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Origin of the Obukhovscalingrelationin turbulence
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We introducea cascademodel for a turbulentvelocity field. The cascade’slength is determinedby a local Reynoldsnumber
andfluctuatesin space.We derive~i = 2— ~(6) relatingthedissipationcorrelationexponent~i with thescalingexponents~(m) of
thevelocitydifferencein accordancewith experiment.Severalapplicationsarepointedout.

Ever since Obukhov and Kolmogorov published 3 ~.

their classicalpaperson intermittency [1,2] in 1962, f(x, t)= ~ j ~f(x+y, t) dV(y)
therehavebeenmajor efforts [3—7] to understand
the statistical propertiesof the dissipation field
~f(x,1) = vö,u~(x,i)a1u1(x, t) inhigh Reynoldsnum- a typical velocity differencemay be approximated

byv(r)~~ r giving
ber turbulence.The strongly fluctuating or inter-
mittent” characterof f(x, t) is supposedto induce D~m)(r)=b~m)<< [6~r(X)]m/

3>>rm/3 . (3)
scalingcorrectionsto theclassicalrelationfor theve-
locity field If << [f,.(X)]m/3>) hasa powerlaw dependenceon r,

(3) will obviously leadto correctionsto theclassical
D(r) = << Iu(x+ r, I) — u(x, t) 12>> exponents(~

1(m)= m. The specialcase m = 6 di-
rectly gives the well knownformula

(1)
(4)

Here << >> denotesthe averageoverthe statistical where ji is the exponent of the dissipation
ensemble,and f is themeanvalueofthe dissipation correlations,
rateperunit mass.Eq. (1) is to be used in the in-
ertial range,~ with ~= (v

3/~)~4beingthe Kol- <<~f(x+r,I) e(x, t) >> x rf2(r/L) ~.

mogorovmicroscale.Thelognormal,/3-, or statistical Eq. (4) is well supportedby recentexperiments[8—
fl-model [1—6]of intermittencyimply anotherr-ex- 10], with jt~ü.2. On the otherhand,therearestill
ponent,((2)= ~+B, in eq. (1). The crucial ques- considerableanalyzingerrorsin both the measure-
tion of how velocity and dissipationfields are inter- mentsof ((6) and j~[9,10], leaving room for dif-
related,however, hasnot comebeyondthe original ferent interpretations[11]. Futureexperimentshave
argumentby Obukhov [11. To reproducethis ar- to settle this.
gument,let us considerthe longitudinalmth order The usualcascademodelsof refs. [3—7]are not
structurefunctions ableto producerelationslike (4) by their very na-
D “~ (r) = (< [u (x+ r 1) — u (x t) ] ir>> cx ram). (2) ture, sincethey are only statedin termsof the dis-

sipation field. Instead,the presentauthorsvery re-
Assumingthat thestatisticsofthevelocity difference cently introduceda cascademodel for the velocity
v(r; x) =u(x+r) —u(x) only dependson the dissi- field itself [12]. Dependingon modelassumptions,
pation rateon scaler, definedby we eitherhavep~= 0, independentofthevelocity cor-
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relations,if spatial fluctuationsare not allowed, or senasaninput parameter.Here,instead,the input
the ((m) arelinked to~ by ~= 2((2) —((4), instead parameteris ~ which determinesthe meancutoff
of (4), if the velocity cascadesfluctuatespatially length. Otherwiseour model is unchanged:u ~ (x)
downto a smallestcascadelevel which is the same representsthe amplitudeof aneddyof level /at po-
at all positionsx. sition x, u (1) (x) being constantovereacheddy di-

In this Letterwe derive (4) in the frameworkof ameter27tL~2’.Assuming,~= 2 for simplicity, there
a cascademodel, which is a refinementof our pre- are2~’~’eddies of thisdiameteronlevel 1, exceptfor
viousone [12] without independentlyintroducing those which havebeen eliminatedby the require-
a dissipationstatistics.Onestill is not ableto con- ment (6). Theamplitudesoftheeddiesof level 1 will
firm that (4) or someotherrelation is valid for the be denotedby ~ 1=1, ...,

2N~~1~u~”~~UL is the
Navier—Stokesdynamics,butwehopetohaveboiled amplitude of the largest eddy, the amplitudes
down oneof the mostwidely usedrelationsof tur- u ~ ‘~andUL of the next smallergeneration
bulencetheoryto its physicalroots.Webriefly repeat are obtainedby multiplication with contractionfac-
in the following the essentialideasof our model to torsSi ands2.Repeatingthis procedure,u~’~is given
makethis Letterself-contained;formoredetails,see by ~ j(i) the integerof 3i or ~(i+ 1). The
ref. [12]. contractionfactorss, areassumedto berandom,and

Thebasic ideaof our model is a Fourier—Weier- are chosenfrom a commonprobability distribution
strasssuperpositionof the velocity field. We repre- p(s).To assurestatisticalself-similarity,the various
senta one-dimensionalcut througha turbulentye- transitionsare takento be independent,so the two
locity field by offsprings u ~ of an (1+ 1)-eddyuJ~’~areobtained

Ni. with independentlychosens. In ref. [121 we called
u(x)= ~ u”~(x) exp[iA’(x/L0)]+c.c. this a multifractal model. Theaverageoverthe en-

— N~ semble of the u ~1) isdenotedby asinglebracket < >.

= ~ JL,~(X)exp(ikx) We can now proceed to calculatethe local dissi-
keK~ pation rate f(x)= 15v(c9u/ôx)

2 with u(x) from (5),
K _1+L—IA_1’~L +L_I2N~1 (5) where we neglect the x-derivative of Uk(X) as ex-

— — 0 — 0 J plained in ref. [12]. The close resemblance of a typ-

L
0 is the reference length scale. Eq. (5) corresponds ical f(x) to a correspondingexperimentalsignalis

to a decomposition of the flow field into contribu- illustrated in fig. 1:
tions from different cascade levels 1, running from
the largest eddies, l=NL, down to the smallest ed- 30

dies, 1= —N,,. The diameter of the eddies of level / _________________

is 2~tL0)!, i.e., A is the ratio of the sizesof two suc-
cessive eddy generations. The important difference (~)2

to our previous model [12] is that the cutoff scale

u1xLo#~ is allowed to fluctuate in spacex via E _______________

properly choosing N~.Thevalueof N,, is determined

by the requirement

N,, =largestNwith u
t’~x)LoA’~/v~Recr. (6)

v is a parameterrepresentingthe viscosityandhas
the dimensionof squaredlength over time, which L a
togetherwith L

0 setsthe time scale.This choiceof
N,, meansthat the eddydecayprocessstopsat some
locally determinedscale~ at which the dissipation Fig. 1. Thenormalizeddissipationfield ~(x) / <<~(x)>> for our

modelwith Re/Re,= 4000. p(s) wasfittedto experiment,cf. ref.
termof the Navier—Stokesequationbecomescorn- [12]. Themeannumberof levelsis 9, Re2 1000. In theinsert
parablewith the interactionterm. In the model of we showa measureddissipationfield of thewakeof a cylinder
ref. [121 a meanx-independentcutoffscalei~is cho- [131. Re2is only about90 accordingto ref. [81.
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~ W(N,Y)A4’~.
N= I

=(15v)2 <ukl(x)uk,(x)uk
3(x+r)

kl+k2+k3+k40 Clearly, w(n,y) andso W(n, Y) andso C~(r) de-

x u~(x+ r) > k1k2k3k4exp[i (k3+ k4) r] pendon the probabilitydistributionp(s) for there-
duction factorss. So far we were only able to cal-

Here << >> standsfor p(s)-averagingandin addi- culate (9) analytically if p(s) is a lognormal
tion a translationalaverageoverx. Becauseof the distribution.In ref. [12] we derivedthe expression
factors k~,the sum is dominatedby the termswith
largest k.. Thus C4.(r) is given (up to oscillatory ((m)= — log <S> (10)
terms)by logA
C8. ( r) (15v )

2L for the structurefunction exponents.According to
(10) a lognormalp(s)gives a polynomialof second

~ . orderfor((m),whichisknown [9] togiveavery
good representationof the experimentaldataup to

In thelimit of highReynoldsnumbersonemaywrite m=12. We stressthat the lognormalchoice forp(s)
accordingto (6): u ~~x) =

hasonly beenmadefor computationalconvenience,
C

8.(r)x <2~~A~’~’>. (7) sincethenw(n, z) is a normaldistribution.Notethat
w(n, z) cannotbetakento be a normal distribution

Condition (6) saysthat N,, isthe largestnumberwith if p(s) is not lognormal.The central limit theorem
NL +N~ failsherefor reasonssimilarto thoseencounteredin

~ log(As~’) the Yaglom model for the energy dissipation
1=1

[3,4,12], seealsoref. [14].
still smaller than R~log(Re/Recr), with Re=LuL/ Writing <y> and a

2 for the mean value and var-
v. Hence N,, follows a first passagetimedistribution. ianceof the y, we obtain
The correlationbetweenN,, andNx+r comesin be-

1 ( 1 (z—n<y>)2
causethe sequencey

1=log(As~’)for someposition w(n, z)= exp
xis identicalto the correspondingsequencefor x+r — 2 a

2n )~
down to the level with eddy size about r, thus For large Y, onemay passto a continuousvariable
1~=log

1( r/ 2itL0). We only consider the case ~= n <~>/ Y. For this variable,W( n, Y) becomes
lr>> — <N,,>. Forlower levels,1<1,., thesequencesare =

independentandthe productin (7) factorizes.Let g/( ~, Y) 2it~~— (1 + 1 /c~)

w(n ,z) denote the probability distribution of z= a
>71y1.Then ( <y>Y(l—~)

2\
Xexp — 2a2 (

W( n, Y) = J [w( n, z) — w( n — 1, z) I dz (8) Hence the relative width aN~/(NL + N,,) is

a/V/~~which becomesincreasinglysmallerfor

is the distribution to be beyond Y after precisely n large Reynoldsnumbers,and lr>> — <N,,> ensures
steps. With W(n, Y) expression (7) is easily 1~>—N,,for all x. For practical purposes, a~is about
evaluated: one. The integral appearingin the expressionfor

C
8.(r)cx ~ J (l+l/~)exp(

— 2a
2 (

0J w(NL 1r, Y)<24N>~ydY, (9)

+ lo
where <~> gA)d~~
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can be evaluated exactly giving be statisticallysharp.In thatcase(4) is trivially ful-
filled with ((6)=2 and u=0.

~ In a varietyof otherfields ultrametric structures

It is now easyto performthe integral in (9), which similar to our model are presentlydiscussed.Ex-
finally leadsto amplesinclude spin glasses[16], neuralnetworks

[17], andprecisiondependentclusteringin coupled
_______ map lattices [18]. In thesesystems,fluctuatingcut-

~ a~logA(<p>_~~y>2_8a2logA)_8.(11) off scalesarisein a naturalway andcorresponding
relationsbetween“inertial range” and“dissipation

According to the Kolmogorov structure equation range” statistics is to be expected.((3)=l. Then (10) gives

a2 We would like to thank CharlesMeneveaufor
((rn) = ~rn+ (

2m — ~ m~). (12) pointing out the possible importance of a fluctuating
logA

cutoffscale.Thisconcepthasbeenusedin different
Inserting (12) into (11) onearrives at the desired context in ref. [191, where additional applications
relation (4). For p(s) a bimodal distribution, arediscussed.
p(s)=qd(s—s5)+(l—q)ô(s—s~), we evaluated(9)
numerically. Evenfor variousvaluesof q,
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