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Abstract Surface-tension-related phenomena have fascinated researchers for a long
time, and the mathematical description pioneered by Young and Laplace
opened the door to their systematic study. The time scale on which
surface-tension-driven motion takes place is usually quite short, making
experimental investigation quite demanding. Accordingly, most theo-
retical and experimental work has focused on static phenomena, and in
particular the measurement of surface tension, by physicists like Eötvös,
Lenard, and Bohr. Here we will review some of the work that has even-
tually lead to a closer scrutiny of time-dependent flows, highly non-
linear in nature. Often this motion is self-similar in nature, such that it
can in fact be mapped onto a pseudo-stationary problem, amenable to
mathematical analysis.
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Introduction
Flows involving free surfaces lend themselves to observation, and thus

have been scrutinized for hundreds of years. The earliest theoretical
work was concerned almost exclusively with the equilibrium shapes of
fluid bodies, and with the stability of the motion around those shapes.
Experimentalists, always being confronted with physical reality, were
much less able to ignore the strongly non-linear nature of hydrodynam-
ics. Thus many of the non-linear phenomena, that are the focus of at-
tention today, had already been reported 170 years ago. However, with
no theory in place to put these observations into perspective, non-linear
phenomena took the back seat to other issues, and were soon forgotten.
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Figure 14.1. A figure from Savart’s original paper (Savart, 1833), showing the
breakup of a liquid jet 6 mm in diameter. It clearly shows the succession of main and
satellite drops as well as drop oscillations.

Here we report on the periodic rediscovery of certain non-linear features
of drop formation, by retracing some of the history of experimental ob-
servation of surface tension driven flow. Recently there has been some
progress on the theoretical side, which relies on the self-similar nature
of the dynamics close to pinching.

1. Savart and Plateau
Modern research on drop formation begins with the seminal contri-

bution of (Savart, 1833). He was the first to recognize that the breakup
of liquid jets is governed by laws independent of the circumstance under
which the jet is produced, and concentrated on the simplest possible
case of a circular jet. Without photography at one’s disposal, experi-
mental observation of drop breakup is very difficult, since the timescale
on which it is taking place is very short.

Yet Savart was able to extract a remarkably accurate and complete
picture of the actual breakup process using his naked eye alone. To this
end he used a black belt, interrupted by narrow white stripes, which
moved in a direction parallel to the jet. This effectively permitted a
stroboscopic observation of the jet. To confirm beyond doubt the fact
that the jet breaks up into drops and thus becomes discontinuous, Savart
moved a “slender object” swiftly across the jet, and found that it stayed
dry most of the time. Being an experienced swordsman, he undoubtedly
used this weapon for his purpose (Clanet, 2003). Savart’s insight into
the dynamics of breakup is best summarized by Fig.14.1 taken from his
paper (Savart, 1833).

To the left one sees the continuous jet as it leaves the nozzle. Pertur-
bations grow on the jet, until it breaks up into drops, at a point labeled
“a”. Near a an elongated neck has formed between two bulges which
later become drops. After breakup, in between two such drops, a much
smaller “satellite” drop is always visible. Owing to perturbations re-
ceived when they were formed, the drops continue to oscillate around a
spherical shape. Only the very last moments leading to drop formation
are not quite resolved in Fig.14.1.
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Figure 14.2. Breakup of a liquid column of oil, suspended in a mixture of alcohol
and water (Plateau, 1849). First small perturbations grow, leading to the formation
of fine threads. The threads each break up leaving three satellites.

From a theoretical point of view, what is missing is the realization that
surface tension is the driving force behind drop breakup, the groundwork
for the description of which was laid by (Young, 1804) and (Laplace,
1805). Savart however makes reference to mutual attraction between
molecules, which make a sphere the preferred shape, around which oscil-
lations take place. The crucial role of surface tension was recognized by
(Plateau, 1849), who confined himself mostly to the study of equilibrium
shapes. From this insight it follows as well whether a given perturbation
imposed on a fluid cylinder will grow or not. Namely, any perturbation
that will lead to a reduction of surface area is favored by surface ten-
sion, and will thus grow. This makes all sinusoidal perturbations with
wavelength longer than 2π unstable. At the same time as Plateau, Ha-
gen published very similar investigations, without quite mastering the
mathematics behind them (Hagen, 1849). The ensuing quarrel between
the two authors, published as letters to Annalen der Physik, is quite
reminiscent of similar debates over priority today.

A little earlier Plateau had developed his own experimental technique
to study drop breakup (Plateau, 1843), by suspending a liquid bridge
in another liquid of the same density in a so-called “Plateau tank”,
thus eliminating the effects of gravity. Yet this research was focused
on predicting whether a particular configuration would be stable or not.
However Plateau also included some experimental sketches (cf. Fig.14.2)
that offer interesting insight into the nonlinear dynamics of breakup for a



166 NONSMOOTH MECHANICS AND ANALYSIS

Figure 14.3. Two photographs of water jets taken by (Rayleigh, 1891), using a short-
duration electrical spark.

viscous fluid: first a very thin and elongated thread forms, which has its
minimum in the middle. However, the observed final state of a satellite
drop in the center, with even smaller satellite drops to the right and
left indicates that the final stages of breakup are more complicated: the
thread apparently broke at 4 different places, instead of in the middle.

Following up on Plateau’s insight, (Rayleigh, 1879) added the flow
dynamics to the description of the breakup process. At low viscosities,
the time scale τ of the motion is set by a balance of inertia and surface
tension:

τ =

√
r3ρ

γ
. (14.1)

Here r is the radius of the (water) jet, ρ the density, and γ the surface
tension. For the jet shown in Fig.14.1, this amounts to τ = 0.02 s, a
time scale quite difficult to observe with the naked eye. Rayleigh’s linear
stability calculation of a fluid cylinder only permits to describe the initial
growth of instabilities as they initiate near the nozzle. It certainly fails
to describe the details of drop breakup leading to, among others, the
formation of satellite drops. Linear stability analysis is however quite a
good predictor of important quantities like the continuous length of the
jet.

2. Photography
Rayleigh was well aware of the intricacies of the last stages of breakup,

and published some experimental pictures himself (Rayleigh, 1891). Un-
fortunately, these pictures were produced by a single short spark, so they
only transmit a rough idea of the dynamics of the process. However, it
is again clear that satellite drops, or entire sequences of them, are pro-
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Figure 14.4. A sequence of pictures of a drop of water falling from a pipette (Lenard,
1887). For the first time, the sequence of events leading to satellite formation can be
appreciated.

duced by elongated necks between two main drops. Clearly, what is
needed for a more complete understanding is a sequence of photographs
showing one to evolve into the other.

The second half of the 19th century is an era that saw a great resur-
gence of the interest in surface tension related phenomena, both from a
theoretical and experimental point of view. The driving force was the
central role it plays in the quest to understand the cohesive force be-
tween fluid particles (Rowlinson, 2002), for example by making precise
measurements of the surface tension of a liquid. Many of the most well-
known physicists of the day contributed to this research effort, some
of whom are known today for their later contributions to other fields
(Eötvös, 1886, Quincke, 1877, Lenard, 1887, Bohr, 1909). A particular
example is the paper by (Lenard, 1887), who observed the drop oscilla-
tions that remain after break-up, already noted by Savart. By measuring
their frequency, the value of the surface tension can be deduced.

To record the drop oscillations, Lenard used a stroboscopic method,
which enabled him to take an entire sequence with a time resolution that
would otherwise be impossible to achieve. As more of an aside, Lenard
also records a sequence showing the dynamics close to breakup, leading
to the separation of a drop. It shows for the first time the origin of the
satellite drop: first the neck breaks close to the main drop, but before it
is able to snap back, it also pinches on the side toward the nozzle. The
presence of a slender neck is intimately linked to the profile near the
pinch point being very asymmetric: on one side it is very steep, fitting
well to the shape of the drop. On the other side it is very flat, forcing
the neck to be flat and elongated.

However, as noted before, few people took note of the fascinating
dynamics close to breakup. From a theoretical point of view, tools were
limited to Rayleigh’s linear stability analysis, which does not include a
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Figure 14.5. A drop of water (left) and a glycerol-alcohol mixture (right) falling from
a pipette (Edgerton et al., 1937). The drop of viscous fluid pulls out long necks as it
falls.

mechanism for satellite formation. Many years later, the preoccupation
was still to find simple methods to measure surface tension, one of them
being the “drop weight method” (Harkins and Brown, 1919). The idea
of the method is to measure surface tension by measuring the weight of a
drop falling from a capillary tubes of defined diameter. Harold Edgerton
and his colleagues looked at time sequences of a drop of fluid of different
viscosities falling from a faucet (Edgerton et al., 1937), rediscovering
some of the features observed originally by Lenard, but adding some
new insight.

Fig.14.5 shows a water drop falling from a faucet, forming quite an
elongated neck, which then decays into several satellite drops. The mea-
sured quantity of water thus comes from the main drop as well as from
some of the satellite drops; some of the satellite drops are projected up-
ward, and thus do not contribute. The total weight thus depends on
a very subtle dynamical balance, that can hardly be a reliable measure
of surface tension. In addition, as Fig.14.5 demonstrates, a high viscos-
ity fluid like glycerol forms extremely long threads, that break up into
myriads of satellite drops. In particular, the drop weight cannot be a
function of surface tension alone, but also depends on viscosity, making
the furnishing of appropriate normalization curves unrealistically com-
plicated.

3. Modern times
After Edgerton’s paper, the next paper that could report significant

progress in illuminating non-linear aspects of drop breakup was pub-
lished in 1990 (Peregrine, 1990). Firstly, it contains a detailed sequence
of a drop of water falling from a pipette D = 5.2mm in diameter, re-
newing efforts to understand the underlying dynamics. Secondly, it was
proposed that close to pinch-off the dynamics actually becomes quite



A brief history of drop formation 169

Figure 14.6. A high-resolution sequence showing the bifurcation of a drop of water
(Peregrine, 1990).
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Figure 14.7. A sequence of interface profiles of a jet of glycerol close to the point
of breakup (Kowalewski, 1996). The experimental images correspond to t0 − t =
350μs, 298μs, and 46μs. Corresponding analytical solutions based on self-similarity
of the entire profile are superimposed.

simple, since any external scale cannot play a role. Namely, if the mini-
mum neck radius hmin is the only relevant length scale, and if viscosity
does not enter the description, than at a time t0 − t away from breakup
on must have

hmin ∝
(

γ

ρ

)2/3

(t0 − t)2/3 (14.2)

for dimensional reasons. At some very small scale, one expects viscosity
to become important. The only length scale that can be formed from
fluid parameters alone is

�ν =
ν2ρ

γ
. (14.3)

Thus the validity of (14.2) is limited to the range D  hmin  �ν

between the external scale and this inner viscous scale.
These simple similarity ideas can in fact be extended to obtain the

laws for the entire profile, not just the minimum radius (Eggers, 1993).
Namely, one supposes that the profile around the pinch point remains
the same throughout, while it is only its radial and axial length scales
which change. In accordance with (14.2), these length scales are them-
selves power laws in the time distance from the singularity. In effect, by
making this transformation one has reduced the extremely rapid dynam-
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ics close to break-up to a static theory, and simple analytical solutions
are possible.

The experimental pictures in Fig.14.7 are again taken using a stro-
boscopic technique, resulting in a time resolution of about 10μs (Kowa-
lewski, 1996). Since for each of the pictures the temporal distance away
from breakup is known, the form of the profile can be predicted without
adjustable parameters. The result of the theory is superimposed on the
experimental pictures of a glycerol jet breaking up as black lines. In each
picture the drop about to form is seen on the right, a thin thread forms
on the left. The neighborhood of the pinch point is described quite well;
in particular, theory reproduces the extreme asymmetry of the profile.
We already singled out this asymmetry as responsible for the formation
of satellite drops.

One of the conclusions of this brief overview is that research works
in a fashion that is far from straightforward. Times of considerable
interest in a subject are separated by relative lulls, and often known
results, published in leading journals of the day, had to be rediscovered.
However from a broader perspective one observes a development from
questions of (linear) stability and the measurement of static quantities,
to a focus that is more and more on the (non-linear) dynamics that
makes fluid mechanics so fascinating.
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