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A fundamental understanding of the filament thinning of viscoelastic fluids is
important in practical applications such as spraying and printing of complex materials.
Here, we present direct numerical simulations of the two-phase axisymmetric
momentum equations using the volume-of-fluid technique for interface tracking and
the log-conformation transformation to solve the viscoelastic constitutive equation.
The numerical results for the filament thinning are in excellent agreement with the
theoretical description developed with a slender body approximation. We show that
the off-diagonal stress component of the polymeric stress tensor is important and
should not be neglected when investigating the later stages of filament thinning. This
demonstrates that such numerical methods can be used to study details not captured
by the one-dimensional slender body approximation, and pave the way for numerical
studies of viscoelastic fluid flows.
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1. Introduction

The thinning of viscoelastic filaments and the formation of drops are important for
many practical applications (Basaran, Gao & Bhat 2013), ranging from the printing
of silver pastes for electronics to the deposition of cells for tissue engineering.
The development of accurate numerical modelling of viscoelastic flows, including
filament thinning and breakup, would provide significant advances to the fundamental
understanding of the physics at play and lead to the development of reproducible
fabrication techniques.

† Email address for correspondence: ldeike@princeton.edu
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A theoretical approach to investigate viscoelastic filament thinning has been the
use of a slender jet formulation, which is derived using the lubrication approximation
(Eggers & Villermaux 2008) coupled with the constitutive equation of the viscoelastic
model. This approximation results in a one-dimensional model, consisting of an
equation of motion to track the axial velocity component, uz, an advection equation to
track the filament thickness in the axial direction, h, and constitutive equations to track
the axial and radial components of the polymeric stress, σzz and σrr respectively. This
one-dimensional description has been used to investigate the thinning of viscoelastic
filaments, with a special emphasis given to the thinning of Oldroyd-B and finitely
extensible nonlinear elastic (FENE) fluids (Wagner et al. 2005; Clasen et al. 2006;
Ardekani, Sharma & McKinley 2010). The Oldroyd-B constitutive equations have
attracted considerable earlier attention because they exhibit the formation of the
‘beads-on-a-string’ structure, which denotes the formation of periodic droplets attached
along a filament (Li & Fontelos 2003). To fully capture this structure, the distribution
of stress components in the neck region connecting the thread with the drop should be
resolved in detail, which cannot be accomplished using the one-dimensional slender
formulation because the structure of drops attached to a thin filament is not slender.
Therefore, the complete equations should be simulated in an axially symmetric domain
to examine the velocity and stress field throughout the filament.

Simulations of the breakup of a viscoelastic filament in an axially symmetric
domain have been presented by Bousfield et al. (1986) and Étienne, Hinch & Li
(2006), where the problem could be simulated until the minimum filament thickness
thinned and reached 50 % and 30 % of the initial radius respectively. The increasing
stiffness of the problem prevents the simulation from proceeding further in time
because the Oldroyd-B model allows for the buildup of an infinite stress, so that the
filament should not break up as long as the numerical grid is sufficiently small. The
inkjet printing process motivates the simulation of viscoelastic jets, using a coupled
Lagrangian–Eulerian scheme with finite element discretization (Harlen, Rallison &
Szabo 1995; Morrison & Harlen 2010) and a constitutive model that allows for
breakup such as FENE-P. Like FENE-P, there are other constitutive models that avoid
the development of infinite stresses. For instance, the Giesekus model (Hulsen, Fattal
& Kupferman 2005) is used to represent shear-thinning polymer solutions, while
FENE-CR (Haward et al. 2012) is an empirical model that modifies the FENE-P
model to separate the shear-thinning effects from the elastic effects.

The complexity of viscoelastic filament thinning comes from the different time
scales involved. The time scales to characterize the viscoelastic thinning are the
relaxation time, λ, which is the time for the strain to relax when an applied stress
is removed, the viscous-capillary time scale, tv = η0R0/γ , and the inertia-capillary
time scale, tc =

√
ρR3

0/γ , where R0 is the filament radius, ρ is the density, γ is the
surface tension with air and η0 = ηs + ηp is the zero shear viscosity, with ηs and ηp

the solvent and polymeric viscosities respectively. This defines two non-dimensional
numbers, the Deborah number, De, and the Ohnesorge number, Oh (Bhat et al. 2010;
Turkoz et al. 2018),

De=
λ

tc
=

λ√
ρR3

0/γ
, Oh=

tv
tc
=

η0
√
ργR0

. (1.1a,b)
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The Ohnesorge number compares the inertia-capillary and viscous-capillary time
scales. The Deborah number compares the fluid relaxation time with the flow time
scale and in many cases is equivalent to the Weissenberg number (Dealy 2010),
Wi = λε̇, where ε̇ is the strain rate. For high-Deborah-number flows, simulations
performed with the conventional finite volume discretization of the full set of
equations have suffered from the phenomenon called the high-Weissenberg-number
problem (Keunings 1986; Renardy 2000). This problem arises when the Oldroyd-B
model is used and the stresses inside the filament continue to rise exponentially
without a limit. Eventually, the numerical simulations fail in resolving these high
stresses and stress gradients (Renardy 2000). Various transformations have been
proposed to overcome this challenge, such as the kernel-transformation (Balci et al.
2011) and log-conformation (Fattal & Kupferman 2005) techniques. Here, we use the
log-conformation technique to overcome the high-Weissenberg-number problem. This
technique is based on reformulation of the constitutive equation in terms of the matrix
logarithm of the conformation tensor. According to Fattal & Kupferman (2005), taking
the matrix logarithm reduces the exponential variation of the conformation tensor so
that this variation can be approximated by polynomials. We also tried to use the
kernel-transformation technique to solve for the polymeric stresses; however, this
technique did not lead to convergence for our configuration.

The rate of thinning of viscoelastic fluids can be described as the balance of surface
tension and elastic forces, with the assumption of a spatially constant and slender
profile (Bazilevskii et al. 1997). This leads to an exponential decrease of the minimum
radius of a thinning viscoelastic filament, hmin, with time (Clasen et al. 2006),

hmin(t)= h0 exp[−t/(3λ)], (1.2)

where h0 depends on the initial conditions. Equation (1.2) is used to evaluate
the relaxation time of viscoelastic fluids from the time evolution of hmin (Anna
& McKinley 2001). Therefore, an accurate numerical model should capture the
exponential polymeric thinning accurately. The axial polymeric stress, σzz, and the
velocity component can also be derived and are given by Clasen et al. (2006) as

σzz = σ0 exp(t/3λ),
∂uz

∂z
=

2
3λ
, (1.3a,b)

where σ0 is the stress value at the beginning of the exponential thinning. Accurate
capture of these relationships can be considered as a benchmark for numerical models
of viscoelastic fluids.

In this paper, we examine the thinning of an Oldroyd-B type of filament by using
direct numerical simulations and solving the axisymmetric two-phase incompressible
momentum equations with surface tension using the open source solver Basilisk
(Popinet 2015, 2018). The interface between the high-density viscoelastic liquid and
the low-density ambient air is reconstructed by a volume-of-fluid (VOF) method,
which has been validated for complex multiphase flows such as splashing (Howland
et al. 2016), breaking waves (Deike, Melville & Popinet 2016) and bubble bursting
(Deike et al. 2018). Here, we find that the time evolution of the thinning thread and
the axial distribution of velocity and polymeric stress components along the filament
follow the theoretical predictions. Moreover, while the one-dimensional approximation
can capture the trends of stresses successfully, the off-diagonal stress component of
the polymeric stress tensor is not negligible as the thinning progresses in time.
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2. Numerical simulations

We consider incompressible mass conservation and momentum equations with the
addition of the polymeric stress as an extra term in the stress tensor. These equations
are given by Clasen et al. (2006) as

∇ · u= 0, (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · σ , (2.2)

where the total stress tensor has two components, σ = σs + σp. The solvent viscous
stress tensor has the usual definition, σ

s
= 2ηsD, where ηs is the solvent viscosity and

D = (∇u+∇uT)/2 is the strain-rate tensor. The polymeric stress tensor is evaluated
according to the Oldroyd-B model as (Ardekani et al. 2010)

Dσp

Dt
= (∇u)T · σp + σp · (∇u)−

1
λ
σp +

ηp

λ
(∇u+∇uT), (2.3)

where ηp is the polymer viscosity and λ is the relaxation time as explained in
the previous section. We represent the governing parameters of filament thinning
following the study presented by Clasen et al. (2006). The total dynamic viscosity
of the polymer solution is denoted as η0 = ηs + ηp. An important parameter that
affects the stiffness of the problem is the viscosity ratio, defined as β = ηs/η0. As the
viscosity ratio decreases, the problem becomes numerically more challenging to solve.
An alternative and equivalent representation is to separate the relative dimensionless
contributions of the viscosity, νs = Ohβ for the solvent and νp = Oh(1 − β) for the
polymer (Clasen et al. 2006).

In the log-conformation technique, one solves for the conformation tensor c instead
of the polymeric stress tensor as given in (2.3). In the Oldroyd-B model, these two
tensors are related by σp = (λ/ηp)(c − I), where I is the identity matrix. Then, the
equation for the conformation tensor becomes

∂c

∂t
+ u · ∇c− (∇u · c+ c · ∇uT)=

1
λ
(c− I). (2.4)

The components of this tensor are solved using the numerical scheme presented by
Hao & Pan (2007) by first taking the matrix logarithm of the conformation tensor
as ψ = log c. This is possible because the conformation tensor is always positive
definite. The equation for ψ is easier to solve numerically because the logarithm of the
exponentially increasing polymeric stresses is resolved. After the equation is solved,
the conformation tensor is evaluated as c= exp(ψ). This implementation in Basilisk is
described in Lopez-Herrera, Popinet & Castrejón-Pita (2018). An initial perturbation,
ε, is introduced to initiate the capillary thinning of the filament, so that the initial
filament profile, h(z, 0), is

h(z, 0)/R0 = 1− ε sin
(

z/R0

4

)
, (2.5)

where the domain is 0 6 z/R0 6 2π. The problem is defined by the non-dimensional
numbers De, Oh and β introduced before, and the air–liquid density and viscosity
ratios, ρa/ρs and ηa/ηs, which are expected to have a small effect in the limit of large
ratios.
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Axisymmetric simulation of viscoelastic filament thinning

3. Results

3.1. Viscoelastic filament thinning
The simulation is started with a liquid cylinder of initial radius R0 and a perturbation
ε = 0.05. The non-dimensional parameters are De = 60, Oh = 3.16, β = 0.25,
ρa/ρs = ηa/ηs = 0.01, which are representative of a high-Deborah-number liquid
bridge thinning configuration. Figure 1(a–f ) shows the time evolution of the filament,
with the initially perturbed liquid bridge starting to thin (a,b), developing a rather
slender filament and a drop (c,d). The thinning proceeds exponentially (e, f ), with
viscoelastic effects allowing for the formation of a very thin film of radius down
to 5 % of the initial drop ( f ). Figure 1(g) shows the time evolution of the interface
from t/tc= 40 to t/tc= 300. The minimum filament radius, hmin, as a function of time
is presented in figure 1(h), showing excellent agreement with the prediction given
in (1.2), hmin(t)/R0 = (h0/R0) exp[−t/(3Detc)]. When we fit the polymeric thinning
from t/tc = 40 to t/tc = 300, we obtain h0/R0 = 0.30 for De = 60 with an R-square
error of 0.99, in very good agreement with the theory (Clasen et al. 2006), where
h0/R0 = Oh(1 − β)/De = 0.27. These results show that our model can capture the
polymeric thinning successfully and follow the theoretical prediction for the thinning.
From our numerical experiments, we note that changes of ρa/ρs and ηa/ηs have no
observable effects on our results as long as these ratios are smaller than 0.1. Change
of Oh only affects the exponential thinning starting time, with larger Oh delaying the
thinning due to viscous effects. We also note that decrease in β increases the stiffness
of the problem, and when β is reduced, the initial part of the thinning becomes faster
(due to the smaller solvent viscosity) before the exponential thinning starts.

The independence of the filament thinning on the grid size is shown in figure 1(h).
Three fixed grids with 28, 29 and 210 grid points along one edge of the square domain
(of length 2π) are shown to collapse together with the adaptive scheme, which uses
functions that refine the grid according to the numerical error in velocity and the
curvature in both the axial and radial directions. We see that the adaptive scheme
yields the same results at early time steps with the uniform 210 grid, but a higher
refinement is required at later times when the filament thins significantly, because the
thinning reaches a width close to the mesh size. The adaptive scheme refines the grid
up to 212, which allows the simulations to reach later time steps, and we can capture
the thinning up to 5.0 % of the initial radius with at least 40 grid points along the
thin filament in the radial direction.

The axial and radial velocity components are important to understand the filament
thinning. Figure 2(a) and (b) show the normalized velocity fields uz/us and ur/us
respectively as functions of the normalized length scales (z/R0 − π)/(h0/R0) and
(r/R0)/(h0/R0), with us=R0/tc at t/tc= 180. Figure 2(a) shows that there is an axial
flux directed towards the drop from the filament, which results in growth of the drop
while the connected filament thins. This figure also shows that the radial change of
axial velocity inside the thread can be neglected, so that ∂uz/∂r ≈ 0. Figure 2(b)
shows that the radial velocity is maximum in the neck region where the filament
is connected to the drop. Similarly, inside the polymeric thinning region, the axial
change of the radial velocity can be neglected, ∂ur/∂z≈ 0.

The axial velocity along the axial direction (r/R0 = 0) in the filament is presented
in figure 2(c), while the radial velocity along the radial direction (z/R0 = 2π) in
the filament is shown in figure 2(d). As shown by Clasen et al. (2006), using the
continuity equation, the axial velocity component along the thread is

uz(r, z, t)/us = 2ζ̇ z/R0 + uz,0, (3.1)
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h m
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/R
0

Adaptive
210
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28

(a)

(b)

(c)

(d)

(e)

(f)

(g) (h)

¡1/3De

t/tc = 0

t/tc = 30

t/tc = 40

t/tc = 100

t/tc = 200

t/tc = 300

Solution domain

0

0.5

1.0

1.5

2.0

1 2 3 4 5 6

t/tc

t/tcz/R0

r/
R 0

0 50 100 150 200 250 300

FIGURE 1. Filament thinning simulation results for Oldroyd-B constitutive equations in
an axially symmetric domain. The simulation parameters are similar to those presented
in Clasen et al. (2006): De= 60, Oh= 3.16 and β= 0.25. (a–e) Snapshots of the thinning
of the liquid bridge obtained by adding the interface profiles periodically at (a) t/tc = 0,
(b) t/tc= 30, (c) t/tc= 40, (d) t/tc= 150 and (e) t/tc= 300. The solution domain is axially
symmetric and is shown with the red rectangle with dashed edges in (a). Periodicity and
symmetry are used to create the images. The bottom boundary is the axially symmetry
axis. The left and right wall boundary conditions are symmetry boundary conditions as
well. (g) Evolution of the interface between t/tc = 50 and t/tc = 300. The time difference
between each curve is 1t = 20tc. The neck region connecting the thread with the drop
becomes steeper as time proceeds. (h) The minimum radius of the filament as a function
of time. Exponential thinning starts after t/tc ≈ 40. The exponential fit to the polymeric
thinning shows good agreement with the theory, which states for hmin that hmin(t)/R0 =

h0/R0 exp[−t/(3Detc)]. The exponential fit yields h0/R0 = 0.30 for De = 60 with an R-
square error of 0.9968. Convergence of this thinning is observed as a function of the grid
size, allowing the thinning to be solved for longer times.
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(z/R0 - π)/(h0/R0)

(z/R0 - π)/(h0/R0)
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0
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(c)
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s

0
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4
5
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-0.03

-0.02

-0.01

0

t/tc = 180
t/tc = 200
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t/tc = 240
t/tc = 260
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Eq. (3.1)

t/tc = 180
t/tc = 200
t/tc = 220
t/tc = 240
t/tc = 260
t/tc = 280
Eq. (3.1)

r/R0

-4

-3

-2

-1

0

-10 -5 0 5 10 0 0.01 0.02 0.03 0.04 0.05

r/
h 0

r/
h 0

FIGURE 2. The dimensionless axial and radial velocity components from our simulations,
where the length scale is normalized by the filament radius and the time scale is
normalized by the capillary time scale, tc =

√
ρR3

0/γ , so that the velocity scale is
us = R0/tc. (a) Colourmap of the axial velocity component, uz/us, at t/tc = 180 as a
representative case. An axial flux is directed towards the drop from the thinning thread,
and this flux results in the growth of the drop while the connected filament thins. The
radial change of axial velocity inside the thread can be neglected, so that ∂uz/∂r ≈ 0.
(b) Colourmap of the radial velocity component, ur/us, at t/tc = 180 as a representative
case. The radial velocity has a maximum at the interface where the filament is connected
to the drop. The axial change of the radial velocity can be neglected inside the thread,
∂ur/∂z≈ 0. (c) The axial velocity component along r/R0= 0 at different times. The linear
part corresponding to the thinning thread has a slope of 2ζ̇ at all times like the plotted
theory line. (d) The radial velocity component along z/R0 = 2π at different time steps.
This component should have a slope of −ζ̇ at all times like the plotted theory line.

where uz,0 = −4πζ̇ , so the axial velocity at the centre of the filament (z/R0 = 2π)
connecting two beads is equal to zero. The radial velocity component is

ur(r, z, t)/us =−ζ̇ r/R0, (3.2)

where ζ̇ = 1/3De is the coefficient for the slope. The velocity profiles obtained
numerically follow the theoretical predictions given by (3.1) and (3.2) closely, as
shown in figures 2(c) and 2(d) respectively.

Now, we examine the polymeric stress components, σzz, σrr and σrz, during the
exponential thinning. The one-dimensional slender body approximation does not
account for σrz in the formulation of the equation of motion (Clasen et al. 2006). In
addition, the one-dimensional formulation predicts that the dimensionless axial stress
will vary as σzz/σs = σ0/σs exp(t/3Detc), where σs = ρu2

s is the characteristic stress
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r/
h 0

FIGURE 3. Colourmaps of the polymeric stress components at t/tc = 180 as a
representative case that shows the typical distribution of stresses. (a) The axial component,
σzz/σs. (b) The radial component, σrr/σs. (c) The off-diagonal component, σrz/σs. We
observe that the axial stress has the largest magnitude. We also see that σrz is actually
significant and it cannot be neglected compared with σrr, while remaining small compared
with σzz.

scale. The stress components at a representative time during the exponential thinning
are presented in figure 3, and indicate that σrz cannot be neglected compared with
σrr. This result is significant because the one-dimensional lubrication approximation
does not take σrz into account due to the formulation of the slender jet equations. We
also note that the distributions of σrz and σrr are very similar, with their maxima in
magnitude around the neck region.

The axial stress component, σzz, is shown as a function of the rescaled axial
direction, (z/R0 − π)/(h0/R0), along r/R0 = 0 for different time steps in figure 4(a).
We see that the axial stress maintains a flat profile inside the thinning thread over
time, while the stress inside the drop is negligible. This means that as the thinning
thread supplies the attached drop with more material, a growing stress has to be
supported by the thread itself to sustain the integrity of the structure. The change
of the axial stress inside the filament as a function of time during the polymeric
thinning is shown in figure 4(b) and is found to follow the theoretical prediction,
with σ0/σs = 5.83 evaluated in the simulation for De = 60 with an R-square error
of 0.98. This value is close to the predicted σ0/σs = 2/(h0/R0) = 6.66 from the
one-dimensional modelling (Clasen et al. 2006).

3.2. Polymeric axial stress profile
Figure 5(a) shows the distribution of σzz as a function of the rescaled radial direction,
r/h0, at different times, and we observe a peculiar profile. As the time proceeds,
the peak stress and the stress at r = 0 increase exponentially, and the peak stress
location shifts towards the symmetry axis as the filament thins. We show in the inset
of figure 5(a), by rescaling the axial stress component along the interface with the
stress at r = 0, σzz,r=0, and the radial coordinate with the interface thickness at that
time, r/hmin(t), so that r/hmin = 1 denotes the interface, that the radial distribution of
the stress is similar in time where the ratio of the peak stress to the stress at the
centre of the filament is preserved along with the size of the stress bump. We note that
this profile is similar to the ‘boundary layer stress profile’ in stretching viscoelastic
filament simulations presented in the literature (Yao & McKinley 1998).

The radial distribution of the polymeric axial stress depicted in figure 5(a) is
unexpected. We investigate the width of the non-uniform region and the magnitude
of the peak stress change with the grid size. Figure 5(b) shows the results at the
time step t/tc = 40 for increasing grid size, with 2N the number of grid points along
the filament in the axial direction (N from 8 to 12). The time t/tc = 40 is chosen
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FIGURE 4. The evolution of the axial stress component, σzz, along the filament. (a) A plot
of σzz/σs as a function of the rescaled axial location, (z/R0−π)/h0, at different times; σzz
is constant along the filament, as predicted by the slender body approximation; the stress
gradient between the drop and the thread becomes larger as the filament thins. (b) A plot
of σzz/σs at r/R0 = 0 as a function of time; the stress increases exponentially with time,
σzz(z, t)/σs = σ0/σs exp(t/3Detc), with the fitted value σ0/σs = 5.83 for De = 60 with an
R-square error of 0.99.
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FIGURE 5. The radial distribution of the polymeric axial stress, σzz. (a) A plot of σzz/σs
as a function of the scaled radial coordinate, r/h0, along the filament. The stress goes to
zero beyond the interface with the ambient air. The stress profile exhibits similarity, so
that all data can be rescaling into a single curve by σzz(r/R0= 0)/σs and r/hmin(t) (inset).
(b) The grid size dependence of the stress profile (evaluated at t/tc= 40). As the number
of grid points, 2N , is increased, the peak stress location is pushed towards the interface
and the size of the bump gets smaller. The inset shows that the normalized bump size,
(hmin− x0)/hmin, decreases as the grid size increases, (2π/2N)/(hmin/R0), where x0 denotes
the distance where the stress starts to deviate from the uniform value measured from the
centre, r= 0. The dashed line is a power-law fit, 1.97x−0.50.

because it is after the polymeric thinning starts and before the 28 grid filament
breaks up. The width of the non-uniform stress region decreases with increasing
refinement and the peak stress location is pushed towards the filament–air interface.
The normalized non-uniform stress bump width, (hmin − x0)/hmin, as a function of the
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Experiment (Clasen et al. 2006)
Simulation (current study)

FIGURE 6. The self-similar thinning obtained from the present simulation and the
experimental data from Clasen et al. (2006) for a liquid bridge with R0 = 3 mm, γ =
37 mN m−1, ρ = 1026 kg m−3, solvent viscosity ηs = 65.2 Pa s, polymeric viscosity
ηp = 9.8 Pa s and relaxation time λ= 8.1 s. The last nine experimental profiles taken in
intervals of 0.5 s are shown, and rescaled by hmin measured experimentally. The numerical
results are for 10t/tc time steps from t/tc = 220 to t/tc = 300, with z0 the location where
the radial velocity component is maximum and hmin determined numerically. Both the
numerical and the experimental data present a self-similar evolution with time, but the
experimental data are much sharper.

grid size, 2π/(2N)/hmin, at time t/tc = 40 is shown in figure 5(d), where x0 is the
distance where the stress starts to deviate from the uniform value measured from the
centre, r = 0. We see that the width of the non-uniform stress region as a function
of the normalized grid size decreases according to a power-law relationship, with a
coefficient of −0.5. As the grid size increases, the bump width gets smaller with an
unchanged peak stress value, suggesting that the bump would become infinitely thin
as the resolution keeps increasing, with a peak value that does not depend on the
resolution. While this grid-dependent polymeric axial stress structure, which might be
a numerical artefact, is observed, it does not have an apparent effect on the evolution
of the minimum filament thinning and velocity components, which are in excellent
agreement with the predictions presented in (1.2) and (1.3).

3.3. Self-similar profile and comparison with experiments
We compare our numerical results for the interface profiles with the experimental
data presented by Clasen et al. (2006) in figure 6, showing r/hmin as a function of
(z − z0)/hmin for the final stages of the thinning. The numerical profiles are plotted
for 10t/tc intervals from t/tc = 220 to t/tc = 300, with z0 the numerically determined
axial location of the maximum radial velocity. We observe that while both the
numerical and experimental profiles present clear self-similar dynamics, the slopes
of the experimental profiles turn out to be steeper than the slopes of the numerical
results, as discussed for the one-dimensional modelling (Clasen et al. 2006).

3.4. Simulating the beads-on-a-string structure
Our numerical model can be used for the canonical beads-on-a-string structure,
as an example for possible applications. We consider parameters within the
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t/tc = 7 t/tc = 12

t/tc = 13 t/tc = 14

0

0.5
1.0

r/
R 0

z/R0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

uz/us

-1
0
1

(a) (b)

(c) (d)

(e)

FIGURE 7. The beads-on-a-string structure simulated with the two-dimensional model in
an axially symmetric domain. (a–d) Snapshots of the thinning liquid bridge that results in
the satellite drop formation at (a) t/tc = 7, (b) t/tc = 12, (c) t/tc = 13 and (d) t/tc = 14.
(e) Colourmap of the axial velocity component, uz/us, at t/tc= 14, within the area shown
by the dashed line in (d). Inside the filament, there are fluxes towards both the large and
the small drops.

range of existence of beads-on-a-string (Wagner et al. 2005), and studied using
a one-dimensional model with parameters by Ardekani et al. (2010), Oh = 0.04,
De = 0.8, β = 0.27, and an initial sinusoidal perturbation ε = 0.05. We obtain the
expected beads-on-a-string structure with two large drops connected with a satellite
droplet, as shown in figure 7(a–d). The aspect ratio of the satellite to the large droplet
is found to be similar to previous one-dimensional work (Ardekani et al. 2010). We
also show the distribution of the axial velocity, uz/us, in figure 7(e). It is seen that
the filament thins while the fluxes are directed towards both the satellite and the main
drops.

4. Conclusions

We present direct numerical simulations of the two-phase axisymmetric momentum
equations for viscoelastic thinning of an Oldroyd-B fluid, and employ the log-
conformation technique to overcome the high-Weissenberg-number problem. The
thinning of the filament and its velocity as a function of time are successfully
modelled and can be described by the one-dimensional theory derived from slender
body approximations. The polymeric stress components of the thinning filament
are examined, and the off-diagonal stress component, σrz, is not negligible, while
it is not taken into account by one-dimensional formulations. Furthermore, the
axial stress component, σzz, exhibits a self-similar radial distribution in time. This
structure exhibits grid-dependent properties while not having an apparent effect
on the outcome of the simulation results in terms of the velocity and filament
thinning. It should be noted that, using the Oldroyd-B model, we did not capture
the blistering instability observed experimentally on stretched viscoelastic filaments
(Chang, Demekhin & Kalaidin 1999; Sattler, Wagner & Eggers 2008), which may
require the implementation of an extension of the Oldroyd-B model (Eggers 2014)
to solve for the polymer and solvent phases inside the filament separately. With this
study, we demonstrate the ability to perform simulations of complex two-dimensional
viscoelastic flows, which opens the way for the development of viscoelastic models
for real-life applications.
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