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Origin of the Obukhov scaling relation in turbulence
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We introduce a cascade model for a turbulent velocity field. The cascade’s length is determined by a local Reynolds number
and fluctuates in space. We derive u=2 —{(6) relating the dissipation correlation exponent u with the scaling exponents {(m) of
the velocity difference in accordance with experiment. Several applications are pointed out.

Ever since Obukhov and Kolmogorov published
their classical papers on intermittency [1,2] in 1962,
there have been major efforts [3-7] to understand
the statistical properties of the dissipation field
é(x, 1)y=vdu(x, t)du;(x, t) in high Reynolds num-
ber turbulence. The strongly fluctuating or “inter-
mittent” character of &(x, t) is supposed to induce
scaling corrections to the classical relation for the ve-
locity field

D(r)=«lu(x+r,t)—u(x,1)|*»
=b&3r213 (1)

Here €  denotes the average over the statistical
ensemble, and & is the mean value of the dissipation
rate per unit mass. Eq. (1) is to be used in the in-
ertial range, r 91, with n= (»3/&)"/* being the Kol-
mogorov microscale. The lognormal, -, or statistical
B-model [1-6] of intermittency imply another r-ex-
ponent, {(2)=2%+B, in eq. (1). The crucial ques-
tion of how velocity and dissipation fields are inter-
related, however, has not come beyond the original
argument by Obukhov [1]. To reproduce this ar-
gument, let us consider the longitudinal mth order
structure functions

D™ (ry= [u(x+r, 1) —u(x, )17 Hocrt™. (2)

Assuming that the statistics of the velocity difference
v(r,x)=u(x+r)—u(x) only depends on the dissi-
pation rate on scale r, defined by

65 0= s | St V0.

”

3
4nr?

a typical velocity difference may be approximated
by v(r)= &13r'/3, giving

D™ (r)=b{™ L&) 1" Hr>. (3)

If [&(x)]™3» has a power law dependence on r,
(3) will obviously lead to corrections to the classical
exponents {,(m)=~4m. The special case m=26 di-
rectly gives the well known formula

u=2-0(6), (4)

where u is the exponent of the dissipation
correlations,

KEx+r)E(x, 1)y EX(r/L)~ 7.

Eq. (4) is well supported by recent experiments [ 8-
107, with u~0.2. On the other hand, there are still
considerable analyzing errors in both the measure-
ments of {(6) and yx [9,10], leaving room for dif-
ferent interpretations [11]. Future experiments have
to settle this.

The usual cascade models of refs. [3-7] are not
able to produce relations like (4) by their very na-
ture, since they are only stated in terms of the dis-
sipation field. Instead, the present authors very re-
cently introduced a cascade model for the velocity
field itself [12]. Depending on model assumptions,
we either have u=0, independent of the velocity cor-
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relations, if spatial fluctuations are not allowed, or
the {(m) are linked to u by u=2{(2) —-{(4), instead
of (4), if the velocity cascades fluctuate spatially
down to a smallest cascade level which is the same
at all positions x.

In this Letter we derive (4) in the framework of
a cascade model, which is a refinement of our pre-
vious one [12] without independently introducing
a dissipation statistics. One still is not able to con-
firm that (4) or some other relation is valid for the
Navier-Stokes dynamics, but we hope to have boiled
down one of the most widely used relations of tur-
bulence theory to its physical roots. We briefly repeat
in the following the essential ideas of our model to
make this Letter self-contained; for more details, see
ref. [12].

The basic idea of our model is a Fourier—-Weier-
strass superposition of the velocity field. We repre-
sent a one-dimensional cut through a turbulent ve-
locity field by

u(x)= % u"(x) exp[il~(x/Lo) ] +c.c.
=

= Y m(x)exp(ikx),
keKx

Ki={*tL5'A~Ne . +L5aM). (5)

L, is the reference length scale. Eq. (5) corresponds
to a decomposition of the flow field into contribu-
tions from different cascade levels /, running from
the largest eddies, /=N, down to the smallest ed-
dies, /= — N,. The diameter of the eddies of level /
is 2nLyA, i.e., A is the ratio of the sizes of two suc-
cessive eddy generations. The important difference
to our previous model [12] is that the cutoff scale
ne=LoA~"* is allowed to fluctuate in space x via
properly choosing N,. The value of N, is determined
by the requirement

N, =largest N with u (M (x)LoA~"/v=Re.. (6)

v is a parameter representing the viscosity and has
the dimension of squared length over time, which
together with L, sets the time scale. This choice of
N, means that the eddy decay process stops at some
locally determined scale »,, at which the dissipation
term of the Navier-Stokes equation becomes com-
parable with the interaction term. In the model of
ref. [12] a mean x-independent cutoff scale 7 is cho-
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sen as an input parameter. Here, instead, the input
parameter is Re,,, which determines the mean cutoff
length. Otherwise our model is unchanged: u‘?(x)
represents the amplitude of an eddy of level / at po-
sition x, #”(x) being constant over each eddy di-
ameter 2nLyA/. Assuming =2 for simplicity, there
are 2"t~ eddies of this diameter on level /, except for
those which have been eliminated by the require-
ment (6). The amplitudes of the eddies of level / will
be denoted by u{?, i=1, ..., 2¥~! 4{NI) =y, is the
amplitude of the largest eddy, the amplitudes
w{™~1D and uf™ -1 of the next smaller generation
are obtained by multiplication with contraction fac-
tors s, and s,. Repeating this procedure, u{” is given
by siuf{}", j(i) the integer of 4i or $(i+1). The
contraction factors s; are assumed to be random, and
are chosen from a common probability distribution
p(s). To assure statistical self-similarity, the various
transitions are taken to be independent, so the two
offsprings u{" of an (/+1)-eddy u{};"’ are obtained
with independently chosen s. In ref. [12] we called
this a multifractal model. The average over the en-
semble of the u{"is denoted by a single bracket { ).

We can now proceed to calculate the local dissi-
pation rate £(x) = 15v(du/dx)? with u(x) from (5),
where we neglect the x-derivative of u.(x) as ex-
plained in ref. [12]. The close resemblance of a typ-
ical £(x) to a corresponding experimental signal is
illustrated in fig. 1:

30

o
X

Fig. 1. The normalized dissipation field &(x)/{ &(x) » for our
model with Re/Re,.,=4000. p(s) was fitted to experiment, cf. ref.
[12]. The mean number of levels is 9, Re;~ 1000. In the insert
we show a measured dissipation field of the wake of a cylinder
[13]. Re;, is only about 90 according to ref. [8].
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Co(n=LEX)E(x+r)H
=(15v)? 2

ki+k2+ks+ks=0

LU (X)) Uy (X Uy (X + 1)

Xt (x+r) Dk koksksexp[i(ks +k4)r] .

Here  » stands for p(s)-averaging and in addi-
tion a translational average over x. Because of the
factors k;, the sum is dominated by the terms with
largest k. Thus C,(r) is given (up to oscillatory
terms) by

Cs(r)~ (15v)3Ly*
x4<12Nx|u(_N‘)(x) lleNX+’lu(~NX+’)|2> .

In the limit of high Reynolds numbers one may write
according to (6): u{~")(x)=Re,vA"/L,,

Calr)oc (ANAHNery (7)

Condition (6) says that N, is the largest number with

NL +Nx

Y log(Asi™)

i=1
still smaller than R=log(Re/Re,,), with Re=Lu,/
v. Hence N, follows a first passage time distribution.
The correlation between N, and N.,, comes in be-
cause the sequence y,=log(As;!) for some position
x is identical to the corresponding sequence for x+r
down to the level with eddy size about r, thus
l,=log;(r/2nLy). We only consider the case
[.> — (N,>. For lower levels, / </, the sequences are
independent and the product in (7) factorizes. Let
w(n ,z) denote the probability distribution of z=
>1_, y;,. Then

Wi(n,Y)= j [w(n,z)—w(n—-1,z)]1dz (8)

is the distribution to be beyond Y after precisely n
steps. With W(n, Y) expression (7) is easily
evaluated:

C,;(r)oc <l4le4Nx+r>

=]

= A8(NL—I) j W(N, =1, Y){A*%>% o dY, (9)

— 0
where

14
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Wy = Nil W(N, Y)A*N .

Clearly, w(n, y) and so W{(n, Y) and so Cs(r) de-
pend on the probability distribution p(s) for the re-
duction factors s. So far we were only able to cal-
culate (9) analytically if p(s) is a lognormal
distribution. In ref. [12] we derived the expression

log {s™)

imy=-— log A

(10)
for the structure function exponents. According to
(10) a lognormal p(s) gives a polynomial of second
order for {(m), which is known [9] to give a very
good representation of the experimental data up to
m=12. We stress that the lognormal choice for p(s)
has only been made for computational convenience,
since then w(n, z) is a normal distribution. Note that
w(n, z) cannot be taken to be a normal distribution
if p(s) is not lognormal. The central limit theorem
fails here for reasons similar to those encountered in
the Yaglom model for the energy dissipation
[3,4,12], see also ref. [14].

Writing () and ¢? for the mean value and var-
iance of the y; we obtain

_ 1 1 (Z—n<y>)2)
w(n, z)= \/m exp( 3 pem .
For large Y, one may pass to a continuous variable
E=n{y> /Y. For this variable, W(n, Y) becomes

W& = 27541/

Y (1-¢)?
<ow(- S UFE)

Hence the relative width oy /(N.+N,) is
6/./<{y>R which becomes increasingly smaller for
large Reynolds numbers, and /,>»> — (N,) ensures
l.> — N, for all x. For practical purposes, oy, is about
one. The integral appearing in the expression for
Ay,

T DY (1-8?
l (14179 exp (- L2 U=

aYé )
+ —=logi)d&,
> o8 ¢
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can be evaluated exactly giving

ANy yocexp[ Y((¥) —/{¥>2—2ac?log 1) /0?] .

It is now easy to perform the integral in (9), which
finally leads to

2Ky
k=5 log A

(> =/<{y>*—8a%logi)—8. (11)

According to the Kolmogorov structure equation
{(3)=1. Then (10) gives

C(m)=%m+m(%m—%m2)- (12)

0.2
o
Inserting (12) into (11) one arrives at the desired
relation (4). For p(s) a bimodal distribution,
p(s)=qd(s—s,)+(1—g)d(s—s,), we evaluated (9)
numerically. Even for various values of g, s,, s, for
which p(s) is far from lognormality and in particular
the saddle point approximation badly fails, we al-
ways reproduced (4). Therefore, even without gen-
eral proof we believe the scaling relation (4) to be
correct independent of p(s).

Finally it is an easy exercise to repeat the analysis
of ref. [12] and calculate other turbulent quantities
of interest, such as the Taylor microscale At or the
Taylor Reynolds number Re;. We only report here
our result for g(g) defined by (&7»/LEH?
ocRef@ . It reads

g(q)=3(1-2q)
+%{12—3[16+4(1—-2q)ﬂ+£u2]”2}. (13)

To lowest order in u, (13) gives us=+xu and
=3 for the exponents of skewness (with g=2) and
kurtosis (with g=2). These (lowest order) g(g) are
identical with the results of the phenomenological
theory of Wyngaard and Tennekes [15]. We finally
remark that { £2) does not exist for g> (4+1u)?/
8u. This is an artefact of the property of the log-
normal distribution used in the calculation of (13),
to allow arbitrarily large values of s.

Concluding, we remark that the scaling relation (4)
certainly does not confirm the very existence of cor-
rections to classical scaling. In ref. [11] from a nu-
merical simulation of the Navier—-Stokes equation we
found chaotic fluctuations but, nevertheless, p(s) to
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be statistically sharp. In that case (4) is trivially ful-
filled with {(6)=2 and u=0.

In a variety of other fields ultrametric structures
similar to our model are presently discussed. Ex-
amples include spin glasses [16], neural networks
[17], and precision dependent clustering in coupled
map lattices [18]. In these systems, fluctuating cut-
off scales arise in a natural way and corresponding
relations between ‘““inertial range” and “dissipation
range” statistics is to be expected.

We would like to thank Charles Meneveau for
pointing out the possible importance of a fluctuating
cutoff scale. This concept has been used in different
context in ref. [19], where additional applications
are discussed.
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