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We consider a heavily loaded, lubricated contact between two elastic bodies at rel-
ative speed U, such that there is substantial elastic deformation. As a result of the
interplay between hydrodynamics and non-local elasticity, a fluid film develops be-
tween the two solids, whose thickness scales as U3/5. The film profile h is selected
by a universal similarity solution along the upstream inlet. Another similarity so-
lution is valid at the outlet, which exhibits a local minimum in the film thickness.
The two solutions are connected by a hyperbolic problem underneath the contact.
Our asymptotic results for a soft sphere pressed against a hard wall are shown to
agree with both experiment and numerical simulations. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4826981]

The lubricating flow between two moving solids serves to prevent wear, as well as to reduce
friction.1 In many important applications, and in particular for soft materials (rubbers, gels, or
tissue), the solid is deformed significantly with respect to the thickness of the lubrication layer, and
hydrodynamic and elastic effects become coupled.2–4 The resulting elasto-hydrodynamic equations
are non-local, so that progress on this problem has so far been limited mostly to numerical studies.1, 5, 6

In the limiting case of small elastic deformations, the problem can be solved perturbatively and
reduces to a set of ordinary differential equations.2, 3, 7 For the opposite case of strong deformations,
the contact area becomes flat as in a classical Hertzian contact,8 except for the effect of the thin
lubrication layer.9–11 Here we show that at the edge of the contact area, the film thickness is described
by a similarity solution, whose shape is governed by an integro-differential equation, as opposed
to the ordinary differential equations encountered in most singular fluid problems.12 By solving the
non-local similarity equation, we treat the selection problem for the film thickness, which turns out
to be a non-local version of Bretherton’s problem13 for the motion of a bubble in a tube. Our analysis
is reminiscent of that by Bissett10 for a two-dimensional line contact, who also formulated the
problem in terms of a local equation near the edge of the contact. However, we show that the present
formulation in terms of similarity solution allows for a detailed description of three-dimensional
contacts. In addition, we validate all results by numerical simulation of two- and three-dimensional
lubricated contacts, revealing the universality of the gap shape and the pressure profile, as well as
the scaling with load for the first time.

The viscous fluid flow in the narrow gap between the solids is well described by Reynolds’
lubrication theory,14 while the elastic part follows from the deformation of an elastic half-space in
response to a pressure distribution over the surface.8 The resulting coupled elasto-hydrodynamic
equations have been used for a long time to describe highly deformed contacts,1, 5, 6, 10, 15, 16 the
collision of spheres,17 and small deformations in the lubrication regime.2, 3

We first treat the two-dimensional problem of an elastic cylinder moving parallel to a non-
deformable wall, see Fig. 1. The generalization to two different elastic media and to other shapes,
including three-dimensional ones, is straightforward and will be outlined below. We consider a
reference system in which the cylinder is stationary, and the substrate moves at speed U to the right,

1070-6631/2013/25(10)/101705/6/$30.00 C©2013 AIP Publishing LLC25, 101705-1



101705-2 Snoeijer, Eggers, and Venner Phys. Fluids 25, 101705 (2013)

R

0

x

2b

R−hinlet
outlet

x

p

U

z

h(x)

0

FIG. 1. Sketch of an elastic cylinder with the solid moving to the right, equivalent to a cylinder moving to the left; at the top,
the pressure distribution in the gap.

so that the gap width is described by a function h(x). Assuming that the pressure is constant over the
gap width, Stokes’ equation ∇ p = η!u as well as the no-slip boundary conditions at both solids
are satisfied by the horizontal velocity component

u = U
(

1 − z
h

)
+ px

2η

(
z2 − zh

)
, (1)

where η is the fluid viscosity and px the pressure gradient in the horizontal direction. Integrating (1)
over the gap, one obtains the volume flux Q, which must be independent of x for an incompressible
fluid. Putting h∗ = 2Q/U, we obtain the lubrication equation

px = 6Uη
h − h∗

h3
. (2)

We remark that for fore-aft symmetric bodies, p as computed from (2) is antisymmetric with respect
to the line of symmetry, so that the load

L =
∫ ∞

−∞
pdx (3)

vanishes exactly. For the lubricated contact to support any load this symmetry must be broken; this
may be due to cavitation18 or, when the pressures are sufficiently large, by elastic deformation.

In Ref. 3, L is calculated perturbatively in the limit of vanishing load; like in Ref. 10 we now
treat the opposite limit of large loads, that lead to deformations that are large with respect to the gap
thickness but still small enough to be described by linear elasticity. For any value of L, the gap width
is then described by

h(x) = c + x2

2R
− 2(1 − σ 2)

π E

∫ ∞

−∞
p(x ′) ln |x − x ′|dx ′, (4)

where σ is Poisson’s ratio and E Young’s modulus. If the rigid wall is replaced by another elastic
medium with Poisson’s ratio σ ′ and Young’s modulus E′, the combination (1 − σ 2)/E is to be
replaced by the effective value (1 − σ 2)/E + (1 − σ ′2)/E′ throughout.8 The first parabolic part
of (4) represents the undeformed cylinder (and c is a constant to be determined), while the second
part accounts for the elastic deformation.3, 8 As is classical in this context, this elastic deformation
is solved by a Green’s function approach, where the kernel is the response to a localized force
on a two-dimensional medium. The mathematical problem consists in solving the coupled systems
(2) and (4)—the challenge lies in treating the nonlocal coupling introduced by (4).
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To begin, we recall the classical Hertz problem of a dry contact between an elastic cylinder and
a rigid wall. It will serve as the “outer” solution to our problem, valid outside an asymptotically
small region at the edge of the dry contact. For the dry contact, we must solve (4) alone, subject to
the condition that h be zero inside the contact region |z| ≤ b, and p = 0 for |z| > b. The result is that
the maximum pressure, the width of the contact, and the maximum deformation, respectively, are19

pm = 2L
πb

; b =
(

4L R(1 − σ 2)
π E

)1/2

; h0 = b2

2R
. (5)

From now on we will normalize x using b, the gap thickness h by 2h0, and p by pm, while keeping
the same notation as before. Then the exact solution of the Hertz problem is19

p =
√

1 − x2$
(
1 − x2) , (6)

h =
(
|x |

√
x2 − 1 − ln |x +

√
x2 − 1|

) $
(
x2 − 1

)

2
, (7)

where $ is the Heaviside step function. Formally, this is the solution to our problem for zero speed;
the semicircular pressure distribution (6) is shown as the dashed line at the top of Fig. 1.

Rewriting the lubrication equation using the scales (5) and (2) becomes

px = λ
h − h∗

h3
, (8)

where

λ = 3π2

4
ηU RE

L2(1 − σ 2)
(9)

is the sole dimensionless parameter of the problem. We are interested in the limit of small λ (i.e.,
large loads), while previous work2, 3 studied the same equations for large λ.

Note that px becomes infinite at the edge of the contact zone, where we have to introduce a thin
boundary layer to regularize the problem. To localize the elastic problem in that region, we take the
second derivative of (4) and integrate by parts once, to find in dimensionless variables:

h′′(x) = 1 − 1
π

∫ ∞

−∞

p′(x ′)
x − x ′ dx ′ ≡ 1 − H(p′)(x), (10)

where H( f ) denotes the Hilbert transform of f.20 We are looking for similarity solutions to
(8) and (10) of the form12

h = λα1 H±

(
x ± 1
λβ

)
, p = λα2 P±

(
x ± 1
λβ

)
, (11)

where the + sign refers to the inlet, the − sign to the outlet. Inserting (11) into (8) and (10), one
finds that α1 = (2β + 1)/3 and α2 = (1 − β)/3. To find β, note that the similarity profiles have
to match onto the Hertz solution (6), which behaves like p ≈

√
2(1 ± x) at the inlet and outlet,

respectively. In terms of the similarity variable ξ = (x ± 1)/λβ , this means that p ≈ λβ/2√±2ξ , and
hence P±(ξ ) ≈ λβ/2−α2

√
±2ξ for ξ → ±∞. But since the inner solution P should no longer depend

on λ, this means that α2 = β/2, and so α1 = 3/5, α2 = 1/5, and β = 2/5. These scalings have been
suggested before on the basis of numerical simulations,21 scaling,9 and asymptotic analysis.10, 11

Note that in the limit λ → 0 the profile is asymptotically flat: the characteristic scale for the gap
height h ∼ λ3/5 is much smaller than the scale for x ∼ λ2/5, ensuring that lubrication theory applies.

Using the scalings given above, (8) and (10) turn into the similarity equations

P ′ = H − H∗

H 3
, H ′′(ξ ) = −H(P ′)(ξ ), (12)

since the constant in (10) is subdominant. The difference between the inlet and outlet solutions is
that the boundary conditions for ξ → ±∞ are flipped; the conditions for P± given above result in
H ≈ H∗ ± H∗3/

√
±2ξ for ξ → ±∞, while on the other side H± ≈ 2

√
2(∓ξ )3/2/3 for ξ → ∓∞.

The local system of Eq. (12) is essentially equivalent to that found by Ref. 10.
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FIG. 2. Similarity profiles for the gap thickness H(ξ ) (circles) and the pressure P(ξ ) (triangles), as obtained for the inlet (a)
and for the outlet (b). The symbols are obtained from the similarity theory (12), while the solid lines are rescaled profiles of
the full numerical solution with λ = 10−3, λ = 10−4, λ = 10−5, and λ = 10−6.

We solved (12) numerically, both for the inlet and the outlet, using a generalized Newton–
Raphson method,22 with the boundary conditions given above. The results are shown in Fig. 2
(symbols). We find that the inlet solution selects a unique value of H∗ = 0.4467. . . , so that the
(dimensional) gap thickness under the cylinder becomes

hgap = H∗
(

π (3ηU R)3(1 − σ 2)2

2L E2

)1/5

. (13)

Since there is only a single free constant h∗ in (8), the asymptotic film thickness of the outlet
solution must be the same: we can use the universal constant H∗ selected at the inlet to calculate the
outlet solution. This mechanism is similar to the selection of the fluid film thickness around a large
bubble rising in a tube, known as the Bretherton problem,13 or of the film below a flexible scraper.23

Interestingly, the profile at the front of the Bretherton bubble is monotonic (like the similarity profile
at the inlet, cf. Fig. 2, top), but exhibits a local minimum at the rear, corresponding to the outlet profile,
Fig. 2, bottom. The pressure profile at the outlet becomes negative for positive ξ , corresponding to a
small negative pressure region of size λ2/5, as sketched at the top of Fig. 1. Except for these boundary
regions at the edge of the contact, the pressure distribution has become symmetric, a complete
reversal from the antisymmetric distribution found for the lubrication problem of an undeformed
cylinder.

We have checked the validity of our asymptotic approach by comparing to a series of numerical
simulations of (2) and (4) for increasingly small λ. Equations (2) and (4) and their three-dimensional
equivalents were solved using multigrid/multilevel techniques,6, 24 the efficiency of which allows to
solve 2D as well as 3D problems for small gap sizes at high accuracy. Profiles at the inlet and outlet
have been rescaled according to (11), and results are shown as the solid lines in Fig. 2. A small
deviation is visible for the largest λ, but then almost perfect agreement is found; note that there is
no adjustable parameter apart from a shift in ξ , which is arbitrary.

The qualitative shape of the gap profile, with a minimum at the outlet has already been reported
experimentally in, e.g., Refs. 25 and 26. More recently, measurements of the gap thickness between a
rubber ball and a plate moving at speed U have been reported for speeds varying over one-and-a-half
decades.27 The gap thickness hgap at the center of the sphere was found to scale with an exponent
α1 = 0.57 ± 0.05 (reported as α1 = 0.6 in Ref. 28), in good agreement with9, 10 and the current
analysis. This, however, is in significant disagreement with the scaling argument by Refs. 27–30,
predicting α1 = 1/2. The reason is that it is based on the erroneous assumption that viscous effects
act over the entire region of the Hertzian contact. Our similarity theory shows that this is not the
case, since viscosity acts only in the boundary layer near the inlet/outlet of the contact.
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FIG. 3. (Top) Comparison between the present theory and numerical simulations of inlet profiles underneath an elastic
sphere (λ/cos θ = 0.62 × 10−4, at angles of 0◦, 30◦, and 60◦) relative to the direction of motion (left edge in the bottom
figure). (Bottom) Simulation of the fluid film underneath a sphere pressed into a solid wall, thickness indicated by interference
fringes; the solid wall is moving to the right.

Now we come to the physically most relevant case of a three-dimensional elastic body which is
not cylindrical, for which an exact Hertz solution is in general not available. However, the behavior
of the pressure and of the deformation at the edge of the domain always has the form p = f

√
|*x |

and h = 4f(1 − σ 2)|*x|3/2/(3E) of the two-dimensional problem (*x is the distance from the
edge, and f is a constant), as a local analysis reveals.9 This means the boundary conditions on
the similarity solution for ξ → ±∞ carry over as well. Thus the above local solution of (12) can be
applied unchanged, except for an effective radius R which enters, and whose value might have to be
determined from a numerical solution of the contact problem.

In the case of a three-dimensional body, supporting a force F (rather than a force per unit length
L), the edge of the contact area is a closed curve in the plane, see Fig. 3 for the example of a sphere.
In the limit of small λ, the boundary layer is much thinner than the radius of curvature of the edge,
and gradients are dominated by the derivative in the direction of the normal vector. This means that
U is replaced by U cos θ , where θ is the angle between the normal and the direction of motion,
but otherwise the similarity equations remain the same. A problem, however, does exist for the
neighborhood of θ = π /2, for which the normal speed vanishes, and for which a special asymptotic
region needs to be found. Using the contact radius a = (3FR(1 − σ 2)/4E)1/3 and h3D = 4a2/(πR) to
non-dimensionalize the radial variable r and the film thickness, respectively, the Hertz solution for
the sphere8 leads to the identification

λ3D = π3

481/3

ηU cos θ R5/3 E1/3

F4/3(1 − σ 2)1/3
(14)

with f =
√

2, as in the cylindrical case. As seen in Fig. 3 (top), this provides excellent agreement
with the similarity profile calculated earlier, for various angles along the inlet side of the contact. To
connect to the outlet, one needs to solve the hyperbolic equation

∇
(
∇ ph3) = λ3D

cos θ
hx (15)
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for the film thickness, valid in the interior of the contact.31 One can show that for λ3D → 0 the
characteristics of (15) are parallel to U, so the constant H∗ for the outlet is determined by the
corresponding inlet solution under the same angle θ .

In conclusion, our similarity theory predicts film profiles which agree well with numerical
simulations, and the scaling of the film thickness is confirmed by experiment. In many engineering
applications, such as joints or bearings, pressures are large, so that the fluid viscosity becomes
pressure-dependent.4 However, the structure of the solution is still very similar to the profiles we
find. An asymptotic analysis of the case of large viscosity variations still needs to be performed.
Our theory also provides a physical rationale for an important empirical finding based on the results
of many numerical solutions of 2D and 3D problems with surface waviness: the deformation of
surface patterns in highly loaded contacts is uniquely determined by the ratio of the wavelength of
the perturbation to a so-called “inlet length.”32 This “inlet length” can now be understood as the
scale of the boundary layer identified in this Letter.
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