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For the first time corrections to classical 2/3 scaling of the structure function of high Re turbulence are evaluated from the
Navier-Stokes equation. The probability distribution for the velocity fluctuations develops increasingly stretched tails at smaller
scales. The method employed to analyse the Navier-Stokes equation is a spatially resolved Fourier-Weierstrass decomposition.
To make the equations numerically tractable we only simulate a small portion of real space, the other contributions are repre-

sented by renormalized coupling constants.

1. Introduction

Turbulent fluid flow #(x, ¢) at very high Reynolds
number Re is characterized, among others, by the
scaling exponents {(m) of the structure functions

D™(ry=« lu(x+r, 1) —ulx, 1)|™D ocr*™, (1)

& » denotes the ensemble average, ideally trans-
lational invariant and isotropic. The classical expo-
nents { (m)=m/3 follow from a simple dimen-
sional argument, if one identifies the energy
dissipation per unit mass € as the only relevant phys-
ical parameter in the inertial subrange [1].
Experimentally, there are small corrections [2,3]
8¢(m), due to intermittency, i.e. an increasing spa-
tial spottiness of turbulent activity at smaller scales.
So far there is no accepted theory of intermittency.
While {,(m) can be derived from mean field type
analyses [4,5] of the Navier-Stokes equation, in-
termittency corrections have been included by phe-
nomenological models without dynamical justifica-
tion [6-9]. A recently published numerical study of
a dynamical cascade model [10] reveals intermit-
tency, but the model only makes contact with the
Navier-Stokes equation through energy conserva-
tion, which is known to be insufficient to fix the ex-
ponents [11]. In fact, in ref. [12] we demonstrate
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that the type of local interaction approximation em-
ployed in ref. [10] leads to classical scaling, if the
Navier-Stokes interaction is correctly accounted for.

We recently introduced [13] a cascade model
which is stated directly in terms of the velocity field.
u is decomposed into modes localized both in k- and
x-space. Those types of decomposition have a long
history [14], the first application to turbulence to
our knowledge being due to Siggia {15]. Recent ap-
plications include the wavelet analysis of turbulent
flow signals [16].

Study of high Re number turbulent flow by nu-
merical analysis of the Navier-Stokes equation is
possible only if the number of admitted modes is
properly restricted. The basic idea in our previous
paper [12] is to select a geometrically scaling set of
momenta. The Fourier series then becomes of
Weierstrass type. Re~ 10° could be dealt with. We
now in addition introduce a corresponding geomet-
rically refined spatial resolution. A pruning tech-
nique keeps the number of modes still tractable.

The space-momentum resolving mode hierarchy
and the equations of motion resulting from the
Navier-Stokes equation are presented in section 2.
The main results (section 3) are: (i) The spatially
coherent turbulent solutions considered in ref. [12]
are unstable against spatially localized perturbations
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leading via Navier-Stokes interaction to enhanced,
spotty fluctuations. (ii) The fluctuations amplify
under repeated eddy decay. (iii) This leads to power
law corrections 8{ () which agree with experiment.
(iv) The probability of small as well as of large ve-
locity deviations is enhanced, the Gaussian distri-
bution becoming exponential-type with decreasing
scale. This picture of intermittency is supported by
a very recent wavelet analysis of a spectral simula-
tion of turbulent Navier-Stokes flow [17].

2. The self-similar mode system

We start with the Fourier decomposition into plane
waves exp(ip+x) as usual. With the basic periodicity
box chosen as (2nL)3 the momenta have the com-
ponents p;=nL ! with n,=0, £1, +2, etc.

To deal appropriately with the many scales present
in turbulent flow, we introduced [12] a hierarchical
subset K of wavenumbers p partitioned into levels
K, K=U,K,, each of which contains wavenumbers
of approximately equal size. The smallest wavenum-
bers (or largest scales) defining level /=0 are
Ko={p@|LpP=1%(2, 2,2), £(-1, 2,2), (2,
—1, =1), £(1, 4,4), +(4, 1, 1), + all permuta-
tions}. The larger wavenumbers (or smaller scales)
are characterized by K,={p‘? |p" =2'p'?, p®eK,).
The wavenumber sets K, are geometrically scaled
replica of K,. The smallest scale level /=N, defines
the inner scale n=(¥3/€)!/* of the flow by nx1/
p®). There are 13 wavevectors per level corre-
sponding to 52 real mode amplitudes per level [12].

The Navier-Stokes equation for incompressible
flow by (u-grad)u and pressure gradient defines an
interaction between the Fourier amplitudes u,(p, ?).
Itreads —iM;(p) 2, u,(q, ) u(p—q, t), with M, (p)
=[p,Pi (p)+pP; (P)]/2, P+ being the transverse
projection. We now restrict the interaction to those
momenta p, ¢, ¢' =p—q which besides conserving
momentum p=g+¢q’ all belong to the representative
hierarchical set K. This restriction automatically im-
plies that the interaction is local in p-space: the vec-
tors of an interacting triad either must lie in the same
or in two neighbouring levels K,.

Next we want to include the physical fact that
smaller scales should also be finer resolved in real
space. We therefore divide the periodicity volume on

PHYSICS LETTERS A

1 July 1991

the I’s cascade level into boxes of linear extension
2nL %2~/ each of which is represented by indepen-
dent local Fourier amplitudes. Let B, be the set of /-
boxes, having 2¥ elements. Denote the characteristic
functions of the boxes as x{1,(x), being 1 only if
2L X2-'mN <x; <2nL X2~ (mP +1), i=1, 2, 3,
mf? integer, 0<m{? <2'—1, and zero elsewhere.
The velocity field «; (x, ¢) is now expanded into the
space-momentum resolving Weierstrass-Fourier
series

u;(x, t)

Ny

=3 ) u(p, m®, )yl (x).
=0 ptheK; ,mDeBy

(2)

The w;(p”, m®, t) are the complex mode ampli-
tudes; the modes themselves are

wih(x)=(2rLx2"") =32
xexp (ipP-x)x 8 (x). 3)

The modes are normalized but in general not mu-
tually orthogonal. For any pair p,, p, of the restricted
wavenumber set K, however, they are orthogonal (the
proof using 2—‘Lp{” integer).

Inserting the orthogonal space-momentum resolv-
ing Fourier-Weierstrass decomposition (2) into the
Navier-Stokes equation leads to the coupled set of
o.d.e.’s for the mode amplitudes:

aﬁi(p(l)’ m (l)s t)

dat
=—i ijk(P”’)( Y d(gm®)u(p—q,m?®)
q.p—~gqeKy
+ Y (g, m=(mDY) i (p—q, m")

geK/—t, p—geKy

u(qm~ )ﬁk(p—q,M"))

1
i X
qpr—geKi+)
m+ (m))

— P2 (p D, m D) +f,(p O, m ). (4)

These equations are very similar to the previous ones
[12]. The only but crucial difference is that the /-level
momenta p in an /-level spatial box m’ are now
allowed to interact with the (/+1)-level momenta of
all eight spatial subboxes m* (m ) on (/+1)-level
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which branch off m”. The first term is the inter-
action within the /level, m”-box; the second one
describes the interaction with the larger predecessor
m~(m"), the third one that with the eight off-
springs m* (m (" ). For convenience, we introduced
the scaled amplitudes #;(p?, m )=V ;1 2u,(p?,
m @) with the box volume V,= (2rnL x2 )3, f, is the
driving force, representing the boundary conditions,
non-statistical, and specified later. The contribu-
tions of the x-derivatives of the characteristic func-
tions would generate both interactions between more
distant levels as well as spatial interactions within a
level; they are neglected in the present approx-
imation.

The mode amplitude equations imply balance
equations for the energy

EDQ(=1 3 1a@®,m®,n|?

peKy
reading
OEL (1) = .
——m 7 =T£"_]”I—% z TLT!?,,‘,(I))
at m+
—v Yy pPNa(pP,m)|?. (5)
ph

Here T, '~/ is the energy transfer into level /, box
m®_ Summing V;E{’ on m” and / gives the energy
carried by the field (2), which for v=F=0 is con-
served.

We will call egs. (4) the “multifractal” approxi-
mation to the Navier—Stokes equation since it allows
for different types of scaling in different regions in
space. Correspondingly, our previous {12] approx-
imation with spatial coherence in the periodicity box
(but temporal chaos) will be termed “monofractal”
turbulence.

To completely define the turbulent state we spec-
ify the deterministic force

fip®, m)

u;(p,m)
=126 Y Omom@Opwp® —Es
P eKin Iul

(6)

K, is [ 12] a six-mode subset of K,. The forcing hap-
pens on the largest scale only and provides constant
energy input rate e.

Due to the spatial branching the number of mode
amplitudes in (4) increases exponentially with the
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range of scales, i.e. with the number of levels /. To
keep the set of 0.d.e.’s tractable for a sufficiently ex-
tended inertial subrange (high Re) we introduce now
pruning. First, put v=0 (to simulate pure inertial
range) and drain energy on the smallest scale level
/=N, only, by introducing into (4) an eddy viscosity
(in analogy to ref. [15])

yé{:l{iy,i(p9 m(l))
=—-DX2i(p{", mP)|4,(ps", m(l))dpmé’) , (7)

which is negative definite in the balance equation (5)
and of the same dimension as the transfer terms.
piD refers to 2/ (—1,2,2),p5? t102/(2,2,2). D
will be chosen self-consistently. Eqs. (4) represent a
tree structure, cf. fig. 1a, so far. Secondly we now
prune the tree, see fig. 1b. The number of boxes on

wave number eddy size
1 1
5 2
2? e
2 2
a space —»
wave number eddy size
1 1
2 7
2 22
2 2°
b space —»

Fig. 1. (a) The coupling structure of the 0.d.e. set for the Navier—
Stokes equation. We indicated only two of the eight offsprings
every box has in three dimensions. The /th level has 2% boxes
(represented by bubbles) each consisting of 52 real mode ampli-
tudes. The interactions are represented by lines, the wavy lines
denoting draining by eddy viscosity. (b) The “pruned” version
of (a). From all but one spatial box the energy is drained by the
eddy viscosity (7), o« D. Only one box is branching again, etc.
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each level / now again is constant (namely, 8, for all
[>0), while the full series of branchings is still pres-
ent in an increasingly smaller portion of real space.
The eddy viscosity strength D is uniquely deter-
mined by adjusting the average energy transfer to be
the same through all branches on each level. Energy
draining by eddy viscosity then equals the “natural”
draining by the interlevel coupling. From our sim-
ulations we determined D=0.78.

3. Spatial spottiness

Solutions of the “monofractal” set of mode am-
plitude equations are exact solutions (with 4; (p‘?,
m) independent of m‘”) of the “multifractal”
equations of motion (4). We now study what hap-
pens if we slightly disturb a spatially homogeneous
solution of (4). This we do in a two-level system,
one box with /=0, eight boxes with /= 1, draining the
second level by the eddy viscosity. The initial value
of one amplitude out of the 52 real mode amplitudes
in one box is disturbed by 0.1%. The time evolution
of the other seven boxes is kept identical, by sym-
metry. Fig. 2 shows how the difference between the
energy of the initially perturbed box to that of an-
other box evolves in time. After about three large
eddy turnover times the initially minute disturbance
has reached macroscopic size, the typical behaviour
of trajectory divergence in nonlinear dynamical sys-
tems. The corresponding Lyapunov exponent ap-

T T
=)~
E100-E010

-5k -

-1 L 1 1

o 2 4 6 8

Fig. 2. The time evolution of a subbox subject to a small initial
perturbation. Drawn is the difference in energy between the per-
turbed box m (") = (1, 0, 0) and one of its seven identical siblings,
m=(0, 1, 0). The time units are (and henceforth will be)
turnover times (L2/€)'/* of the largest eddy.
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parently is of the order of (turnover time) ~'.

Next we look at the independent, non-constrained
evolution in all eight real space boxes over a longer
stretch of time, fig. 3. It is evident that the proba-
bility for large excursions from the mean value has
increased in the individual boxes, while the average
EM over the eight boxes, i.e. over the complete pe-
riodicity volume, resembles the top level, E(® (scaled
in magnitude and time). E? resembles the mono-
fractal case, where the absence of branching enforces
an average in space.

Let us address now the question if the fluctuations
will tend to amplify when the branching is repeated.
The answer comes from numerical simulation of the
pruned (cf. fig. 1b) six-level “multifractal” cascade.
The value of
AufP(1)= (,Z [Re{i#;(p, m")}

I 4

YeKy
X [cos(pf? x27")=1]
+Im{iZ;,(p”, m)}sin(p{” x27')] (8)

was recorded for all components i and each box m "
of level /, i.e. for each eddy of size ~ 1/p‘". Its phys-
ical meaning also is the saddle point approximation
with respect to / of the longitudinal velocity differ-
ence (27 '%)—u;(0). The time evolution of
Au!" (¢) provides the probability distribution (pdf)
for the velocity differences coming from level / in any
box m¥, i.e. on scale 2,

As fig. 4 shows, the largest eddy level /=0 has an

2

0 L ——t —
0 400 800 t

Fig. 3. The time evolution of a two-level system. Shown is from
top to bottom: the energy of the highest level (one box), fed by
constant energy input; the average energy of the eight subboxes
(level 1); the individual energies of two of the subboxes. The
mean values are 14.48 for the upper and 8.51 for the three lower
signals.
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Fig. 4. The probability distributions of the velocity difference (8)
for three different scales 2/, /=0, 3, 6. The data are taken from
a simulation of the six-level system over 16000 turnover times.
All pdf’s are normalized and scaled to unit variance.

almost Gaussian pdf, while the smaller eddies’ pdf’s
develop increasingly stretched tails. These exponen-
tial-type tails are one of the trademarks of experi-
mental identification of intermittency [3,18].

We computed the moments of Au!” (time
averaging). As an exact consequence of Kolmo-
gorov’s structure equation it is D) (r)ocr, thus
log, (& |Auf” *» ) should scale like /. Numerically,
this is not exactly satisfied. We therefore rescaled
Au!" once for every scale / as to reproduce the cor-
rect scaling of the third moments (oc/). The other
moments of order m yield the {(m). Their values are
summarized in table 1. Comparison with the data
[2] is quite satisfactory.

We finally report on the numerical value of b in
the second order structure function D® (r)=
b(er)?’*(r/L)*?), In the “monofractal” case [12]
with 52 real amplitudes per level we had 8{(2)=~0
and b~300. The branching of the “multifractal”
equations enhances the energy transport leading to
b~ 150 (experimentally b,,,=8.4). While the scal-

Table 1
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ing exponents are already convincing, b is not yet.

4. Discussion

In view of the equations of motion (4) for the
mode amplitudes of the Navier-Stokes velocity field
the following picture of the mechanism for inter-
mittency arises. The energy of an /-level eddy has to
be shared by eight offsprings. These are in compe-
tition. If by chance the energy transfer into one sub-
box is high, there is less energy for the others. Such
privilege in energy tends to amplify since the transfer
rate is bilinear (or “autocatalytic”’) in the ampli-
tudes. Therefore privileged subeddies gain even more
intensity, nonprivileged ones loose. The result is
spottiness. Due to the specific nonlinear interactions
the system does not tend to the survival of the fittest
but shows a deterministic chaotic behaviour. Thus,
simultaneously with creating spottiness of the active
region the Navier-Stokes interaction (whose Gali-
lean invariance, i.e. whose Lagrangian character of
fluid flow, is kept [12]) creates the stochastics of the
turbulent field. There is no artificial stochastics added
by forcing with noise, no adjustable model param-
eter (as in previous intermittency models [6-9]) is
free. Having selected the modes everything is
Navier-Stokes determined.

We found in ref. [12] that the Navier-Stokes in-
teraction seems to enforce classical scaling {=m/3.
Since the same p-space interactions are kept in the
“multifractal” analysis it is only the branching of the
cascade that induces small deviations 8¢(m).

There are various refinements of our theory. For
instance, with finite viscosity ¥ we expect D to be-
come a function of both v and level [, D=D(v, [).

The structure function exponents {(m) for m=2, 4, 6 and 8. A least squares fit was made to the first five levels of six levels simulated.
Given is the statistical (x2-) error. The second line contains the experimental results of Anselmet et al. [2]. This is the first comparison
between data and Navier-Stokes based theoretically computed {(m).

Exponent £(2) L(4) L(6) {(8)
6-level 0.6982 1.2688 1.7028 1.9874
calculation +0.0003 +0.001 +0.01 +0.04
experiment [2] 0.71 1.33 1.80 2.22
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The smallest size level /=N, should be chosen such
that for given e the amplitude u ™ is practically zero,
hence D(v, N,)=0. If /< N,, D should converge to
its v-independent fixed point, whose value is 0.78 for
our 52 amplitudes-per-eddy mode selection.

We have made three types of approximations to
the Navier-Stokes equation, which still have to be
studied in greater detail: (i) Only interactions are
included that are local in wavenumber space. (ii)
The respective eight offsprings do not interact di-
rectly, but only indirectly via their common prede-
cessor. One expects that adding direct spatial mixing
will tend to reduce the fluctuations, cf. refs. [11,15].
(ii1) Our eddy viscosity (7) only leads to energy loss,
thus neglecting the backscattering effects [17] pres-
ent in the complete transfer terms [12]. Hence the
pruning approximation will tend to suppress fluc-
tuations. The question remains open if this seriously
affects the exponents.
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