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We consider the dynamics of a liquid film with a pinned contact line (for example, a
drop), as described by the one-dimensional, surface-tension-driven thin-film equation
ht + (hnhxxx )x = 0, where h(x, t) is the thickness of the film. The case n = 3 corresponds
to a film on a solid substrate. We derive an evolution equation for the contact angle θ(t),
which couples to the shape of the film. Starting from a regular initial condition h0(x), we
investigate the dynamics of the drop both analytically and numerically, focusing on the
contact angle. For short times t � 1, and if n �= 3, the contact angle changes according
to a power law t

n−2
4−n . In the critical case n = 3, the dynamics become non-local, and θ̇ is

now of order e−3/(2t1/3). This implies that, for n = 3, the standard contact line problem
with prescribed contact angle is ill posed. In the long time limit, the solution relaxes
exponentially towards equilibrium.

Key words: contact lines, thin films

1. Introduction
It is a universally acknowledged fact that the macroscopic description of a contact line can
take one of two forms (Dussan V. & Chow 1983; Bonn et al. 2009; Wilson & D’Ambrosio
2023). The contact line may either be mobile, or stuck at a fixed position (the pinned case),
as illustrated in figure 1. For example, in describing drop evaporation (Stauber et al. 2014;
Wilson & D’Ambrosio 2023), the pinned case is often referred to as the ‘constant radius’
or (CR) mode, whereas the mobile case is the ‘constant angle’ or (CA) mode. If the contact
line position can be moved infinitesimally without incurring any work (figure 1a), then the
energy balance yields the equilibrium angle θeq (also known as Young’s angle) (de Gennes
1985): i.e.
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dx

dx cos θeq

θeq θ

(a) (b)

Figure 1. Two different states of a contact line. (a) The contact line is allowed to move without energy barrier.
Since there should be no work associated with a virtual displacement in equilibrium, the equilibrium contact
angle is Young’s angle (1.1). (b) The contact line is stuck on an asperity. All possible angles θ are energetically
equivalent.

γ cos θeq = γSV − γSL . (1.1)

Here γ is the energy per unit area of liquid–vapour interface, while γSV and γSL are the
corresponding energies for the solid–vapour and solid–liquid interfaces, respectively.

In the pinned case, which may arise from random disorder on the surface (Bonn et al.
2009), or from patterning of the surface (Quéré et al. 2003), the contact line is stuck
at a topographical or chemical barrier. A possible pinning configuration is illustrated in
figure 1(b). Since the contact line is stuck on the tip of an asperity of vanishing size
(Hong, Fontelos & Hwang 2016; Graña-Otero & Parra Fabián 2019), all orientations of
the interface are energetically equivalent, and the contact angle is not fixed by a local
condition. Instead, as we will see, the contact angle θ is fixed entirely by the dynamics of
the liquid adjacent to it.

Although a huge amount of literature treats the dynamics of thin films bounded by a
mobile contact line, the second case of a pinned contact line is often examined only with
regard to the conditions under which depinning occurs, i.e. when the contact starts to move
again. This happens, for example, when a drop is placed on an incline that is is sufficiently
steep (Dussan V. & Chow 1983). An exception to this rule is a recent numerical study of an
oscillating drop with a pinned contact line, in a regime dominated by inertia (Sakakeeny
& Ling 2021). Here, we inquire about the nonlinear dynamics of a viscous fluid film while
the contact line position remains fixed. Related thin film problems with fixed boundaries
have been considered by Bernis, Hulshof & King (2000) and Bowen & King (2001). For
example, one can imagine placing a drop on a rough substrate, such that the contact line
is always pinned. In general, the initial shape will not be an equilibrium shape, and the
drop shape evolves until a steady state, corresponding to thermodynamic equilibrium, is
reached.

We assume that transversal variations of the contact line position (e.g. contact line
roughness (Bonn et al. 2009), are negligible. This could also be ensured by pinning the
contact line to a specially prepared straight and sharp-edged ridge. Moreover, we assume
that vertical scales of the film are small compared with horizontal scales, so that the
lubrication or thin-film approximation is valid. Within this framework, we show that the
contact angle is determined self-consistently through a coupling to the film profile h(x, t)
away from the contact line.

We assume that all lengths and time have been made dimensionless, for example, using
the width of the fluid film and the capillary speed γ /η, where γ is the surface tension
coefficient and η is the viscosity. Then the Laplace pressure condition at the interface
requires that p = −hxx is the pressure inside the fluid film. As the flow is driven by
pressure gradients px , the fluid flux is f = hn px , where hn is known as the mobility.
The mobility measures the viscous resistance to the flow, which depends on the geometry
and other physical effects present. Finally, by applying mass conservation ht + fx = 0, we
arrive at the thin film equation
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Relax to equilibrium

Initial condition

t = 0

t ¿ 1

t À 1

n = 3 n ≠ 3

θ (t)

·
θ (t) = O (e–at)

·
θ  = O (e–3/(2t1/3))

·
θ  = O (t(n–2)/(4–n))

(a)

(b)

(c)

Figure 2. A summary of the problems considered in this paper. (a) At some initial time t = 0, an initial drop
shape is prescribed (here assumed symmetrical), and the drop is pinned between two sites. (b) At early times
t � 1, the dynamics is local if n �= 3 . If n = 3, the dynamics of the contact line is driven from regions far
away from the contact line. (c) Finally, for long times, the contact angle, and the entire drop relaxes toward a
quadratic equilibrium shape.

ht + (hnhxxx )x = 0, n > 0, (1.2)

which has been used very successfully to describe the evolution of thin layers of viscous
fluid (Oron, Davis & Bankoff 1997; Bonn et al. 2009).

The case n = 3 describes a layer of viscous fluid on a solid substrate, subject to the
no-slip boundary condition. As will be discussed in more detail in the final section, for
n = 3 (1.2) is unable to describe contact line motion (Huh & Scriven 1971; Zhao 2014).
To address this problem, various slip laws (Kulkarni, Fullana & Zaleski 2023) have been
introduced, the simplest of which is the Navier boundary condition (Bonn et al. 2009). For
Navier slip with slip length λ, hn in (1.2) is replaced by h3 + λh2, which for small h, is
dominated by the second, slip term. As a result, the first term h3 is often dropped, so that
effectively n = 2, as long as one is describing the neighbourhood of the contact line, or the
slip length is exceptionally large. In using (1.2) throughout, we adopt this logic, and also
treat n as a continuous variable, to represent slip of varying effectiveness.

For the rest of this paper, we assume that the contact line is fixed at x = 0, while the
fluid occupies some region x > 0. For small slopes, the contact angle is then given by
θ(t)= hx (0, t). For simplicity, we treat the representative problem of a two-dimensional
drop or strip of fluid of finite width. Starting from a smooth but otherwise arbitrary
initial condition, we investigate the dynamics of a drop that eventually relaxes toward an
equilibrium profile, which is quadratic in the thin film approximation. In the next section,
we derive the evolution equation for θ(t), which is coupled to the dynamics of the fluid
film. We then describe a numerical method, based on (1.2), to describe the dynamics of
the free surface of the drop, from early times until equilibrium is reached.

In § 3, we demonstrate that the early-time dynamics of the contact angle can, in fact, be
described by a linearised evolution equation. This insight is used to find a local similarity
solution describing the contact angle for early times, assuming n �= 3. The degenerate,
but physically most relevant case, n = 3, is treated in § 4. The solution now consists of
several regions, which are treated separately and subsequently matched together. Section 5
describes relaxation of the drop toward equilibrium. A pictorial overview of the cases
considered is shown in figure 2. We close with a discussion, paying particular attention
to the relevance of our results to Huh and Scriven’s contact line paradox (Huh & Scriven
1971). Some details of calculations are found in an Appendix.
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2. Dynamics of the contact line and numerical method
We consider the evolution of a profile h(x, t), as described by (1.2), which, for simplicity,
we assume is symmetrical. The edges of this ‘drop’ are pinned at x = 0 and x = 2,
respectively (and after appropriate scaling). Since (1.2) is of fourth order in space, four
boundary conditions are needed. At the contact line, we expect the flux to vanish (Bernis
et al. 2000), so the boundary conditions are

h(0, t)= 0, hnhxxx
∣∣
x=0 = 0, (2.1)

while, at the point of symmetry, hx (1, t)= hxxx (1, t)= 0. If the drop is not symmetrical,
the analogue of (2.1) is imposed at the other contact line. For convenience, we write
n = 3 − δ, so that δ = 0 refers to the critical case n = 3. To find the evolution equation
for θ , we have to find the term that balances the first term in ht (x, t)= θ̇x + O(x2). This
leads to the expansion (Bernis et al. 2000)

h = θx + bx2 ln x + cx2, δ = 0; h = θx + b

δ
x2+δ +

(
c − b

δ

)
x2, δ �= 0; (2.2)

up to terms of higher order. The representation (2.2) is used later in the numerical
description of the contact line. We have written the case δ �= 0 such that the case δ = 0
emerges in the limit. Inserting (2.2) into (1.2) and comparing terms of order x , we obtain
the dynamical equation

θ̇ = −2(2 + δ)(1 + δ)θ3−δb (2.3)

in both cases; (2.3) simplifies to θ̇ = −4θ3b for the critical case δ = 0. This introduces a
nonlinear coupling between the contact angle and the shape of the drop, closing the system
of equations to be solved. Curiously, we are not aware of (2.3) having been written down
before.

In the limit of long times, we expect the drop to converge toward the equilibrium profile

heq = 3V

4
x(2 − x), (2.4)

fixed uniquely by the drop volume V and the drop being confined between 0 and 2.

2.1. Numerics
Our numerical scheme follows others used previously to solve the highly nonlinear thin
film equation (Dupont et al. 1993; Eggers & Fontelos 2015): we use a fully implicit finite
difference scheme with a staggered grid. To that end, (1.2) is split as

ht + (hn−1 f )x = 0, f = hhxxx , (2.5)

and the interval [0, 1] is divided into grid points xi , i = 1 . . . k, with x1 = 0 and xk = 1;
fi , i = 1 . . . k − 1 is defined at the midpoints. The profile hi is used to compute pk = hxx
at the grid points. At the right-hand end, we impose symmetry of h, and antisymmetry of
f . The values fi are calculated from pi using centred differences, where pi is calculated
with a 5-point scheme, valid for arbitrary grid spacings. The values of f and fx , needed
at the grid points for the first equation, are also calculated with second-order accuracy.

Near the contact line, we impose the expansion (2.2), where the contact angle θ is a
separate variable (which takes the place of f1), and which evolves according to (2.3).
The value of f1, between x1 and x2, is calculated from (2.2). Likewise, for a given θ , the
coefficients b and c are found from equating (2.2) to h2 and h3 at x2 and x3, respectively.
Then, if we let Δ= x2, and x3 = 2Δ, we find that
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Figure 3. The change in contact angle θ̇ as a function of time from a numerical solution of (1.2) with n = 3
and initial condition h0(x)= h̄ sin(πx/2), h̄ = 0.1. Thus V = 4h̄/π . For long times, θ̇ decays such as e−0.57t to
zero (see § 5); this exponential decay is shown as the dashed line. For short times, on the other hand, θ appears
to remain constant for some time (θ̇ = 0); we show that, instead, θ̇ behaves according to e−3/(2t1/3).

b = 1
Δ ln 2

(
θ

2
− h3 − 4h2

4Δ

)
, c = −b lnΔ+ 1

Δ

(
h2

Δ
− θ

)
. (2.6)

In summary, the variables are h2, . . . , hk−1, f2, . . . , fk−1 and θ : a total of 2k − 4 + 1 =
2k − 3. The equations are the first of (2.5), evaluated at x2, . . . , xk−1, and the second of
(2.5), evaluated at x1/2, . . . , xk−1/2, with the extra equation (2.3).

We use a strongly graded grid, with the smallest (constant) grid spacing near x = 0, and
which is slowly increased away from x = 0, until a maximum spacing of 10−3 is reached.
Our numerical scheme is fully implicit, and second order in time, using a step-halving
method. Comparison between the two steps serves to adjust the time step, in order to
maintain sufficient temporal resolution.

3. Early-time dynamics
We begin looking at very early times after the drop has been set down. Although the
original equations (1.2) and (2.3) are highly nonlinear, for very early times the equations
are effectively linear, as we now show. We proceed in several steps.

3.1. Effective linear dynamics
We assume that the initial condition can be expanded into a power series of the form

h0 = a0x + b0x2 + c0x3 + O(x4). (3.1)

Since x is small close to the contact line, we can view c0x3 as a small perturbation to
the equilibrium profile heq = a0x + b0x2, around which we linearise by writing h(x, t)=
heq(x)+ δh(x, t). We thus consider the linear equation

δht +
(

hn
eqδhxxx

)
x
= 0, (3.2)

so we have confirmed numerically that the early time behaviour of (3.2) is indeed the same
as that of the full equation.
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Figure 4. The change in contact angle θ̇ (t) as function of time. Solid line: solution of (1.2) with n = 3 and
initial condition h0(x)= x(2 − x)+ 0.1x2(2 − x)2; contact angle found from (2.3). Boundary conditions are
h(0, t)= 0 and hx (1, t)= hxxx (1, t)= 0. Long-dashed line: solution of the linearised leading-order equation
(3.2) with heq = 2x and initial condition δh(x, 0)= 0.1x2(2 − x)2. Boundary conditions for the linearised
problem are δh(0, t)= 0 and δh(1, t)= δh(1, 0), δhxx (1, t)= δhxx (1, 0). Dot-dashed line: equation (3.2)
with heq = 2x and initial condition δh(x, 0)= −0.4x3, with boundary conditions δh(0, t)= 0 and δh(1, t)=
−0.4, δhxx (1, t)= 2.4. (a) All three curves; (b) a detail of the dashed and dot-dashed lines, with the amplitude
of the latter adjusted.

In a second step, we argue that, close to the contact line, hn
eq is dominated by the linear

term heq ≈ a0x ; hence, we obtain

δht + (
an

0 xnδhxxx
)

x = 0, (3.3)

which is a linear and homogeneous problem. Since a0x + δh(x, t) is no longer the profile
of a droplet, we can no longer impose the same symmetry conditions. Instead, we argue
that, as far as representing the far-field conditions are concerned, we can impose that the
thickness and curvature of the drop profile changes little when imposed on the scale of the
drop radius (which is normalised to unity), and viewed over the short time scale on which
the contact line region is evolving. We thus impose

δh(1, t)= δh(1, 0), δhxx (1, t)= δhxx (1, 0). (3.4)

This idea is tested in figure 4 for the critical case n = 3. In figure 4(a), using the
solid line, we show a simulation of the fully nonlinear equation (1.2) with contact angle
condition (2.3) and boundary conditions h(0, t)= 0, hx (1, t)= hxxx (1, t)= 0; for the
initial profile, we take h0(x)= x(2 − x)+ 0.1x2(2 − x)2, where heq(x)= x(2 − x) is the
equilibrium profile, and δh(x, 0)= 0.1x2(2 − x)2 the initial perturbation. This solution is
compared with the linearised equation (3.2), in which we have also replaced heq(x) by the
leading order expansion heq = 2x of the initial condition. As the initial condition of the
linearised problem, we once more take δh(x, 0)= 0.1x2(2 − x)2 and apply the boundary
conditions (3.4).

The linearised form of the evolution equation for the contact angle (2.3) is

θ̇ = −2(2 + δ)(1 + δ)b, (3.5)

with b once more defined by (2.2), but with θ now representing the deviation of the contact
angle from its initial value. The resulting solution for θ̇ is seen in figure 4(a) to agree very
well with the full nonlinear solution, at least for t � 3 × 10−5. In a third step, we further
approximate the initial condition of the linearised problem as δh(x, 0)= −0.4x3, derived
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from the cubic term of δh(x, 0)= 0.1x2(2 − x)2. The boundary conditions are once more
given by (3.4).

The resulting solution θ̇ is now shown as the dot-dashed line in figure 4(a). To appreciate
the agreement with the dashed line, which includes higher-order terms in the initial
condition, we show a zoomed-in version of the same curves in figure 4(b). The agreement
for earlier times is such that the two curves can almost not be distinguished; however,
we have allowed for a small change in amplitude of the dot-dashed line to reach optimal
agreement. This is natural, since we are solving a linear equation, and the effective driving
amplitude will have changed slightly on account of the higher order terms.

In summary, up to an overall constant, and after appropriate rescaling, we may describe
the short-time dynamics of the full non linear contact line problem by

δht + (
xnδhxxx

)
x = 0, (3.6)

with initial condition δh = x3. The boundary conditions are

δh(0, t)= 0, δhx (0, t)= θ, δh(1, t)= 1, δhxx (1, t)= 6, (3.7)

where the dynamics of θ is given by (3.5). To remove unnecessary constants, in our
analysis of (3.6) we found it useful to take the second derivative of (3.6), to obtain an
equation for the curvature κ = δhxx of the perturbation

κt +
(

x3−δκx

)
xxx

= 0, (3.8)

with initial condition κ = 6x . From (2.2), we find that, for small x ,

κ = (2 + δ)(1 + δ)b

δ
xδ + 2

(
c − b

δ

)
, δ �= 0, κ = 2b ln x + 3b + 2c, δ = 0. (3.9)

Inserting the initial condition into (3.8), we obtain κt = −6(3 + δ)(2 + δ)(1 + δ)xδ , so
that at short times the solution is

κ = 6x − 6(3 + δ)(2 + δ)(1 + δ)xδt. (3.10)

This means that new terms of the form (3.9) are generated immediately, and the contact
angle must change. We can expect a local solution driven by the dynamics of the contact
line alone. If, on the other hand, δ= 0, κ = 6x − 36t solves (3.8) exactly and is compatible
with the initial conditions. The dynamics is now driven by the fact that the solution is no
longer compatible with the boundary condition at the other end: a non-local process. As a
result, the contact angle hardly changes initially, since the driving is extremely weak. We
start with the local generic, case δ �= 0.

3.2. The contact angle, δ �= 0
We begin with the case where n does not equal the generic value for a liquid film on a
solid substrate. We are looking for similarity solutions of the form κ = tγ P(ξ) (Bernis
et al. 2000), where ξ = x/t1/(1+δ), so that (3.8) is satisfied. For large ξ , this solution has
to match κ = 6x ; this implies that γ = 1/(1 + δ), so that

κ = t1/(1+δ)P(ξ), ξ = x/t1/(1+δ) (3.11)

is the form of the similarity solution, with P(ξ)= 6ξ for large arguments. The similarity
equation becomes

P − ξ Pξ
1 + δ

+
(
ξ3−δPξ

)
ξξξ

= 0. (3.12)
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Figure 5. (a) Numerical results for the exponent of θ̇ , based on (3.6), compared with the analytical result
(3.15) (solid line). (b) Numerical result for the first term in (3.12) as a function of ln ξ (black solid line, δ = 0.1)
compared with the analytical solution (3.13) (red dotted line) .

Four linearly independent solutions P1, P2, P3 and P4 to (3.12) can be found in terms
of generalised hypergeometric functions (Olver et al. 2010), as given in Appendix A,
cf. (A1)–(A4); they are real for ξ > 0. Very similar solutions to an elastic fourth-order
problem have been described in (Stone & Duprat 2016). The solutions P2 and P4 are
singular at the origin, and on account of (3.9) have to be excluded. The remaining solutions
P1 and P3 grow exponentially at infinity, while we demand P(ξ)= 6ξ . As shown in
detail in Appendix A, we can cancel the exponential growth by superimposing P1 and P3.
Different expressions apply for δ > 0 and for δ < 0, respectively. In summary, the solution
to (3.12) satisfying all required conditions can be written in the form

P(ξ)= P0 (P3(ξ)− r P1(ξ)) , (3.13)

where P0 (cf. (A15)) is chosen such that (3.13) matches P = 6ξ ; the constant r is defined
in (A11).

For small ξ , the solution behaves as

P ≈ P0
(
ξδ − r

)
. (3.14)

Comparing with (3.9) and using (3.5), we find that

θ̇ = −2a3
0δP0t

1−δ
1+δ (3.15)

and

c = P0

(2 + δ)(1 + δ)
t

1−δ
1+δ − P0r

2
t

1
1+δ . (3.16)

This means that, as the drop starts to move, the contact angle changes immediately
according to (3.15). This is tested by comparison with numerical simulations of the
linearised equation (3.6) for n �= 3. In figure 5(a), we show the exponent of θ̇ . The solid
line is (1 − δ)/(1 + δ) is found from (3.15). The symbols are the exponent as found
from numerical simulations. In figure 5(b), the left-hand side of (3.12) (as determined
numerically, black solid line), is tested against the analytical solution (3.13) (red solid
line), and perfect agreement is found.

Strictly speaking, the similarity solution (3.13) is only one of an infinite sequence of
solutions of higher order, but which are unstable (Eggers & Fontelos 2015). If the initial
condition happens to be such that the coefficient of x3 vanishes exactly, then one must
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consider the next order, x4, or an exponent m � 3 in general. However, an arbitrarily
small perturbation will generate a term proportional to x3, rendering solutions of higher
order unstable. In that case, the asymptotic behaviour is P ∝ ξm−2, and the (higher-order)
similarity solution is of the form

κ = t (m−2)/(1+δ)P(ξ), ξ = x/t1/(1+δ), (3.17)

with similarity equation
(m − 2)P − ξ Pξ

1 + δ
+

(
ξ3−δPξ

)
ξξξ

= 0. (3.18)

The two solutions with the correct behaviour at the origin (given in Appendix A, cf. (A16))
can again be superimposed to generate a solution that behaves like ξm−2 at infinity, as
required.

4. The contact angle, δ = 0
We summarise the situation for the special case n = 3, which corresponds to a no-slip
condition. The linearised equation for δh(x, t) is

δht +
(

x3δhxxx

)
x
= 0, (4.1)

which we solve with the initial condition δh0(x)= δh(x, 0)= x3. The boundary
conditions are δh(0, t)= 0, δh(1, t)= 1 and δhxx (1, t)= 6.

The linearised equation for δhxx = κ is now

κt +
(

x3κx

)
xxx

= 0, (4.2)

and to leading order near the contact line, δh and δhxx are of the form

δh = θx + bx2 ln x + cx2, κ = 2b ln x + 3b + 2c, (4.3)

and the equation for the change in contact angle is θ̇ = −4b. Taking into account (4.3),
this constitutes a complete set of boundary conditions. Remember that in the linearised
version, θ corresponds to the deviation of the contact angle from the equilibrium value,
and the initial condition is θ = 0.

A new feature of the case δ = 0 is that there is an exact solution of (4.1) and (4.2): i.e.

δhex (x, t)= x3 − 18t x2, κex (x, t)= 6x − 36t, (4.4)

which also satisfies the initial conditions, as well as the boundary condition at the contact
line. However, for t > 0, it violates the boundary conditions δh(1, t)= 1 and δhxx (1, t)=
κ(1, t)= 6 at the right-hand end of the domain. As a result, the dynamics starts from the
right of the domain and propagates toward the contact line.

It is advantageous, in particular for the numerics, to formulate everything in terms of
the deviations


h = δh − δhex , 
κ = κ − κex , (4.5)

in order to avoid rounding error. Then the evolution equations (4.1) and (4.2) remain the
same, as well as the boundary condition at the contact line. On the boundary x = 1, on the
other hand, we now have to satisfy


h(1, t)= 18t, 
hxx (1, t)= 36t. (4.6)

Also, the expansions (4.3) remain valid: i.e.


h = θx + bx2 ln x + cx2, 
κ = 2b ln x + 3b + 2c, (4.7)
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0

0

0.005

0.010

0.015

Contact line

Intermediate

Pulse

x

�κ = κ − (6x − 36t)

0.2 0.4 0.6 0.8 1.0

Figure 6. A sequence of profiles
κ for times log10 t = −7.5,−7, . . . ,−4, from a numerical solution of (3.6),
with n = 3. A localised ‘pulse’ solution grows at the right boundary, which excites a ‘contact line’ solution at
x = 0, but with an amplitude that is exponentially damped. The two solutions are connected by an intermediate
solution.

except that the constant c has changed its meaning.
Figure 6 illustrates the particular situation in the singular case δ = 0, in which (4.4) is a

solution to the problem, but where the boundary conditions (3.7) are violated. As a result,
a localised ‘pulse’ is created near x = 1, which grows in time. We start by looking for a
similarity solution describing the localised growth of the pulse. There is a corresponding
similarity solution at the contact line x = 0 itself, which is driven by the pulse. As a result,
it is of a much smaller amplitude, not visible on the scale of figure 6. We call this the
contact line solution. We show that the two solutions do not match directly, so we need to
construct an intermediate solution that connects the two.

4.1. Similarity solution near x = 1 : the pulse solution
To understand the origin of the oscillations that are generated at the right-hand end of the
interval, we consider the similarity solution


κ = tαφ(ζ ), ζ = 1 − x

t1/4 , (4.8)

located at x = 1. The exponent 1/4 follows from (4.2) considering that x ≈ 1, while α=
1/2 follows from δht = −δhxxxx = −
κxx and δh(1, t)= 18t , so that 
κxx (1, t)= −18.
We thus have


κ = t1/2φ(ζ ), ζ = 1 − x

t1/4 , (4.9)

where φ satisfies the similarity equation

φ

2
− ζφ′

4
+ φiv = 0. (4.10)

The four linearly independent solutions φ1, φ2, φ3 and φ4 can once more be written in
terms of generalised hypergeometric functions, as given in (B1); of them, φ3 does not
satisfy φ(0)= 0, which is required to conform with the boundary condition κ(1, t)= 6,
and drops out. In addition, we want φ to decay at infinity. As explained in more detail
in Appendix B, the ratio between the two remaining hypergeometric functions is fixed to
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φ

ζ

2 4 6 8 10 120

0

2

4

6

Figure 7. The profile φ as found from computing 
κ , rescaled according to the similarity solution (4.9), for
t = 3.2 · 10−8 (black line) and t = 10−7 (red line). The dashed line is the solution (4.11).

r = √
2π/(24Γ 2(3/4)), so that the exponential growth cancels. In a second step, we fix the

amplitude of φ3 to r1 = π/(4Γ (3/4)) to remove the term growing quadratically at infinity.
The remaining combination then decays exponentially at infinity. This leaves us with the
solution

φ = A

⎡
⎣ζ 1F3

(
−1

4
; 1

2
,

3
4
,

5
4
,
ζ 4

256

)
+

√
2π

24Γ 2
(

3
4

)ζ 3
1F3

(
1
4
; 5

4
,

3
2
,

7
4
,
ζ 4

256

)
− r1ζ

2

⎤
⎦ ,

(4.11)
which behaves according to φ ≈ Aζ − r1ζ

2 for small ζ . To finally fix A we observe
that the boundary condition at x = 1 is −18 =
κxx (1, t)= φ′′(0)= −2Ar1, from which
A = 9/r1 = 36Γ (3/4)/π ≈ 14.0422. This fixes all parameters of the pulse solution (4.11),
which is shown as the dashed line in figure 7. Clearly, very good agreement with numerical
simulation is found, without an adjustable parameter.

To understand the behaviour for large ζ (away from the corner), we make the WKB
ansatz φ ∝ eS(ζ ), as described in chapter 10 of Bender and Orszag (1978). Inserting into
(4.10), to leading order we get −ζ S′/4 + S′4 = 0, or

S′ =
(
ζ

4

)1/3

⎧⎪⎨
⎪⎩

1,
−1/2 + √

3i/2,
−1/2 − √

3i/2,
(4.12)

where the last two solutions are the relevant case which decays for large ζ . Integrating, we
obtain

S1/2 = S0 − 3ζ 4/3

2 × 44/3

(
1 ± √

3i
)
. (4.13)

To capture algebraic corrections, we need to go to next order: i.e.

S′ =
(
ζ

4

)1/3
(

−1
2

±
√

3i
2

)
+ ε, (4.14)

for which the leading terms in (4.10) are

1
2

− ζ S′

4
+ S′4 + 6S′′S′2 = 0, (4.15)
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so that ε = −4/(3ζ ). The complex roots can be combined to cosine and sine modes, so
that the asymptotic solution finally becomes

φ ≈ Apζ
−4/3e− 3ζ4/3

2·44/3 cos
(

33/2ζ 4/3

2 × 44/3 − φp

)
. (4.16)

Here φp = 0.561 is a phase factor, and the amplitude is Ap = 3.6599A ≈ 51.39316, both
found numerically, based on a numerical evaluation of (4.11) using Maple. This means that

κ near the right-hand end of the domain is


κ ≈ Apt1/2ζ−4/3 exp
[
− 3ζ 4/3

2 × 44/3

]
cos

(
33/2ζ 4/3

2 × 44/3 − φp

)
. (4.17)

4.2. Similarity solution near the contact line
Note that (4.13) implies that

S1/2 ∝ (1 ± √
3i)
(1 − x)4/3

t1/3 , (4.18)

which suggests a similarity solution of the form


κ = e− μ
αtα A(ξ), ξ = x

t1+α , (4.19)

where μ is expected to be complex and α is real. We will find α = 1/3 corresponding to
(4.13), but first continue the calculation for general α; note that A is also complex.

Inserting (4.19) into (4.2), we obtain

μA − (1 + α)tαξ A′ +
(
ξ3 A′)′′′ = 0, (4.20)

which, for α > 0 and t → 0, simplifies to

μA +
(
ξ3 A′)′′′ = 0. (4.21)

As given in (C1), solutions can be written in terms of the MeijerG function (Olver et al.
2010), which is defined in Appendix C. Of the four solutions to (4.21), A3 and A4 are
singular at the origin, and are therefore excluded. Instead, we are looking for solutions that
are consistent with (4.3) at the origin.

As shown in Appendix C, the leading-order exponential behaviour of the remaining two
solutions is

A1 ∼ e4i(−μ)1/4ξ1/4
, A2 ∼ e4(−μ)1/4ξ1/4

. (4.22)

We show, by matching to the intermediate solution, that only A1 has the correct behaviour
at infinity, and thus is the only solution to be considered. Its asymptotic behaviour at
the origin can be evaluated very efficiently using Barnes-type integral representations,
as detailed in Appendix C, resulting in

A1 = − ln(−μξ)
2

+ 5
4

− 2γ + O(ξ, ξ ln ξ), (4.23)

at leading order; γ is Euler’s constant.

4.3. The intermediate solution
We are still missing an intermediate solution that connects the solution (4.19) with A given
by (C7) to the pulse solution (4.9) with φ given by (4.11). In the process, we hope to find
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the parameters α, μ of the contact-line solution. On the one hand, the tail of the pulse
solution (4.18) has a space dependence e(1−x)4/3 , while, on the other hand, (4.22) implies
that ex1/4

, which clearly is not the same.
The required solution, which fits both asymptotic behaviours, is given by


κ = eS, S = −G(x)

t1/3 , (4.24)

as we now show; the exponent t1/3 in the denominator is motivated by (4.18). Taking S to
be of order t−1/3 and x to be of order one, the leading order expression is

St + x3S4
x = 0, (4.25)

and so the equation for G becomes

G

3
+ x3G4

x = 0, (4.26)

whose solution with boundary condition G(1)= 1 is

G = 3(−1)1/3
(

1 − x1/4
)4/3

, (4.27)

and the roots are taken appropriately.
Near x = 1, we put x = 1 − s, so that, for s � 1

G ≈ 3(−1)1/3
( s

4

)4/3
, (4.28)

which has to match the leading order behaviour (4.13), which implies that

G ≈ 3
2 × 44/3

(
1 ± √

3i
)

s4/3. (4.29)

Clearly, if the roots (−1)1/3 = (1 ± √
3i)/2 are selected, this is an exact match, so that

now the solution in the intermediate region becomes

G = 3
2

(
1 ± √

3i
) (

1 − x1/4
)4/3

. (4.30)

This result is tested in figure 8, by plotting 
κ multiplied by t1/3. For simplicity, we
disregard the oscillations, by plotting maxima of 
κ only, as function of the maximum
position. Thus, the real part of (4.30) is plotted as the dashed line, which agrees
progressively for earlier times.

Now for x → 0, (4.30) must match the large-ξ behaviour of (4.22). The former limit
leads to

ln
κ ∼ −3
2

(
1 ± √

3i
) 1 − 4x1/4/3

t1/3 , (4.31)

while the latter, using (4.22), gives

ln
κ ∼ − μ

αtα
+ 4i(−μ)1/4 x1/4

t (1+α)/4 . (4.32)

It is straightforward to confirm that if we identify

α= 1
3
, μ= 1 + √

3i
2

, (4.33)
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–15 –10 –5 0
–1.5

–1.0

–0.5

0

ln x

ln(�κ)t1/3

Earlier

times

Figure 8. A solution of (4.1) at ln t = −16,−14,−12,−10,−8. Plotted are the maxima of 
κ as function of
their locations. For earlier times, the profiles converge toward the amplitude of the intermediate solution (4.30),
which is 3(1 − x1/4)4/3.

then the two expressions become identical, having used that (−μ)1/4 = (
√

3 − i)/2. To
avoid confusion, we have chosen the plus sign for μ. However, since (4.21) is a real
equation, replacing μ by its complex conjugate yields another solution. However, while
A1 grows at the exponential rate e2ξ1/4

, A2 grows at the faster rate e2
√

3ξ1/4
, and therefore

does not match.
To summarise, the contact line solution is


κ = e− 3(1+√
3i)

2t1/3 A1(ξ), ξ = x

t4/3 , (4.34)

with A1 = MeijerG([[], []], [[0, 0], [−2,−1]],−μξ), together with its complex conju-
gate. The notation for the MeijerG function is defined in Appendix C. Equation (4.21)
is valid under the assumption that t1/3ξ Aξ � A. Using (4.22), this implies that ξ � t−4/3,
or x is small. On the other hand, the validity of the intermediate solution relies on G ′4/t4/3

being small in comparison with G ′2G ′′/t . In other words, x must be greater than t4/3, so
clearly there is an overlap for t → 0.

The physical (real-valued) solution based on (4.34) must be a linear superposition of
real and imaginary parts. Thus, putting A1 = Ar + iAi , we obtain


κ = e−3/(2t1/3)

[
ε1

(
cos

(
3
√

3
2t1/3

)
Ar + sin

(
3
√

3
2t1/3

)
Ai

)

+ε2

(
cos

(
3
√

3
2t1/3

)
Ai − sin

(
3
√

3
2t1/3

)
Ar

)]
. (4.35)

Now with (4.33), ln(−μ)= −2π i/3, and so, for small ξ ,

Ar = − ln x

2
+ 5

4
− 2γ + 2

3
ln t, Ai = π

3
. (4.36)

This yields

θ̇ = e−3/(2t1/3)

[
ε1 cos

(
3
√

3
2t1/3

)
− ε2 sin

(
3
√

3
2t1/3

)]
, (4.37)
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where ε1 and ε2 remain to be determined. In order to do that, we have to go to next order in
the expansion. The reason is that prefactors can be interpreted as logarithmic corrections
in the exponential, but which are subdominant, and require a higher-order result.

4.4. The next order
To find the remaining amplitudes ε1 and ε2, we need to continue to the next order. So far,
we have accounted for the exponential terms, but we want to capture the terms from (4.16)
and (4.22) that only grow algebraically. In the spirit of (4.24), we now try the generalised
ansatz (with G given by (4.30))

S = G(x)t−1/3 + G1(x)+ g1 ln t + g2 ln x + g3 ln(1 − x). (4.38)

The constants g1, g2 and g3 are adjusted to match the required power laws.
Namely, the large-ξ expansion of A1 (cf. (4.22)) amounts to

Sin = 2
(

1 ± √
3i
) x1/4

t1/3 − 9
8

ln x + 3
2

ln t + const., (4.39)

while, for small s = 1 − x , the pulse solution yields

Sout = −
3
(

1 ± √
3i
)

2 × 44/3
s4/3

t1/3 − 4
3

ln s + 5
6

ln t. (4.40)

Comparing with (4.38), and matching to ln t and ln s in the expansion for small s, we find
that g1 = 5/6 and g3 = −4/3; matching to ln x in the expansion for small x , we find that
g2 = −9/8. Notice that there is a mismatch in the contribution from ln t , so (4.19) needs
to be multiplied by t−2/3, so that 3/2 − 2/3 = α as required. This change does not alter
the leading-order equation (4.21), but changes only the next order.

To make everything consistent, (4.25) has to supplemented with terms of order t−1,
leading to

St + x3
(

S4
x + 6S2

x Sxx

)
+ 9x2S3

x = 0. (4.41)

Inserting (4.38) into (4.41), at order t−1 gives

4(1 + G ′
1)x

5/4 − G ′
1x9/4 + x(x − 1)G ′

1 − 4x

3
+ x1/4

3
= 0, (4.42)

which can be integrated to give

G1 = 4
3

ln
(

1 + x1/4 + x1/2 + x3/4
)

+ const. (4.43)

This finally leads to


κ = Amede
− 3

2

(
1±√

3i
)
(1−x1/4)4/3

t1/3
1 + x1/4 + x1/2 + x3/4

x9/8(1 − x)4/3
t5/6 (4.44)

in the intermediate region, where Amed is an amplitude to be determined. Recall that (4.44)
solves (4.41) and matches inner and outer regions (4.39) and (4.40), respectively, once a
correction −2 ln t/3 has been added to the inner solution. This means that, to leading
order, the inner solution is now
κ = t−1/2e− μ

αtα A(ξ) instead of (4.19). This will generate
an additional term in (4.21), which is proportional to t1/3. This motivates the ansatz to
include a term of next order into the inner solution: i.e.


κ = e−3μ±t−1/3
[
t−2/3 A(ξ)+ t−1 B(ξ)

]
. (4.45)
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At leading order, this yields (4.21), as before; at the next order,

− 2A

3
− 4ξ A′

3
+μB +

(
ξ3 B ′)′′′ = 0, (4.46)

which needs to be solved for B, if the next order is required.

4.5. Matching
Finally we want to calculate the missing coefficients in the expression (4.37) for θ̇ ,
also including the correction t−2/3 from (4.45). We do that by matching the missing
amplitudes and phases of the successive regions, starting from (4.17). First, the limit of
the intermediate solution (4.44) for s → 0 (toward the right-hand end) is


κ = 4Amede
− 3

2

(
1±√

3i
)
(ζ/4)4/3

s−4/3t5/6, ζ = 1 − x

t1/4 . (4.47)

Comparison with (4.16) yields Amed = Ap/4, and, including the phase factor, for the real
version of the intermediate solution, we have


κ = Ap

4
1 + x1/4 + x1/2 + x3/4

x9/8(1 − x)4/3
t5/6e− 3

2
(1−x1/4)4/3

t1/3 cos

(
3
√

3
2t1/3

(
1 − x1/4

)4/3 − φp

)
.

(4.48)
Thus, the expression for the overlap region between (4.48) and (4.17) is


κ = Apt5/6

s4/3 e− 3ζ4/3

2·44/3 cos

(
3
√

3ζ 4/3

2 × 44/3 − φp

)
. (4.49)

In the opposite limit x → 0 (near the contact line), the intermediate solution (4.48)
becomes (note that f (x)≈ x−9/8)


κ = Ap

4
x−9/8t5/6e− 3

2t1/3
(1−4x1/4/3) cos

(
3
√

3
2t1/3

(
1 − 4

3
x1/4

)
− φp

)
. (4.50)

Now (4.50) can be compared with the large-ξ limit of (4.35), but including the factor
t−2/3 implied by the leading-order contribution to (4.35). This shows that ε1 = ε cos φp

and ε2 = −ε sin φp, with ε = −√
π Apt−2/3/

√
2. Inserting this into (4.35), including the

factor of t−2/3, we arrive at the complete solution for the contact line region,


κ = −
√
π

2
Ap

t2/3 e−3/(2t1/3)

[
cos

(
3
√

3
2t1/3 − φp

)
Ar + sin

(
3
√

3
2t1/3 − φp

)
Ai

]
, (4.51)

where

Ar + iAi = MeijerG

(
[[], []], [[0, 0], [−2,−1]],−(1 + √

3i)ξ
2

)
, ξ = x

t4/3 . (4.52)

Now we can deduce the change in contact angle by taking the small-ξ limit of (4.51),
keeping the logarithmically diverging terms only, to obtain


κ ≈ Ap
√
π

2
√

2
t−2/3e−3/(2t1/3) cos

(
3
√

3
2t1/3 − φp

)
ln x ≡ 2b ln x . (4.53)
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40

3

30 6050

–40

–20

0
t2

/3
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2

t1
/3

) θ·

20

40

3/(2t1/3)

Figure 9. The change in contact angle θ̇ as obtained from a numerical simulation of (4.1) (solid line), compared
with the prediction (4.54); a best fit (symbols) gives t2/3e3/(2t1/3)θ̇ = −42.6 cos(3

√
3/2t1/3 − 0.4625).

According to (3.5), θ̇ = −4b, and thus

θ̇ = − Ap
√
π√

2
t−2/3e−3/(2t1/3) cos

(
3
√

3
2t1/3 − φp

)
, (4.54)

which is the desired final dynamical equation for the contact angle. In figure. 9, the
functional form of (4.54) is compared with numerical solutions of the linearised problem
(4.1), from which θ̇ is obtained; almost perfect agreement is found. Using that Ap = 51.39
as found from the pulse solution, the predicted prefactor is 64.4, while a prefactor of 42.6
is found numerically. The slight disagreement comes from the fact that convergence is
slow, so t ∼ 10−4 is not yet asymptotic. Accessing earlier times numerically is difficult,
since this would require an even greater range of spatial scales to be resolved with great
accuracy. The observed phase factor of 0.4625 is also in reasonable agreement with the
prediction of φp = 0.561, once more found from the pulse solution.

5. Long time evolution
Here we investigate small perturbations to the equilibrium shape (2.4) (instead of an
arbitrary initial condition h0(x)), in order to describe the relaxation toward the equilibrium
shape: i.e.

h = heq + εe−λt G(x). (5.1)

Throughout this section, we confine ourselves to the case n = 3. Inserting into (1.2) and
linearising results in ε we find the eigenvalue equation

λG =
(

h3
eq Gxxx

)
x
, (5.2)

which is an ordinary differential equation of fourth order. We begin by showing rigorously
that all eigenvalues λi , i � 1 are real, discrete and strictly bounded away from zero,
i.e. there exists a constant C > 0 such that all λi >C . This guarantees that the contact
angle converges exponentially to its equilibrium value. In addition, λi → ∞ as i → ∞.
Mathematical details are given in Appendix D.
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5.1. Spectral gap
Again, the drop is considered to be symmetrical, and boundary conditions imposed at
x = 0 also apply at x = 2. Using (2.1), we supplement the eigenvalue equation (5.2) with
the boundary conditions

G(0)= G(2)= 0, lim
x→0

h3
eq Gxxx = lim

x→2
h3

eq Gxxx = 0. (5.3)

Integrating (5.2) from 0 to 2, the second condition guarantees that
2∫

0
G(x)dx = 0, ensuring

conservation of mass. To transform the eigenvalue problem into one that is self-adjoint,
we put u = Gx , so that (5.2) becomes

λu = (h3
equxx )xx ≡ Au, (5.4)

defining an operator A. Using (5.2), the boundary conditions (5.3) become

lim
x→0

(h3
equxx )x = 0, lim

x→0
h3

equxx = 0, (5.5)

and correspondingly at x = 2.
Integrating by parts and using (5.5), we find

2∫
0

v(h3
equxx )xx dx =

2∫
0

vxx (h
3
equxx )dx =

2∫
0

(
h3

eqvxx

)
xx

udx, (5.6)

as required for A to be self-adjoint. As explained in more detail in Appendix D, we can
conclude that the spectrum {λi } of A is real and discrete. It also holds (see Appendix D),
that

2∫
0

h3
equ2

xx dx � C

2∫
0

u2dx (5.7)

for some positive constant C . But since A is self-adjoint, we also have

λ

2∫
0

u2dx =
2∫

0

h3
equ2

xx dx, (5.8)

and thus λi � C . This implies that relaxation towards equilibrium is exponential, at a
strictly positive rate greater than C .

Notice that the above arguments do not depend on the particular form of heq , or the type
of boundary condition, provided the velocity of the contact line is equal to zero and the
domain is bounded, so that the volume is conserved. In these cases, we would still expect a
strictly positive discrete spectrum. If, however, the physical domain is infinite, the problem
will be associated with a non-compact operator and the spectrum is no longer expected to
be discrete and possibly not strictly positive. To actually calculate the lowest λi , we turn to
a numerical solution.

5.2. Numerical solution
We need to find a solution to (5.2) that satisfies the boundary condition G(0)= 0, once
more placing the contact line at x = 0. Solving (5.2) by shooting, we use the initial
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Figure 10. (a) The constant c, as defined in (5.9), as a function of λ. Zeroes determine the eigenvalues –
the first two are shown, with λ1 = 8.19 and λ2 = 38.4, based on V = 2/3. (b) The first eigenfunction G1(x),
corresponding to λ1.

conditions G(1)= 1 (a normalisation), G ′(1)= G ′′′(1)= 0 (symmetry) and G ′′(1)=ψ ,
where ψ is a shooting parameter. For a generic value of ψ , G behaves according to

G ≈ d ln x + c − dλx ln2 x/2 + (d − c)λx ln(x)+ . . . , (5.9)

near x = 0, as found by expanding G in x and ln x .
To find the eigenfunction, we first adjust ψ such that the term d ln x disappears,

satisfying the flux condition (second equation of (5.3)). Since G ′ = d/x + O(ln2 x), this
is achieved by demanding that G ′x = dx/x + O(x ln(x))→ 0 for x → 0. Next, we plot
G(0) or c as a function of λ (see figure 10(a); the condition c = G(0)= 0 determines
the eigenvalue, since this is the boundary condition that G has to satisfy at the contact
line. We have chosen V = 2/3; the result for arbitrary volume is found from rescaling. In
figure 10(a), the range of λ shown includes the first two zeroes of G(0), corresponding to
the first two eigenvalues, which are strictly positive, in agreement with the above analysis.
In figure 10(b), we show the first eigenfunction G1(x), corresponding to λ1 = 8.19. Clearly,
the eigenvalue scales with V 3, so that the decay exponent in figure 3 is

λ= (3V/2)3λ1 = (6h̄/π)3λ1 = 0.057. (5.10)

The resulting decay law θ̇ ∝ e−λt (with the prefactor adjusted) is shown as the dashed line
in figure 3, and demonstrates excellent agreement with the fully nonlinear simulation of
the original partial differential equation, shown as the solid line.

From (5.1) it follows that θ̇ = −ελG ′(0)e−λt . Since G ′
1(0)≈ −14.05 is finite, it follows

that the contact angle is changing as t → ∞. Alternatively, θ̇ can be calculated from (2.3).
With the coefficients c, d in (5.9) having been made to vanish, the local expansion of G1
becomes

G1(x)= ax + aλ1

4
x2 ln x + . . . . (5.11)

As shown on the left of figure 10, the next eigenvalue λ2 is significantly larger than λ1, so
the first eigenvalue will dominate for times of order unity.

6. Discussion
The problem considered in this paper was motivated originally by discussions at the
workshop ‘Analysis and numerics of nonlinear PDEs: degeneracies & free boundaries’,
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held in 2023 at the Lorentz centre in Leiden (Gnann et al. 2023). The aim was to find a
mathematical framework for the contact line paradox which concludes that in the case of
the standard formulation of fluid mechanics, with no slip at solid boundaries, a contact
line cannot move (Huh & Scriven 1971; Dussan V. & Davis 1974). In (1.2), and, of course,
allowing for the thin film approximation being applicable, this means that n = 3. On
dimensional grounds, any other exponent requires the existence of another length scale,
such as a slip length.

The argument (Giacomelli, Knüpfer & Velázquez 2023) proceeds from assuming a
(potentially mobile) contact line at position s(t), where h(x, t) satisfies the boundary
conditions

h(s, t)= 0, hx (s, t)= 1; (6.1)

the contact angle has been normalised to unity. Then the thin film equation near the contact
line, consistent with (1.2), must satisfy

lim
x→s

hn−1hxxx = ṡ(t). (6.2)

Now, assume a classical solution to (1.2) with n = 3 and boundary conditions (6.1), with
contact line motion defined by (6.2). It follows that ṡ = 0; we show this by contradiction.
Assume that, on the contrary, ṡ �= 0. Then, since h ≈ x ′ = x − s near the contact line, we
have hxxx ≈ ṡ/x ′2. Integrating, it follows that hx ≈ −ṡ ln x ′, which contradicts hx (s)= 1.
Thus, our assumption of ṡ �= 0 must have been incorrect, and we have shown that ṡ = 0
instead. Note that we have not used the thin film equation (1.2) to reach this conclusion.

In other words, for n = 3 the contact line is effectively pinned, even though we have not
introduced explicit pinning forces. Thus, we can conclude from our results (e.g. (4.54)) that
the contact angle will change instantaneously, unless the initial condition is an equilibrium
profile. But since we also have to satisfy the second condition of (6.1), which fixes the
contact angle, we see that there are too many boundary conditions to be satisfied. This
means that the contact line problem with n = 3 is ill posed, and there is no solution.
This result is fascinating, in that it implies that a pure continuum description, which
does not introduce a microscopic length scale, is inherently inconsistent, regardless of
any experimental evidence for the motion of contact lines. This comes as close as one
possibly can to proving the existence of atoms by purely mathematical means!

A remaining question is what might be a convenient method to observe the evolution
of pinned drops as described here. Placing the drop on a substrate might result in a rather
ill-controlled initial state. By contrast, using electrical forces to move drops already on
the substrate might be a more convenient way, including the use of electrically tuneable
defects to trap a drop initially (’t Mannetje et al. 2014).

Acknowledgments. We are grateful to L. Giacomelli, H. Knüpfer and J.J.L. Velázquez for inspiring
discussions.

Funding. M.A.F. acknowledges financial support through project TED 2021–131530B-I00.
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Appendix A. The local solution, δ �= 0
The four linearly independent solutions of (3.12) can be written in terms of generalised
hypergeometric functions (Olver et al. 2010):
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P1 = 1 F3

(
− 1

1 + δ
; 1

1 + δ
,

3
1 + δ

,
2

1 + δ
,
ξ1+δ

(1 + δ)4

)
, (A1)

P2 = 1 F3

(−2 + δ

1 + δ
; δ

1 + δ
,

2δ
1 + δ

,
2 + δ

1 + δ
,
ξ1+δ

(1 + δ)4

)
ξδ−1, (A2)

P3 = 1 F3

(−1 + δ

1 + δ
; 2 + δ

1 + δ
,

1 + 2δ
1 + δ

,
3 + δ

1 + δ
,
ξ1+δ

(1 + δ)4

)
ξδ, (A3)

P4 = 1 F3

(−3 + δ

1 + δ
; δ

1 + δ
,
−1 + 2δ

1 + δ
,
−1 + δ

1 + δ
,
ξ1+δ

(1 + δ)4

)
ξδ−2, (A4)

only P1 and P3 being compatible with (3.9). We will assume δ > 0 for the following
calculation; the opposite case is similar.

Using contour integration in the complex plane, we can express our functions by means
of Barnes-type integrals Slater (1966):

P1 = 1
2π i

Γ
(

1
1+δ

)
Γ

(
2

1+δ
)
Γ

(
3

1+δ
)

Γ
(
− 1

1+δ
) ∫ −ε+i∞

−ε−i∞

Γ
(

s − 1
1+δ

)
Γ (−s)

Γ
(

s + 1
1+δ

)
Γ

(
s + 2

1+δ
)
Γ

(
s + 3

1+δ
)

×
(

− ξ1+δ

(1 + δ)4

)s

ds − e
1

1+δ π i
Γ

(
1

1+δ
)

Γ
(

4
1+δ

) ξ

(1 + δ)
4

1+δ
, (A5)

P3 = 1
2π i

Γ
(

1+2δ
1+δ

)
Γ

(
2+δ
1+δ

)
Γ

(
3+δ
1+δ

)
Γ

(−1+δ
1+δ

) ∫ −ε+i∞

−ε−i∞

Γ
(

s + −1+δ
1+δ

)
Γ (−s)

Γ
(

s + 1+2δ
1+δ

)
Γ

(
s + 2+δ

1+δ
)
Γ

(
s + 3+δ

1+δ
)

×
(

− ξ1+δ

(1 + δ)4

)s

ξδds − e
1−δ
1+δ π i

Γ
(

1+2δ
1+δ

)
Γ

(
2+δ
1+δ

)
Γ

(
3+δ
1+δ

)
Γ

(
2+δ
1+δ

)
Γ

(
3

1+δ
)
Γ

(
4

1+δ
) ξ

(1 + δ)4
1−δ
1+δ

. (A6)

The two solutions can be combined in the form

P3 − r P1 = �(P3 − r P1)= (A7)

�
⎛
⎝−e

1−δ
1+δ π i

Γ
(

1+2δ
1+δ

)
Γ

(
2+δ
1+δ

)
Γ

(
3+δ
1+δ

)
Γ

(
2+δ
1+δ

)
Γ

(
3

1+δ
)
Γ

(
4

1+δ
)
(1 + δ)4

1−δ
1+δ

+ re
1

1+δ π i
Γ

(
1

1+δ
)

Γ
(

4
1+δ

)
(1 + δ)

4
1+δ

⎞
⎠ ξ

+ �(Q3 − r Q1), (A8)

where

Q1 =
Γ

(
1

1+δ
)
Γ

(
2

1+δ
)
Γ

(
3

1+δ
)

2π iΓ
(
− 1

1+δ
) ∫ −ε+i∞

−ε−i∞

Γ
(

s − 1
1+δ

)
Γ (−s)

Γ
(

s + 1
1+δ

)
Γ

(
s + 2

1+δ
)
Γ

(
s + 3

1+δ
)

×
(

− ξ1+δ

(1 + δ)4

)s

ds, (A9)
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Q3 =
Γ

(
1+2δ
1+δ

)
Γ

(
2+δ
1+δ

)
Γ

(
3+δ
1+δ

)
2π iΓ

(−1+δ
1+δ

) (1 + δ)
4δ

1+δ
∫ −ε+i∞

−ε−i∞

eπ i δ
1+δ Γ

(
s − 1

1+δ
)
Γ

(
−s + δ

1+δ
)

Γ (s + 1)Γ
(

s + 2
1+δ

)
Γ

(
s + 3

1+δ
)

×
(

− ξ1+δ

(1 + δ)4

)s

ds. (A10)

By choosing

r =
−2δΓ 2

(
δ

1+δ
)
(1 + δ)

4δ
1+δ

(2 − δ)(1 − 2δ)Γ
(−1+δ

1+δ
)
Γ

(
1−2δ
1+δ

) , (A11)

we have

Q3 − r Q1 = 1
2π i

Γ
(

1
1+δ

)
Γ

(
2

1+δ
)
Γ

(
3

1+δ
)

Γ
(
− 1

1+δ
) ∫

C

Γ
(

s − 1
1+δ

)
Γ

(
s + 2

1+δ
)
Γ

(
s + 3

1+δ
)

×
⎡
⎣eπ i δ

1+δ Γ
(
−s + δ

1+δ
)

Γ (s + 1)
− Γ (−s)

Γ
(

s + 1
1+δ

)
⎤
⎦(

− ξ1+δ

(1 + δ)4

)s

ds, (A12)

where the term in brackets has good decay properties at infinity owing to

Γ (−s)Γ (s + 1)= − π

sin(πs)
, Γ

(
−s + δ

1 + δ

)
Γ

(
s + 1

1 + δ

)
= − π

sin
(
π
(

s − δ
1+δ

)) ,
(A13)

so that �(Q3 − r Q1) is bounded.
Finally, the slope of the linear behaviour is found to be

sl = �(sl)= −
Γ

(
1+2δ
1+δ

)
Γ

(
2+δ
1+δ

)
Γ

(
3+δ
1+δ

)
Γ

(
3

1+δ
)
Γ

(
4

1+δ
) 1

(1 + δ)4
1−δ
1+δ

�

×
⎛
⎝ Γ (− 1

1+δ )

Γ
(−1+δ

1+δ
)
Γ

(
2

1+δ
)e

1
1+δ π i − e

1−δ
1+δ π i 1

Γ
(

2+δ
1+δ

)
⎞
⎠ , (A14)

from which we find

P0 =
6 × 16

1
1+δ

(
1 − cos

(
2π(2+δ)

1+δ
))
Γ

(
5+δ

2+2δ

)
Γ

(
3

1+δ
)
Γ

(
2+δ
1+δ

)
δπ

3
2 (1 + δ)

δ−7
1+δ

(
sin

(
π

1+δ
)

+ 6 sin
(
πδ

1+δ
)

− sin
(
π(1+2δ)

1+δ
)) . (A15)

For general n, the two solutions to (3.18) with the correct behaviour at infinity are

P1 = 1F3

(
−n − 2

1 + δ
; 1

1 + δ
,

3
1 + δ

,
2

1 + δ
,
ξ1+δ

(1 + δ)4

)
,

P3 = 1F3

(
2 + δ − n

1 + δ
; 2 + δ

1 + δ
,

1 + 2δ
1 + δ

,
3 + δ

1 + δ
,
ξ1+δ

(1 + δ)4

)
ξδ. (A16)

The remaining calculation can be done similarly to the above.
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Appendix B. The pulse solution, δ = 0
Any solution to (4.10) can be written as a linear superposition of the four solutions

φ1 = 1F3

(
−1

4
; 1

2
,

3
4
,

5
4
,
ζ 4

256

)
ζ, φ2 = 1F3

(
−1

4
; 5

4
,

3
2
,

7
4
,
ζ 4

256

)
ζ 3,

φ3 = 1F3

(
−1

2
; 1

4
,

1
2
,

3
4
,
ζ 4

256

)
, φ4 = ζ 2, (B1)

where pFq denotes the generalised hypergeometric function. Writing φ1 = ζ P1 and φ2 =
ζ 3 P2, the first two solutions can be represented as integrals:

P1 = 1
2π i

Γ
(

1
2

)
Γ

(
3
4

)
Γ

(
5
4

)
Γ

(
−1

4

) ∫
L1

Γ
(
−1

4 − s
)

Γ
(

1
2 − s

)
Γ

(
3
4 − s

)
Γ

(
5
4 − s

)Γ (s)
(
−

(
ζ

4

)4
)−s

ds,

(B2)

where L1 separates the poles of Γ (−1
4 − s) and Γ (s), and

P2 = 1
2π i

Γ
(

5
4

)
Γ

(
3
2

)
Γ

(7
4

)
Γ

(
1
4

) ∫
L2

Γ
(

1
4 − s

)
Γ

(
5
4 − s

)
Γ

(
3
2 − s

)
Γ

(7
4 − s

)Γ (s)
(

−
(
ζ

4

)4
)−s

ds,

(B3)

where L2 separates the poles of Γ (1/4 − s) and Γ (s).
We observe that

ζ 2 P2 = 16
1

2π i

Γ
(

5
4

)
Γ

(
3
2

)
Γ

(7
4

)
Γ

(
1
4

) ∫
L2

Γ
(

1
4 − s

)
Γ

(
5
4 − s

)
Γ

(
3
2 − s

)
Γ

(7
4 − s

)Γ (s)

×
(

−
(
ζ

4

)4
)−s+ 1

2

ds (B4)

= 16
1

2π i

Γ
(

5
4

)
Γ

(
3
2

)
Γ

(7
4

)
Γ

(
1
4

) ∫
L1

Γ
(
−1

4 − s
)

Γ
(

3
4 − s

)
Γ (1 − s) Γ

(
5
4 − s

)Γ (
s + 1

2

)

×
(

−
(
ζ

4

)4
)−s

ds, (B5)

so that we can combine the two solutions as

P1 − rζ 2 P2 = 1
2π i

Γ
(

1
2

)
Γ

(
3
4

)
Γ

(
5
4

)
Γ

(
−1

4

) ∫
L

Γ
(
−1

4 − s
)

Γ
(

3
4 − s

)
Γ

(
5
4 − s

)

×
⎡
⎣ Γ (s)

Γ
(

1
2 − s

) − 6r
Γ

(
−1

4

)
Γ

(
1
4

) Γ (s + 1
2 )

Γ (1 − s)

⎤
⎦(

−
(
ζ

4

)4
)−s

ds. (B6)
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The parameter

r =
Γ

(
1
4

)
6Γ

(
−1

4

) =
√

2π

24Γ 2
(

3
4

) (B7)

has to be chosen such that the square brackets cancel for s → ±i∞. To find the linear
behaviour of the resulting expression for large ζ , we calculate the residual of the integral
at the pole s = −1/4 to yield

P1 − rζ 2 P2 ∼ − 4π

Γ
(
−1

4

) ζ
4

= π

Γ
(

3
4

) ζ
4
, as ζ → ∞. (B8)

Appendix C. The contact line solution solution, δ = 0
Four linearly independent solutions of (4.21) are

A1 = MeijerG([[], []], [[0, 0], [−2,−1]],−μξ), A2 = 0F3(1, 2, 3,−μξ),
A3 = MeijerG([[], []], [[−1, 0, 0], [−2]],−μξ),
A4 = MeijerG([[], []], [[−2,−1, 0, 0], []],−μξ), (C1)

where the MeijerG function (Olver et al. 2010) is defined as

MeijerG
([[a1, . . . , an], [an+1, . . . , ap]

]
,
[[b1, . . . , bm], [bm+1, . . . , bq ]]) =

1
2π i

∫ i∞

−i∞

Πm
j=1Γ (b j + s)Πn

j=1Γ (1 − a j − s)

Πn
j=n+1Γ (a j + s)Πq

j=m+1Γ (1 − b j − s)
z−sds. (C2)

The integration path must be chosen such that it separates the poles of the factors Γ (b j +
s) from those of the factors Γ (1 − a j − s).

For simplicity, in the following we assume that μ= (1 + i
√

3)/2. Then the asymptotic
behaviour of A2 for large ξ is

A2 ≈ − 1 − i
4π3/2 e−4iμξ1/4

ξ−9/8. (C3)

Including corrections, the asymptotic behaviour of A1 is

A1 ≈ −
√

2
4
√
π

e4μξ1/4
ξ−9/8

[
1 − 39

32
μ̄ξ−1/4 − 1593

2048
μξ−1/2 + O(ξ−3/4)

]
. (C4)

Note that the current implementation of Mathematica, as well as the documentation,
contains an erroneous factor of 1/2 relative to (C4). This is confirmed against the theory
presented in (Braaksma 1962); in the notation of this paper, we have q = 4, p = 0,m = 2
and n = 0. Using Theorem 12 and (4.13) of (Braaksma 1962), we find

A1 ∼ λ−2 E(z)∼ λ−2 A0(44z)−9/8e4z1/4
, (C5)

where λ−2 and A0 follow from (11.17) and (3.28), respectively, to give

A1 ∼ (2π i)2e3π i 45

4(2π i)(2π)3/2(44z)9/8
e4z1/4

. (C6)

Now putting z = −μξ , we confirm the leading term of (C4). We have also checked against
the numerical implementation of the MeijerG function in Mathematica and in Maple.
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To find the asymptotic behaviour for small ξ , we note that the MeijerG function can be
written as Mellin transforms, so that the first solution of (C1) (the only one relevant to our
solution), can be written as

A1(ξ)= 1
2π i

∫
Γ 2(s)

Γ (2 − s)Γ (3 − s)
(−μξ)−sds. (C7)

On the basis of this representation, an asymptotic description can be found using the
residue theorem (with a ≡ −μξ ):

A1(ξ)=
∞∑

n=0

Res
(

Γ 2(s)a−s

Γ (2 − s)Γ (3 − s)
, s = −n

)
= (C8)

∞∑
n=0

anRes

(
Γ 2(s′ − n)a−s′

Γ (2 + n − s′)Γ (3 + n − s′)
, s′ = −0

)
, (C9)

which has the form of an expansion for small a. On account of the Γ function factors, the
series is convergent for all a.

By contrast, the corresponding integral representations for A3 and A4 show that A3 ∼
ξ−1, and A4 ∼ ξ−2; they are singular at the origin and thus do not need to be considered.
Now A1 is of the form

A1 =
∞∑

n=0

an (c0(n)+ c1(n) ln a) , (C10)

with

c0 = 4(2 + n)2(1 + n)
[(

n3 + 3n2 + 2n
)
Ψ (n)+ 7n2/4 + 17n/4 + 2

]
nΓ 4(3 + n)

, (C11)

and c1 = −(1 + n)2(2 + n)3/Γ 4(3 + n). The contribution proportional to ln a can be
summed to give

∞∑
n=0

anc1(n)= −1
2

F(1, 2, 3, a)= −1
2

A2. (C12)

Evaluating the sum up to second order, we find

A1 = 5
4

− 2γ − ln a

2
− a

24

(
−32

3
+ 8γ + 2 ln(a)

)
+ O(a2, a2 ln a). (C13)

Appendix D. Spectral theory of the long time evolution
Here we supply a few more details of the rigorous proof of the properties of the spectrum,
as claimed in § 5.1. For the mathematical background, see, e.g., Brezis (2010). Having
demonstrated (5.6), one can use the Lax–Milgram theorem to define a weak solution to
the problem Au = f , so that u is in the weighted Sobolev space H2

w with the norm

‖u‖2
H2
w

=
2∫

0

h3
equ2

xx dx, (D1)
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provided ‖ f ‖L2 is bounded. We achieve this by demonstrating the embedding of H2
w in

L2 for functions that average to zero. We split u ∈ L2 into three contributions u = u1 +
u2 + u3, where ui = ηi u, and η1 and η3 are cut-off functions that are localised in the
neighbourhood of the contact lines at 0 and 2, respectively, while η2 is localised in the
bulk. As a result, we have by Sobolev and Poincaré inequalities that

‖u2‖L2 � C
∥∥u2,xx

∥∥
L2 , (D2)

while, by Hardy’s inequality,

‖u1‖L2 � C
∥∥∥x2u1,xx

∥∥∥
L2
, ‖u3‖L2 � C

∥∥∥(2 − x)2u3,xx

∥∥∥
L2
. (D3)

Here, and in the following, C is a positive generic constant that changes from line to line,
as required. Hence,

‖u‖L2 �
3∑

i=1

‖ui‖L2 � C
3∑

i=1

∥∥∥(x(2 − x))2ui,xx

∥∥∥
L2

(D4)

and, using Sobolev and Poincaré inequalities once more,

3∑
i=1

∥∥∥(x(2 − x))2ui,xx

∥∥∥2

L2
� C

2∫
0

h4
equ2

xx dx � C

2∫
0

h3
equ2

xx dx . (D5)

Thus, A−1 is a compact operator from L2 to H2
w, since the embedding H2

w ⊂ L2 is
also compact. We conclude that the spectrum {λi } of A is real discrete and bounded from
below and λi → ∞ as i → ∞; the eigenfunctions associated to the eigenvalues form an
orthonormal basis in L2. Finally, since

2∫
0

h3
equ2

xx dx � C

2∫
0

u2dx, (D6)

for a positive constant C , it follows that λi � C , so the eigenvalues are indeed bounded
away from zero.
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