins the sheet
we have x′ = ∞, and so a =

√
2 and the curvature is κ =

√
2. Thus a local description

of the outer solution near x = 0, now written as a function of x, is

h(x) =
κ

2
x2 =

x2

√
2
. (3.59)

3.3.4.3 Matching

Now we make sure that the inner and the outer solutions agree, i.e., that the asymp-
totics in Eq. (3.58) (the inner solution as it evolves toward the outer solution) have
the same functional form as Eq. (3.59) (the outer solution as it reaches the film). This
is indeed the case, since both functional forms for h(x) are parabolae. To compare the
prefactors we have to convert both descriptions to the same variable using the scaling
in Eq. (3.55). Thus we obtain

h(x) =
2.123Caα0

2Hf

x2

Ca
2α−2/3
0

=
x2

√
2
.
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Fig. 3.19 Experimental measurements of the sheet thickness [9]. Lorenceau, E., Quere, D., and
Eggers, J. (2004). Air entrainment by a viscous jet plunging into a bath. Phys. Rev. Lett., 93,
254501. (Left) Thickness of an air film entrained by a glycerol jet. (Right) Thickness of oil films
entrained by a glycerol jet surrounded by oil, impacting a glycerol bath. The fit corresponds to
Eq. (3.61) with a prefactor of 0.5.

For this to be true in the limit Ca0 → 0 we firstly must have α = 2/3 to make the
left-hand side Ca0-independent. Comparing the remaining prefactors, we obtain the
matching condition

Hf =
2.123√

2
= 1.501. (3.60)

In conclusion, and restoring units, the film thickness is

h = 1.501lcCa
2/3
0 . (3.61)

The scaling is well confirmed by experimental measurements (see Fig. 3.19, solid lines),
but the prefactor is 0.5, considerably smaller than predicted. The reason for the
discrepancy is currently unknown. Another issue that remains to be studied is the
break-up of the sheet into bubbles, which occurs at a well-defined position along the
sheet. What is the mechanism of the break-up, and what is the size (distribution) of
the bubbles?

3.4 Conclusions

In this series of lectures, we have looked at two different types of free-surface singu-
larities: a time-dependent singularity, which leads to the formation of a bubble, and
a stationary cusp singularity, which leads to the formation of a sheet of air. In this,
we were guided by two key ideas: Scaling and Universality. As a result, we were able
to characterize both singularities in terms of scaling exponents, as well as a universal
scaling function. We also found that simple geometrical ideas sometimes help us to
understand the solution to a difficult partial differential equation.
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