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Inviscid coalescence of drops
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We study the coalescence of two drops of an ideal fluid driven by surface tension. The
velocity of approach is taken to be zero and the dynamical effect of the outer fluid
(usually air) is neglected. Our approximation is expected to be valid on scales larger
than �ν = ρν2/σ , which is 10 nm for water. Using a high-precision boundary integral
method, we show that the walls of the thin retracting sheet of air between the drops
reconnect in finite time to form a toroidal enclosure. After the initial reconnection,
retraction starts again, leading to a rapid sequence of enclosures. Averaging over the
discrete events, we find the minimum radius of the liquid bridge connecting the two
drops to scale like rb ∝ t1/2.

1. Introduction
Drop coalescence arises in many different contexts, and is crucial to our

understanding of free surface flows (Eggers 1997). Examples are printing applications
(Chaudhary & Maxworthy 1980; Wallace 2001), drop impact on a fluid surface (Oguz
& Prosperetti 1990), and the coarsening of drop clouds and dispersions (MacPhee
et al. 2002; Jury et al. 1999; Verdier 2000). After the two surfaces have merged
on a microscopic scale, surface tension drives an extremely rapid motion, usually
impossible to resolve in either experiment (Bradley & Stow 1978; Menchaca-Rocha
et al. 2001) or simulation (Lafaurie et al. 1994). Thus theory is needed to investigate
a possible dependence on initial conditions, development of small-scale structures
during merging, and to estimate the typical time required for merging.

A large body of work exists on this problem in the case where viscosity is dominant
and the motion is described by Stokes’ equation. In the absence of an outer phase this
is known as the ‘viscous sintering problem’ (Frenkel 1945; Hopper 1993; Martinez-
Herrera & Derby 1995); the inclusion of an outer phase is important for many
problems governing the coarsening of dispersion (Nikolayev, Beysens & Guenoun
1996; Verdier 2000). For the two-dimensional problem (i.e. for the merging of
cylinders) exact solutions exist (Hopper 1990; Richardson 1992; Crowdy 2002, 2003),
which were shown (Eggers, Lister & Stone 1999) to be asymptotically equivalent
to their three-dimensional counterparts. The presence of an outer fluid leads to the
formation of a toroidal bubble during merging (Eggers et al. 1999), significantly
modifying the dynamics.

Figure 1 shows two equal drops of radius R connected by a liquid bridge of radius
rb, which is rapidly being pulled up by surface tension. The local Reynolds number
of this flow can be estimated as Re = σrb/(ρν2), where σ is the surface tension,
ρ the density, and ν the kinematic viscosity. Thus, regardless of the value of the
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Figure 1. Initial condition. Two drops touching at a point are joined by a liquid bridge of
radius rb . The inset shows the width of the gap just above the meniscus to be w = r2

b /R. The
gap’s walls are nearly straight on the scale of w.

viscosity, the Reynolds number is always small in the initial phases of the merging,
which is equivalent to requiring that rb � �ν , where �ν = ν2ρ/σ is the viscous length
scale. However, �ν is often very small (140 Å for water, and 4 Å for mercury (Eggers
1997)), so rb � �ν for a large part of the evolution, and inviscid theory can be applied.
Thus for a wide range of practical problems the almost inviscid regime, which is the
topic of this letter, is the most relevant. Typically, the viscous regime will serve as
an inner layer that defines the initial condition for the inviscid problem that we are
interested in. In general, we do not have to consider the initial process of reconnection
(Amarouchene, Cristobal & Kellay 2001), which for clean fluids is expected to take
place over a microscopically small area.

In the case of a head-on collision of two drops with relative velocity V , considered
in Oguz & Prosperetti (1989), a purely geometrical consideration predicts rb ≈

√
V Rt

for two overlapping circles. The corresponding speed of merging is of the same order
as the surface-tension-driven merging to be described below, so V has thus to be taken
into account. However, we will restrict ourselves here to the case where the velocity
of approach is vanishingly small, a condition that is easily realizable experimentally
(Menchaca-Rocha et al. 2001). We also do not treat the dynamical effect of an outer
fluid like air, which might become important as the lubrication layer between the
approaching drops becomes very thin (Eggers et al. 1999; Yiantsos & Davis 1991).
However, this approximation is consistent with the assumption of a small velocity of
approach.

2. Initial conditions and scaling laws
We consider two identical drops of radius R touching at a point where a thin liquid

bridge of size rb connects the two drops initially (cf. figure 1). The general problem
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of drops of different radii only changes a prefactor in the gap width between the
drops (Eggers 1998). For the inviscid dynamics considered here, all parameters of
the problem can be scaled out by writing the time and space coordinates in units

of
√

ρR3/σ and R, respectively. Assuming that the vorticity generated by the initial
viscous motion can be neglected, and using incompressibility, the velocity potential ϕ

obeys

�ϕ = 0. (2.1)

The boundary condition on the free surface amounts to a balance between surface
tension and Bernoulli pressures (Oguz & Prosperetti 1989):

∂ϕ

∂t
+ 1

2
(∇ϕ)2 − κ = 0, (2.2)

where κ is the mean curvature of the interface.
We have to solve (2.1), (2.2) with the initial condition shown in figure 1, for R = 1

and assuming that the bridge radius rb is initially very small (typically 10−5 in our
numerical simulations). Let z be the axis of symmetry, and let the surface of the drops
be described by r = h(z). Away from the point of contact at z = 0, but for h � 1,
the surface has the form h(z) = (2z)1/2 and h(z) = (−2z)1/2 for z > 0 and z < 0,
respectively. The width of the gap at a height r is thus

w = r2 (rb � r � 1) (2.3)

and since ∂w/∂r � 1, the walls are nearly parallel. Thus the meniscus, which owing
to radial symmetry is located along a ring of radius rb, is being pulled straight up by
a force 2σ per unit length.

Assuming that the profile in region (2.3) matches onto the bridge on the scale
r ≈ rb, the curvature at the meniscus can be estimated as κb ≈ r−2

b , much larger than
the axial curvature r−1

b of the liquid bridge. Notice that the right-hand side of this
estimate must be multiplied by the drop radius R to make it dimensionally consistent,
but we will use non-dimensional variables throughout this paper. Thus, as already
argued in Eggers et al. (1999), the axial curvature can be neglected for rb � 1 and
the problem becomes effectively two-dimensional, equivalent to the merging of two
fluid cylinders. Thus a model problem (Oguz & Prosperetti 1989; Eggers 1998) for
the initial motion of the meniscus is that of the two-dimensional, straight slot shown
in the inset of figure 1. The eventual widening of the gap can be neglected on the
scale of the gap width w.

The results of our computations for the full three-dimensional problem, to be
explained in more detail below, are shown in figure 2. As the meniscus retracts, the
rapid fluid flow past the sides of the gap creates an under-pressure as described by
Bernoulli’s equation (2.2), which in turn causes the end to expand into a bubble. As
the bubble increases in size, capillary waves are excited in its wake, with amplitude
roughly proportional to the bubble radius. Thus after the amplitude of the capillary
wave has grown to the half width of the slot w/2, its two sides touch and reconnect
at a time τc. Since the width is the only length scale in the problem, it follows that
the total length rc that the meniscus has retracted up to the point of reconnection is
proportional to w, while the time τc required scales like w3/2. We thus have

rc = r0w, τc = τ0w
3/2, (2.4)

where r0, τ0 are constants to be determined numerically. Below we find r0 = 10, τ0 =
7.6.
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Figure 2. A sequence of profiles showing the retraction of the initial meniscus for rb(0) = 10−5.
At a time τc = τ0 w3/2 = 7.6 w3/2 the walls of the gap touch and the minimum radius zmin goes
to zero. The distance of this point from the initial tip of the meniscus is rc = r0w = 10w.

After the two sides of the gap have reconnected, this new initial condition looks
very similar to the original one, except for a non-trivial velocity field that remains.
But since most of the resistance to the motion before reconnection is due to the large
bubble that was left behind, this velocity can be neglected relative to the velocity
to be generated at the next stage of the motion (more detailed estimates are given
below). This means that at each step the same motion is repeated, but with a slightly
larger radius rb. The distance rn+1

b − rn
b between two steps corresponds to the length

rc that the meniscus has retracted at the time of the next reconnection event, as given
by (2.4). At the n-th step we can thus write, analogous to Eggers (1998),

rn+1
b − rn

b = rc = r0

(
rn
b

)2
,

and for the times tn of successive reconnection events:

tn+1 − tn = τ0

(
rn
b

)3
.

For very small initial rb reconnection occurs in rapid succession, with small relative
change of the variables. We can thus write rb as a smooth function of t , obeying the
differential equation

drb

dt
≈ r0

τ0

1

rb

, (2.5)

which gives, after integration,

rb ≈
√

2r0

τ0

t1/2. (2.6)

The scaling law (2.6) is the central result of the present paper. Eventually, when
rb is of the same order as the drop radius, the widening of the channel overcomes
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the growth of capillary waves, and the enclosure of bubbles stops. This is when the
time scale of retraction τ ≈ r2

b τ0/(2r0) is shorter than τc ≈ τ0r
3
b characterizing

reconnection. Thus reconnection will cease when rb
>∼ 1/(2r0) = 0.05. We have

determined numerically that no more voids are entrapped for rb > 0.035, in good
agreement with our theoretical estimate. Below we present detailed numerical tests
of the scaling predictions, and investigate further the crucial stage of bubble growth,
from which we are able to extract the numerical constants r0, τ0.

3. Boundary integral method
If the flow can be considered potential and incompressible, the use of a boundary

integral method is advantageous, since the velocity field can be calculated from the
interface shape. Thus one only needs to keep track of the interface, represented by a
one-dimensional curve, and grid refinement can be done very efficiently. The majority
of these boundary integral methods require smoothing of the surface, in order to avoid
short-wavelength instabilities. The method briefly presented here does not require any
explicit smoothing, except for a redistribution of the points around the tip at every
time step. This redistribution can act as a smoothing, but no damping of instabilities,
such as an artificial surface viscosity, has been used.

The dipole formulation used here is very close to the one described by Baker,
Meiron & Orszag (1980), but it needs to be refined to be able to resolve the very
disparate scales of the drops and of the highly curved region close to the meniscus.
At a given time step, we expect the velocity potential ϕ to be known, from which
we calculate the normal and the tangential velocity of the surface. This velocity is
then used to advect the surface, and to advance ϕ using Bernoulli’s equation (2.2).
The tangential velocity is calculated directly by differentiating with respect to the
arclength along the interface:

ut =
∂ϕ

∂s
. (3.1)

To compute the normal component, we use the vector potential A of the velocity
field, u = ∇ × A:

un =
1

r

∂rAθ

∂s
. (3.2)

Following Barker et al. (1980), we first compute the dipole density µ from

ϕ(M) = µ(M) +
1

4π

∫
S

(µ(M) − µ(M ′))
∂

∂n

(
1

λ

)
dS ′, (3.3)

where λ is the distance between points M and M ′ on the surface. The appearance
of µ(M) in the integrand serves to subtract the singularity of the normal derivative.
Once µ is known, it can be used to calculate the vector potential:

A(M) =
1

4π

∫
S

(µ(M ′) − µ(M)) n × ∇s

(
1

λ

)
dS ′. (3.4)

Equation (3.3) was solved for µ by matrix inversion, then (3.4) was used to calculate
A(M). A simple trapezoidal rule was used to convert the equations into linear systems,
which were then solved by LU decomposition. In order to compute the curvature
of the surface and the tangential derivatives in (3.1), (3.2), we re-parameterized the
integrals by introducing a new integration variable ζ , which equals i at grid point
i. This avoids instabilities in the cubic spline interpolation that would otherwise be
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Figure 3. The minimum gap radius zmin/r2
b (0) plotted against t/r3

b (0). The initial value of rb

is 10−5 and the three resolutions correspond to the minimum distance between points in the
tip region. The linear extrapolation gives tpinch 	 7.6 r3

b (0).

present if two points come very close together, as happens at the tip. Indeed, ζ

increases by 1 between two successive points, whatever the distance between these
two points.

At each time step, the Bernoulli equation and the kinematic condition were used
to advance the solution using a Crank–Nicolson scheme (Press et al. 1992). The
implicit equations were solved by iteration, which required less than 10 iterations for
a relative error of 10−5 in the velocity potential to be reached. An explicit Runge–
Kutta fourth-order scheme was also tested, but found to be too unstable for small
values of rb.

We also redistribute grid points at every time step according to the their distance
from the tip. Cubic splines are used to interpolate to the new points. At each time step
points are placed on the free surface with grid spacing δ; typical values are shown
in figure 3. This spacing is used up to a distance of 40 r2

b from the tip, after which it
is gradually increased in steps of 2, since much lower resolution is required far from
the tip.

4. Reconnection
As we have explained above, the retraction of the meniscus is interrupted by the

reconnection of the two sides of the gap, and the distance rc by which the meniscus
recoils as well as the time τc required is given by the scaling relations (2.4). In
figure 2 we define typical quantities characterizing the retraction of the meniscus. The
minimum gap radius zmin marks the first trough of a train of capillary waves that
is generated by the growing bubble. Note that in the corresponding simulation in
Oguz & Prosperetti (1990), (cf. figure 4) there is little or no indication of this growth
of capillary waves. We suspect that these authors did not follow the retraction for
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0.002

0

–0.002

Figure 4. Successive entrapment of voids during the coalescence for an initial liquid bridge
radius of rb = 0.008. After every reconnection, the void is extracted from the profile and a
new computation begins, with a null initial velocity field.

sufficiently long times, and that the low resolution of their simulation introduced
additional damping, which smoothed out the capillary waves.

As seen in figure 3, the time dependence of the minimum gap radius zmin converges
towards a close to linear behaviour as the resolution is increased. Extrapolation
towards zmin = 0 thus gives a reliable estimate of the time required for reconnection.
Although the walls of the gap do not interact physically, errors of our boundary
integral description grow large as two surfaces become close to each other. The
reason is that the distance λ between points varies on scale zmin close to the minimum,
so the grid spacing δ always needs to be smaller than zmin.

From the simulations we deduce the values r0 = 10 and τ0 = 7.6 for the reduced
retraction length and time already reported in § 2. Here the underlying assumption
is that the dynamics is controlled by the local gap width alone. To test this idea,
we have computed a sequence of pinch events as shown in figure 4. When zmin has
reduced to about 10% of the local gap radius w/2, the gap is cut at about w/2
behind the minimum and new points are introduced along the new surface. Our
method of redistributing points automatically introduced a certain smoothing, which
was enough for the simulation to continue. Obtaining a new initial condition for the
velocity profile proved to be much more difficult. Simply extrapolating the velocity
potential ϕ before the surgery to the new initial condition led to instabilities that
could no longer be controlled numerically, so instead we had to put the velocity field
to zero. This is justified by the fact that the gap position very quickly re-assumes
its retraction velocity after the bubble is left behind, as we discuss in more detail
below.

As illustrated in figure 4, this leads to a self-similar succession of pinch-off events.
Each simulation was started from a new value of the bridge radius rn

b . The typical
gap width at the meniscus is then w = (rn

b )2. A more quantitative test of the scalings
employed in § 2 is presented in figure 5, where we plot the bridge radius rb as a
function of time and, in the inset, rc/τc = (r0/τ0)/rn

b as function of the bridge radius
at the time of pinching. The excellent agreement with the predicted scaling behaviour
confirms our assumption that the local dynamics only depends on the gap width at
the corresponding radius rn

b .
We did not follow the evolution of the bubble after it was cut off from the gap. Since

it starts from a highly non-circular shape, it is expected to perform large-amplitude
oscillations. Recalling that the bubble is really a torus in three-dimensional space, it
will also be unstable with respect to the Rayleigh instability (Drazin & Reid 1982)
and break up into a sequence of smaller bubbles. Evidently, this instability breaks the
rotational symmetry and is thus well beyond the scope of the present work.
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Figure 5. The minimum radius rb as a function of time (dots), compared to the theoretical
prediction

√
2r0t/τ0 (curve). Inset: the ratio rc/τc as a function of the initial radius rn

b varying

between 1.25×10−5 and 1.28×10−2. The time for pinching τc was approximated using a linear
extrapolation of zmin (solid line). The numerical results show very good agreement with the
expected scaling law.

5. Dynamics of retraction
We now study the individual retraction events, characterized by a mass of fluid

being accelerated by two line forces, in greater detail. Thus if

drb

dt
= vtip

is the velocity of the receding tip, the force balance is

d

dt

(
Mtip

drb

dt

)
= 2, (5.1)

where Mtip is the mass being accelerated. This ‘added mass’ is being pushed along by
the structure of maximum radius zmax that is forming at the end of the gap, and thus
Mtip ≈ Cz2

max (Landau & Lifschitz 1982), where C is a numerical constant coming
from the geometry of the void profile. Hence the equation of motion becomes

d

dt

(
Cz2

max

drb

dt

)
= 2. (5.2)

For short times, the bubble does not have time to grow, so zmax is approximately
constant and given by the initial gap radius: zmax ≈ r2

b (0)/2. This corresponds to a
constant mass being accelerated by a constant force, and (5.2) leads to a quadratic
growth of the retraction distance: δrb(t) = rb(t) − rb(0) ∝ t2. This is confirmed by the
early time behaviour of δrb(t) as shown in figure 6. Note that, consistent with (5.2),
zmax remains constant.
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Figure 6. Two quantities characterizing retraction, δr = rb(t) − rb(0) and zmax, as functions
of time in rescaled units. Dashed and dotted lines represent power-law approximations to the
early and long-time behaviour, respectively. We find δr ∝ t2±0.25 for early times, while zmax

remains constant (∝ t±0.05). For late times δr ∝ t0.8±0.1 and zmax ∝ t0.6±0.03; both behaviours
are in agreement with (5.2).

Figure 7. The speed of the retracting bridge vtip = drb(t)/dt as a function of time in rescaled

units. The Culick–Taylor velocity (
√

2 in these units) is represented by the dashed line.

After this initial period of acceleration, the bubble radius zmax starts to grow and
the speed of retraction vtip reaches a maximum, as seen in figure 7. This maximum
must be set by the initial width w of the gap, and thus dimensional arguments lead
to

vc ≈
√

2/w. (5.3)

The prefactor in (5.3) comes from balancing the inertial term v2
c /2 with the surface

tension force κ in (2.2), in analogy with the arguments of Culick and Taylor (Culick
1960; Taylor 1959) for receding soap films. The curvature κ has been approximated
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by 1/w. As confirmed by figure 7, the maximum of vtip is approximated well by the
estimate (5.3).

After reaching a maximum, the speed of retraction decreases steadily, as the bubble
grows and with it the added mass that has to be dragged along. The transversal
bubble expansion is due to the rapid fluid motion along its sides which, according
to Bernoulli’s equation (2.2), causes an under-pressure. Conversely, at the stagnation
point behind the bubble the pressure is high and the bubble is curved inward (cf.
figure 2). We do not yet have a fully quantitative theory of the bubble expansion,
since this would require a precise knowledge of the bubble shape. Namely, the fluid
speed vm past the crest of the bubble is determined by its curvature κc (Lamb 1993):
vm = vtipκczmax, in analogy with the flow past an ellipsoidal body. To close the system
of equations, we would need an expression for κc. However, we notice from figure 6
that the temporal growth of the bubble size zmax is described well by a power law:
zmax ∝ tα with α = 0.6 ± 0.03. Similarly we find δrb ∝ tβ with β = 0.8 ± 0.1, in good
agreement with equation (5.2). The range of validity of the power laws proposed here
can of course never exceed an order of magnitude, since the gap pinches off after
time t ≈ 10r3

b .
Eventually, when the toroidal bubble separates from the gap, the velocity vtip has

decreased to about half of vc. Therefore, the effect of the dynamical pressure v2
tip/2 is

reduced considerably relative to the capillary pressure. Numerically, we find that the
capillary force is at least 4 times bigger than the dynamical pressure, which indicates
that the velocity field can safely be neglected at reconnection, as we are forced to do
owing to limitations of our numerical technique.

6. Discussion
We have shown that the merging of low-viscosity fluid droplets leads to a self-

similar sequence of void entrapments. It is interesting to note that the same power
law behaviour (2.6) of rb can be formally derived form a continuous evolution if vtip

is assumed to be the Culick velocity (5.3). If the gap width w is estimated from the
geometrical constraint w ≈ r2

b , this immediately leads to ∂t rb ≈
√

2/rb, which can be
integrated to give a power t1/2. This is the argument given in Eggers et al. (1999),
which did not take reconnection into account. The reason why it gives the correct
answer (apart from the prefactor) is that the size of the gap tip is rescaled to agree
with the geometrical estimate (2.3) at each reconnection event. Thus although the
bubble actually grows to a much larger size than r2

b , the balance implied by the above
argument is actually true on average.

It might be equally tempting (J. R. Lister 2002, personal communication) to apply
the same reasoning to the force balance (5.1), by approximating (at least on average)
the added mass by Mtip ≈ Cz2

max ∝ r4
b . Integrating the corresponding equation of

motion leads to rb ∝ t2/5. This apparent paradox is explained by the fact that the
reconnection events destroy the momentum conservation implied by (5.1). Owing to
bubble growth, momentum is distributed over a much larger volume than estimated
from the simple geometrical argument. Accordingly, in the asymptotic limit of t � 1
one obtains a motion that is faster than that given by the full calculation including
reconnection.

We finally point out some questions inspired by this work. First, a more complete
theory of the bubble growth at the end of the receding meniscus should be developed.
Secondly, we are not yet able to fully treat the velocity field after reconnection. Such
a treatment may lead to an increase in fluctuations and perhaps some randomness
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during retraction. As pointed out in Oguz & Prosperetti (1990), a finite velocity of
approach will increase the likelihood of bubble entrapment during coalescence. Other
interesting generalizations not yet considered in the present paper are the effect of
an external fluid as well as viscous corrections. Clearly, a number of theoretical
questions remain open. Perhaps more importantly, detailed experimental studies are
called for, for example to verify the phenomenon of bubble entrainment predicted by
our analysis.

It is our pleasure to thank Stéphane Zaleski for his constant encouragement during
this work.
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