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Most of our understanding of moving contact lines relies on the limit of small capillary
number Ca. This means the contact line speed is small compared to the capillary speed
γ /η, where γ is the surface tension and η the viscosity, so that the interface is only weakly
curved. The majority of recent analytical work has assumed in addition that the angle
between the free surface and the substrate is also small, so that lubrication theory can
be used. Here, we calculate the shape of the interface near a slip surface for arbitrary
angles, and for two phases of arbitrary viscosities, thereby removing a key restriction
in being able to apply small capillary number theory. Comparing with full numerical
simulations of the viscous flow equation, we show that the resulting theory provides an
accurate description up to Ca ≈ 0.1 in the dip coating geometry, and a major improvement
over theories proposed previously.

Key words: contact lines

1. Introduction

The theory of the moving contact line at small capillary numbers was founded by Voinov
(1976) and generalized to arbitrary viscosity ratios M by Cox (1986). The problem is that
if the no-slip boundary condition were to apply down to arbitrarily small scales (Huh
& Scriven 1971; Bonn et al. 2009; Snoeijer & Andreotti 2013), a contact line would
not be able to move. Therefore, one needs to invoke a small length scale on which the
conventional equations for fluid motion are relaxed. The simplest, and often physically
realistic, such choice is the introduction of a Navier slip length λ (Lauga, Brenner & Stone
2008), over which a fluid may slip past a solid interface. Thus we will always assume
that, as the wall is approached, the tangential velocity relative to the wall is λ times the
shear rate. The slip length is generally of the order of a few nanometres, but increases
somewhat for hydrophobic surfaces (Barrat & Bocquet 1999; Cottin-Bizonne et al. 2005).
A slip length is used very widely in contact line problems (Bonn et al. 2009; Snoeijer &
Andreotti 2013; Vandre, Carvalho & Kumar 2014; Sprittles 2015) in order to regularize the
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900 A8-2 T. S. Chan and others

local flow and to thus allow contact line motion, but is usually not important elsewhere in
the flow. The inner length scale λ is contrasted with an outer ‘macroscopic’ length scale
R, for example the radius of a spreading drop or the capillary length scale in the problem.

Cox (1986) clarified the structure of low capillary number problems in terms of the ratio
ε = ε0λ/R between the two length scales; ε0 is a numerical factor to be determined. From
a general analysis, Cox (1986) obtained (see also Sibley, Nold & Kalliadasis 2015)

g(θeq) = g(θapp)+ Ca ln ε, (1.1)

where

g(θ) =
∫ θ

0

u − cos u sin u
2 sin u

du, (1.2)

for a single phase (a liquid volume, neglecting the effect of a surrounding gas). Here, θeq is
the (equilibrium) contact angle on the microscopic scale, and θapp is the apparent contact
angle. In the case of a small spreading drop, this is the angle a spherical cap, fitted to the
drop, makes with the solid. In Cox’s analysis, the dimensionless capillary number

Ca = Uη
γ

(1.3)

is assumed small, where U is the speed of the contact line. Here, η is the fluid viscosity,
and γ is the surface tension. For steady flow, it is often more convenient to instead think
of the contact line being stationary and the wall to be moving at speed U, because we can
then think of the interface as time independent.

In the present paper, we take the approach proposed by Snoeijer (2006) and Chan et al.
(2013), who describe the interface shape as an evolution equation for the local slope θ . For
simplicity, we neglect external forcing (such as gravity), which only becomes important on
a macroscopic scale. The requirement that the interface (described by its thickness h(s)),
is assumed steady, while the substrate is moving at speed U to the right, then leads to the
‘generalized lubrication’ (GL) equation. One obtains (Snoeijer 2006)

d2θ

ds2
= 3Ca F(θ,M)

h2
, (1.4)

where s is the arclength along the interface, and M = ηg/ηl the ratio of the viscosity of the
outer phase (for example a gas), and the viscosity of the liquid (cf. figure 1). In the case of
a single (liquid) phase only,

F(θ) ≡ F(θ, 0) = − 2 sin3 θ

3(θ − sin θ cos θ)
. (1.5)

Here, F(θ) is related to g(θ) by F(θ) = (2/3)g(θ) sin2 θ . The full expression F(θ,M) for
two fluids is given in (2.13). To close (1.4), one has to simultaneously solve the geometrical
relations

dh
ds

= sin θ,
dx

ds
= cos θ, (1.6a,b)

to find the interface shape h(x) in a Cartesian coordinate system. Integrating (1.4), making
use of the limit of small Ca, (1.6) leads precisely to the structure given by (1.1).

In contrast to the approach of asymptotic matching between micro and macroscales
adopted by Cox (1986) or Hocking & Rivers (1982), the GL equation (1.4), for small
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FIGURE 1. Sketch of geometry; the volume of integration is shown as the dotted line.

Ca, gives a full representation of the interfacial profile, given that boundary conditions
at the contact line and the far field are properly imposed, for arbitrary contact angles and
viscosity ratios. On the large scale, boundary conditions may be the requirement for the
interface to assume a drop shape, or to asymptote to a flat interface, as we will require
below in our numerical tests of the equation.

The unknown length scale ε appearing in Cox’s (1986) theory is now no longer required,
but should in principle come out of the solution of (1.4). However, the slip effect is
not properly implemented in (1.4) and as a result, the equation does not have solutions
corresponding to a moving contact line. To account for this, Chan et al. (2013), motivated
by the form of the lubrication equation, introduced the modified GL equation to yield

d2θ

ds2
= 3Ca F(θ,M)

h(h + cλ)
, (1.7)

where c is a constant to be chosen such that the solution matches properly with the slip
region. In Chan et al. (2013), in the absence of any theory for how c should be chosen, this
was done assuming that c = 3, which is true only for small angles and for a single phase
(Hocking 1983). Here, we calculate the dependence of c on the microscopic contact angle
θeq and on the viscosity ratio M. Once c is known, one can integrate (1.7) from the contact
line to whichever macroscopic configuration is required for the problem.

Let us start by sketching the structure of the analysis to compute c. For small Ca,
it is sufficient to consider a linear perturbation of the free surface shape around a
wedge with microscopic (equilibrium, for simplicity and without loss of generality) angle
θeq. Therefore we set θ = θeq − ϕ(s), and, to linear order in ϕ, all calculations can be
performed assuming a wedge geometry h = s sin θeq for the flow (cf. figure 1). Linearizing
(1.7) in ϕ and integrating twice, we have

ϕ = 3Ca F(θeq,M)
sin2 θeq

[
h
cλ
(ln(h + cλ)− ln h)+ ln(h + cλ)− 1

]
+ Ch + C1.

We are interested in solutions which only grow logarithmically, corresponding to
vanishing curvature at infinity, and so C = 0. From the boundary condition ϕ(0) = 0 it
follows that C1 = 3Ca F(θeq,M)(1 − ln cλ)/ sin2 θeq, and so to leading order as s/λ→ ∞
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900 A8-4 T. S. Chan and others

we have

ϕ(s) = 3Ca F(θeq,M)
sin2 θeq

ln
se sin θeq

cλ
. (1.8)

Here, we calculate c for arbitrary angles θeq and arbitrary viscosity ratios M, based
on earlier work by Hocking (1977), who calculates the stress on a slip wall, assuming
a straight interface h = s sin θeq. Using the fact that in the absence of inertia (Stokes
dynamics), the total force on any fluid volume vanishes, we can convert the wall force to
a force on the interface, which leads to bending of the interface, allowing us to determine
c. In addition, one may also allow for an arbitrary ratio of slip lengths λ1/λ2 at the two
fluid–solid interfaces, but no explicit results are available for this case. So in the interest
of simplicity, we will always assume λ1 = λ2 ≡ λ.

2. Determining c from a force balance

2.1. A single phase
We start the analysis by considering the case of a single phase (the liquid, as shown in
figure 1), which enables us to show some of the calculations in greater detail. The idea is
to consider a force balance over the volume shown in figure 1, within which the Stokes
equation ∇ · σ = 0 is satisfied; σ is the stress tensor. This is motivated by Hocking’s
(1977) calculation of the force exerted by a moving contact line on a solid boundary. Using
Gauss’ theorem, and only considering the force in the x-direction, we obtain

∫
S

n · σ · ex = 0, (2.1)

where n is the outward normal, and S = Si + Sc + Sw. The volume is the slice of radius s
inside the fluid, where Si is the fluid–gas interface, Sc a circular arc of radius s inside the
fluid and Sw the wall, see figure 1.

The force on V coming from the interface is

∫
Si

n · σ · ex ds = −γ
∫

S1

κn · ex ds � γ sin θeq

∫ s

0

dϕ
ds

ds = γ sin θeqϕ(s). (2.2)

Here, we have used the stress boundary condition (Landau & Lifshitz 1984) n · σ =
−γ nκ , where κ = dϕ/ds is the interface curvature and n · ex � − sin θeq. The integral
over Sw, representing the total force w on the wall between the origin and x = s, has been
calculated by Hocking (1977) for Stokes flow in a corner with slip at the wall, and a
free-slip condition at the interface. The contribution v of the force on Sc can be inferred
from the far-field limit of the flow, calculated by Huh & Scriven (1971). Thus (2.1) gives

γ sin θeqϕ(s) = −v − w, (2.3)

which we compare to (1.8) to find c.
To find v and w, we need to consider the flow in the wedge-shaped fluid domain (cf.

figure 1) of opening angle θ = θeq. In Hocking (1977), the flow is solved subject to the slip
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Cox–Voinov theory with slip 900 A8-5

boundary condition (with u the horizontal component of the velocity)

u(x, 0) = U + λ∂u
∂y
,

on the wall. It is convenient to count the angle φ from the interface; the velocity field is
given in terms of the streamfunction

ur = 1
r
∂ψ

∂φ
, uφ = −∂ψ

∂r
.

The boundary conditions on both boundaries are zero normal velocity, and vanishing shear
stress σrφ = 0 on the interface. Thus for φ = θeq (the wall) we have

∂ψ

∂r
= 0, U = 1

r
∂ψ

∂φ
+ λ

r2

∂2ψ

∂φ2
,

and for φ = 0 (the interface)

∂ψ

∂r
= 0,

1
r2

∂2ψ

∂φ2
− ∂2ψ

∂r2
+ 1

r
∂ψ

∂r
= 0.

In the limit r � λ we can neglect the effects of slip, and we should fall back on the
similarity solution ψ = rf (θeq) found by Huh & Scriven (1971). With the ansatz

f = a1 sinφ + a2 cosφ + a3φ sinφ + a4φ cosφ, (2.4)

the boundary conditions are

f (0) = 0, f ′′(0) = 0, f (θeq) = 0, f ′(θeq) = U.

The coefficients are (D = θeq − sin θeq cos θeq),

a1 = −Uθeq cos θeq

D
, a2 = 0, a3 = 0, a4 = −U sin θeq

D
,

and so the stresses become

σrr = 2ηU
rD

sin θeq cosφ, σrφ = 2ηU
rD

sin θeq sinφ. (2.5a,b)

Using (2.5a,b) and

n · σ · ex = σrr cos(θeq − φ)+ σrφ sin(θeq − φ),

we find

v =
∫

Sc

n · σ · ex ds = r
∫ θeq

0
n · σ · ex dφ = −3ηUF(θeq)

sin θeq
,

where F(θeq) is the angle dependence from the GL model given previously in (1.5). As an
aside, F(θeq) can easily be calculated from σφφ , evaluated at the interface φ = 0, and using
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900 A8-6 T. S. Chan and others

the stress boundary condition γ κ = −σφφ|φ=0. On the other hand, using h = s sin θeq and
integrating (1.4) once, we have

κ = dϕ
ds

= 3Ca F(θeq)

s sin2 θeq
, (2.6)

comparing with σφφ|φ=0 yields F(θeq).
Finally, Hocking (1977) has calculated the force on the wall

w =
∫

Sw

n · σ · ex ds = −
∫

Sw

σxy ds = Uη
[
−3F(θeq)

sin θeq
ln

s
λ

+ h1

]
,

where h1(θeq) is the solution of an integral equation, which in general has to be solved
numerically. Using (2.3), it follows that, in the general case,

ϕ(s) = Ca
[

3F(θeq)

sin2 θeq
ln

se
λ

− h1

sin θeq

]
,

which is precisely of the expected form (1.8). Comparing the two, we find

c = sin θeq exp
(

sin θeqh1(θeq)

3F(θeq)

)
, (2.7)

which is our main result in the case of a single phase.
The function c(θeq) as obtained from (2.7) is shown in figure 2. To compute h1(θeq), we

have solved the integral equation (3.6) of Hocking (1977) numerically using a relatively
simple iterative procedure. The red cross is the exact value h1(π/2) = 4(γE − ln 2)/π,
giving

c(π/2) = exp(ln 2 − γE) ≈ 1.12. (2.8)

For small values of θeq, Hocking’s (1977) asymptotic argument leads to h1 = −k̂ ln k̂,
where k̂ = −3F(θeq)/ sin θeq. However, in order to obtain a consistent expansion, k̂ had
to be expanded to the next order beyond (3.18) of (Hocking 1977), which results in

c = 3 − (9/10)θ 2
eq. (2.9)

For θeq = 0, one of course recovers c = 3, as known from lubrication theory.
On the other hand for θeq → π, using Hocking’s (1977) leading-order expression for h1,

we obtain
c = (π − θeq) exp

[−π/(π − θeq)
]
. (2.10)

The limits (2.9) and (2.10) are shown in figure 2 as the red dashed lines, and are seen
to agree very well with our numerical solution. Interestingly, c becomes very small for
angles close to π. For example, c(0.9π) = 1.04 · 10−4, showing that in general c cannot
be inferred from a comparison with lubrication theory.

2.2. Two phases
We now generalize to the case of two phases (arbitrary viscosity ratio M), for which the
constant c has never been calculated, not even for small angles. We explain the general
structure, but explicit results are available for θeq = π/2 only.
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c(
θ e

q,
0)

FIGURE 2. The c-factor as a function of θeq/π for M = 0, calculated numerically by evaluating
the integral expressions for h1 as given by Hocking (1977). The (red) dashed lines are the
asymptotic expansions (2.9) and (2.10) for small θeq and as θeq → π, respectively. The (red)
cross marks the analytical value c(π/2) = exp(ln 2 − γE) (see (2.8)).

In contrast to the previous subsection, we now have the integral (2.1) over the surface of
two volumes V1 and V2; V1 is the volume over the ‘liquid’ phase as before (labelled 1), V2
is the corresponding slice of the same radius s over phase 2 (the ‘gas’). Then (2.1), written
for each phase, becomes∫

Si

n · σ 1 · ex + v1 + w1 = 0, −
∫

Si

n · σ 2 · ex + v2 + w2 = 0, (2.11a,b)

where v and w have the same meanings as before, but for each phase separately. Using the
stress condition n · (σ 1 − σ 2) = −γ nκ , this yields

γ sin θeqϕ(s) = −v1 − v2 − w1 − w2. (2.12)

The solution for a no-slip flow, for general M, has been given by Huh & Scriven (1971).
At the interface between the two fluids we now have continuity of the tangential velocity
(the normal velocity vanishes), and of shear stress. If the streamfunctions in either phase
are ψ1/2 = rf1/2(θeq), the boundary conditions are

f1(0) = f2(0) = 0, f ′′
1 (0) = Mf ′′

2 (0), f ′
1(0) = f ′

2(0), f1(θeq) = 0,

f ′
1(θeq) = U, f2(θeq − π) = 0, f ′

2(θeq − π) = −U.

The results are a little too complicated to write out here, but as in (2.6), we can calculate
the general form of F(θ,M) in (1.4), by computing the normal stress on the interface from
either phase, giving

σ
(2)
φφ

∣∣∣
φ=0

− σ
(1)
φφ

∣∣∣
φ=0

= γ κ = 3Uη
r sin2 θeq

F(θeq,M).

Comparison with (1.4) then shows that

F(θ,M) = −2 sin3 θ

3
M2F1(θ)+ 2MF3(θ)+ F1(π − θ)

MF1(θ)F2(π − θ)+ F1(π − θ)F2(θ)
, (2.13)
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900 A8-8 T. S. Chan and others

where

F1 = θ 2 − sin2 θ, F2 = θ − sin θ cos θ, F3 = θ(π − θ)+ sin2 θ;
note the sign error in Chan et al. (2013).

Furthermore, it follows from the Huh–Scriven solution, after a lengthy but elementary
calculation, that

v1 + v2 = −3UηF(θeq,M)
sin θeq

.

The shear force on the wall now has contributions from both phases, and it follows from
Hocking (1977) that

w1 + w2 = Uη
[
−F(θeq,M)

sin θeq
ln

s
λ

+ h1 + Mh2

]
.

Taken together with (2.12), this yields the interface deformation

ϕ(s) = Ca
[

3F(θeq,M)
sin2 θeq

ln
se
λ

− h1 + Mh2

sin θeq

]
,

and comparing with (1.8)

c = sin θeq exp
(

sin θeq(h1 + Mh2)

3F(θeq,M)

)
, (2.14)

now involving two numerical constants h1 and h2. This completes our calculation, but it
remains to calculate the constants h1 and h2, which are functions of θeq and M. According
to Hocking (1977) this can be done explicitly for a right angle θeq = π/2, for which

h1 = (1 − M)ha + 2Mhb

1 + M
, h2 = −(1 − M)ha + 2Mhb

1 + M
, (2.15a,b)

where ha = (4/π)(γE − ln 2) and hb = −1.539. The geometrical factor is

F(π/2,M) = − 4
3π

(M + 1)2π2 − 4(M − 1)2

(π2 − 4)(M + 1)
, (2.16)

for right angles. It is now a simple matter to compute the c-factor, shown in figure 3, as
a function of log10 M. For small M (to the left of the figure), one recovers (2.8). For large
M, on the other hand, c rises significantly towards c → exp(−π(ha + 2hb)/4) ≈ 12.60 as
M → ∞, showing once more that the behaviour for finite angles is significantly different
from the lubrication result.

3. Discussion

To illustrate and validate our results, we consider a plate being pushed steadily into
a container of fluid 2, with an outer fluid 1, as shown in figure 4(a). This is the classical
dip-coating configuration, used industrially to coat a solid with liquid, and studied in many
experiments (Blake & Ruschak 1979; Benkreira & Khan 2008; Benkreira & Ikin 2010;
Marchand et al. 2012; Vandre, Carvalho & Kumar 2012; Vandre et al. 2014). To account
for the effect of gravity, in units of the capillary length lγ (Snoeijer & Andreotti 2013),
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101 102 103

FIGURE 3. The c-factor as a function of log10 M for θeq = π/2. Horizontal (red) dashed lines
are the asymptotes of c for M = 0 (c ≈ 1.12) and M → ∞ (c ≈ 12.60).

one has to add a term − cos(θ) to the modified GL equation (1.7) (Chan et al. 2013). One
of the main aims is to calculate the apparent contact angle as well as the critical capillary
number at which fluid 1 is entrained into fluid 2. As shown in Kamal et al. (2018), for
small values of M (for example when fluid 1 is air), the critical capillary number is so high
that it cannot be calculated within an expansion for small Ca. However, here we focus on
the regime of smaller Ca up to 0.1, and compute the apparent contact angle, to assess the
improvement of our predictions over Chan et al. (2013), where the results it was assumed
that c = 3.

We compare full numerical simulations of the dip-coating problem, using the finite
elements method (FEM) described in detail in Kamal et al. (2018), and based on a
framework benchmarked in Sprittles (2015), with results of the GL equation for Ca up
to 0.1. We show an example with M = 0 and one with M = 1, with a contact angle of π/2
(figure 4(b,c), respectively). On the left, the solid line is the interface profile found from
FEM, the red dashed line comes from integrating (1.7) using the new expression of c in
(2.7), as obtained by the present theory; very good agreement is found.

To demonstrate the importance of using the correct value of c in order to obtain this
agreement, we also plot the profile obtained using the value c = 3, proposed previously
(Snoeijer 2006; Chan et al. 2013). However, this value is only appropriate in the limit
of small contact angles and no outer fluid (M = 0). As a result, the dot-dashed blue,
which is the profile thus obtained from the ‘old’ GL equation, differs significantly from
the ‘exact’ result, obtained from direct numerical simulation, including poorly predicting
the (macroscopic) height far away from the contact line.

To focus on the solutions very close to the contact line, we also plot the relative deviation
between the FEM simulation and solutions obtained from integrating (1.7) on the right
of figure 4. For the solid line we use the correct value of c, the dashed line represents
the value c = 3. For the smaller capillary number, using the c-value as calculated in the
present paper, the deviation is negligible, and even for a capillary number Ca = 0.1, the
relative error remains small; when the capillary number becomes of order unity the GL
equation fails (Kamal et al. 2018), since it is an expansion for small Ca only. On the other
hand for c = 3 the relative error is significant in both cases as one approaches the contact
line.
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FIGURE 4. (a) Sketch of the interface shape between two liquids produced by a descending
plate; all lengths are in units of the capillary length scale lγ . (b,c) Comparison of interface
profiles from FEM with GL simulations for (i) the correct value of c(π/2,M) and (ii)
the previously used value c(0,M = 0) = 3 for Ca = 0.1, M = 0 and Ca = 0.01, M = 1,
respectively. Left plots: steady profiles, right plots: relative error of the GL profile yGL compared
to FEM profile yFEM . Both the GL and FEM simulations are performed for a slip length
λ = 0.0001.

Having benchmarked the new theory against FEM calculations, in order to assess the
improvement of the current theory over the previous GL theory using c = 3, we compare
the apparent contact angle θapp in both cases, for a wide range of parameters M and θeq.
For the dip-coating geometry shown in figure 4, θapp can be calculated by comparing the
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FIGURE 5. Comparing the error between predictions of the apparent contact angle θapp between
c(θeq,M) and c = 3. (a) The error as a function of Ca comparing different viscosity ratio M
and fixed equilibrium contact angle θeq = π/2, (b) the error as a function of Ca comparing
different θeq and fixed viscosity ratio M = 0. (a) for M = 0, 1 and 10, c(π/2,M) = 1.12, 2.05
and 6.40, respectively. Dotted horizontal lines mark the position of the bifurcation point Cacr
predicted from the GL model. (b) For θeq = 0.5π, 0.6π, 0.7π and 0.8π, c(θeq,M = 0) =
1.12, 0.60, 0.22 and 0.030, respectively. Simulations are performed in the GL model for a
slip length λ = 0.0001.

depth Δ of the contact line relative to the level of the bath to the depression of a static
meniscus (Landau & Lifshitz 1984) Δ = √

2(1 − sin θapp) (once more in units of lγ ).
We use the GL equation to evaluate the error in predictions of θapp between simulations

where the correct value of c is implemented, to those where the lubrication value (c = 3)
is used (figure 5). For finite viscosity ratios M, above a critical capillary number Cacr
the stationary meniscus bifurcates to a time-dependent solution, in which the outer fluid
is entrained (Snoeijer & Andreotti 2013; Kamal et al. 2018). In figure 5(a), we vary
the viscosity ratio M as the contact angle is held constant at θeq = π/2. It shows the
considerable error in θapp, which increases rapidly as Cacr is approached. In figure 5(b),
we hold M = 0 constant, while varying θeq between π/2 and π. As expected, the error in
θapp increases substantially as θeq increases. In fact, as seen in (2.10), the true value of c
decreases exponentially as θeq = π is approached.

In conclusion, we have analysed the Cox–Voinov theory with slip, for arbitrary contact
angles and arbitrary viscosity ratios. Closed form expressions are provided using the
generalized lubrication equation, which is shown to be a powerful tool to calculate
interface flows involving moving contact lines in situations in which the interface slope is
not necessarily small. The present paper provides a consistent version of the GL equation
for arbitrary contact angles.
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