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Nonlinear spontaneous symmetry breaking in active polar films
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Abstract – The behaviour of an active polar suspension in a fluid film is analysed in the vanishing
Reynolds number limit. We perform a detailed study of the transitions to spontaneously flowing
steady states and their associated density variations. Beyond the onset of instability, we find a
new transverse symmetry breaking of the flow generated in the film. This spontaneous symmetry
breaking is observed despite symmetric boundary conditions (with respect to orientation) on
either side of the film. We study this new phenomenon by means of numerical simulations and
nonlinear theory, showing that it can be ascribed to the nonlinear coupling, characteristic of polar
active systems, of the density gradients with the flow velocity and the orientation field. As such a
theoretical analysis based on linear stability arguments typically used to identify phase boundaries
is unable to describe it. An extension of the theory to allow for higher-density regimes is also
proposed.

Copyright c⃝ EPLA, 2016

Introduction. – Active materials [1] are a class of soft
materials maintained out of equilibrium by internal energy
sources, generally a suspension of active units. Examples
of such materials can be found in biological contexts: bac-
terial colonies [2–5], cytoskeletal filaments and motor pro-
teins [6,7], and the cell cytoskeleton [8–10] are only some
of them. Non-biological systems [11,12], for example a
layer of vibrated granular rods [13,14], also show simi-
lar behaviour. The key property that distinguishes ac-
tive matter from more familiar non-equilibrium systems,
such as fluids under shear, is that the energy input that
maintains the system out of equilibrium comes from each
constituent, rather than the boundaries. Each active unit
goes through a cycle during which it dissipates energy and
fuels internal changes, thus leading to motion.

Typically, active systems consist of suspensions in a
fluid of anisotropic self-propelled particles of two types:
polar ones, with a head and a tail, and apolar ones that
are head-tail symmetric [1] and are often called active liq-
uid crystals. Hence they are characterised by condensed
phases typical of liquid crystals [15], along with a range
of new phenomena. Apolar particles can form phases
with nematic order, characterized by a macroscopic axis of
mean orientation identified by a unit vector n and global
symmetry for n → −n. Polar particles can order in both
nematic and polar phases. The polar phase is again char-
acterized by a mean orientation axis P, but P ̸= −P.

One of the most remarkable properties of confined
active liquid crystals is the dynamical emergence of
spontaneously flowing states (both stationary and os-
cillatory) starting from a uniform aligned homogeneous
state [16–18]. These occur because local orientational
order generates active stresses, and these are in turn bal-
anced by the fluid flow. This leads to states that can sup-
port local inhomogeneities in the velocity of the fluid and
the local alignment of the particles, while maintaining a
net zero force. Thus, active liquid crystal films, beyond a
critical film thickness or activity can generate motion even
in the absence of externally applied forces [17], in contrast
to their passive counterparts [15]. The transition from
stationary to flowing states and resulting non-equilibrium
phase diagrams are usually obtained via linear stability
analyses [16,17,19–22].

Active polar fluids have a rich spectrum of be-
haviours [19–22]. Indeed, like active nematics [17], they
exhibit steady spontaneous flow. Unlike active nematics,
however, where the particle concentration remains prac-
tically uniform in the spontaneously flowing state [17],
spontaneous flow in polar fluids is accompanied by “con-
centration banding” [20], i.e., a sharp gradient in the
concentration of particles across the film. This is due
to couplings of concentration gradients to the polar di-
rector, which are not allowed for systems with nematic
symmetry [15].
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Fig. 1: (Colour online) Symmetry breaking in an active polar
film: as the activity is increased, the orientation profile θ(z) be-
comes unstable and a bifurcation with two asymmetric states
occurs. A small asymmetry in the initial conditions (ICs) de-
termines the final state. For the same ICs, a flip in the BCs
selects a different state.

In this letter we show that active polar films present an
even richer behaviour due to the nonlinearity of the dy-
namics. The coupling terms that dominate the dynamics
beyond the onset of spontaneous flow are nonlinear and
induce an additional spontaneous symmetry breaking in
the variations of the orientation and density fields. Here
we study an infinite thin planar active fluid film with free
boundary surfaces on both sides. Previous work on the
same system [20] with asymmetric boundary conditions
(BCs) has provided a phase diagram using a combination
of numerical calculations and linear stability analysis. In
this letter, we analyse for the first time the case of sym-
metric BCs, and show that a spontaneous, discrete sym-
metry breaking is exhibited by the system in the direction
of the film thickness (i.e. orthogonal to the spontaneous
flow direction), with higher concentration gradients and
orientation alignment on one side of the film compared to
the other. The initial conditions select between the two
equivalent states shown in fig. 1, one where the maximum
orientation lies in the lower half of the film, and the other
with the same profile but with maximum in the upper
half. Interestingly, for the same initial condition, the sign
of the broken symmetry in the eventual steady-state can
be changed by a symmetric flip of the boundary conditions
at the edges of the film (thus in a direction parallel to the
flow). This phenomenon, which cannot be described by
a linear analysis of the first unstable modes, is identified
and described by means of a nonlinear stability analysis
and confirmed by numerical simulations.

Geometry and governing equations. – Our model
of a polar active suspension (see fig. 2) consists of an infi-
nite two-dimensional fluid film, confined between two free
surfaces at z = 0 and z = L, in which a suspension of
anisotropic particles of length ℓ ≪ L is immersed.

We consider polar self-propelling particles with constant
speed and focus on spatial variations of the orientation

Fig. 2: (Colour online) Schematic representation of the active
fluid film of thickness L. The polar rods form an angle θ with
respect to the direction x.

of the polarization vector P. The total density of the
suspension is ρ = Mc + ρf , with ρf the fluid density, c is
the concentration of active particles and their mass M is
assumed to be constant. Therefore, we have ρf = const
and ∇ · u = 0, with u being the flow velocity field.

The dynamical equations for an active suspension are
now well accepted [1] with a generic structure that can be
applied to a broad class of active liquid crystals. Some
terms in the equations, which are present at equilibrium,
can be obtained from a non-equilibrium analogue of a
free energy while others are due to the intrinsically non-
equilibrium nature of these systems. The non-equilibrium
free energy F is given by [1]

F =
∫

r

{
K1

2
(∇ · P)2 +

K3

2
(∇ × P)2 + B1

c − c0

c0
∇ · P

+
B2

2
|P|2∇ · P +

B3

3c0
|P|2P · ∇c

+
C

2

(
c − c0

c0

)2

+
A2(c)

2
|P|2 +

A4

4
|P|4

}
, (1)

where c0 is the average density of the suspension, the three
terms proportional to B1, B2, B3 couple concentration and
splay and are present in equilibrium, C is a compressional
modulus and K1, K3 are the splay and bending elastic
constants. Hereafter we will assume for simplicity B1 =
B2 = B3 ≡ B and K1 = K3 = K. The validity of this
assumptions is discussed elsewhere [1,15]; however, they
do not qualitatively change the results obtained here. The
dynamics of the concentration and the polarization are
described by [22]

DtPi + ωijPj = −βpcP · ∇Pi + λuijPj + Γhi − Γ′fi, (2)

Dtc = −∇ ·
[
βcc

2P − Γ′hi − Γ′′fi

]
, (3)

where Dt ≡ ∂t + u · ∇, hi = δF/δPi is the molecu-
lar field, fi = ∂i(δF/δc), uij = (∂iuj + ∂jui)/2, ωij =
(∂iuj − ∂jui)/2. Here Γ, Γ′, Γ′′ are kinetic coefficients and
βp, βc are parameters that arise from self-propulsion, λ is
an alignment parameter.
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The stress tensor is given by dissipative, reversible, and
active contributions:

σβ
ij =

βσc2

Γ
[∂iPj + ∂jPi + δij∇ · P ], (4)

σα
ij =

αc2

Γ
[PiPj + δijΠ], (5)

σr
ij = −δijΠ +

λ

2
(Pihj + Pjhi) +

1
2
(Pihj − Pjhi), (6)

where Π is the hydrodynamic pressure. The length and
time scales are those typical of low Reynolds numbers (ℓ ∼
1 µm, v0 ∼ 10 µm ⇒ Re ∼ 10−5), hence momentum
conservation is provided by the Stokes (Re = 0) limit of
incompressible fluid flow:

∂i(σr
ij + σa

ij + σβ
ij + 2ηuij) = 0, ∇ · u = 0. (7)

The parameters are system and model specific. In
particular, the coefficients βp, βc, βσ are non-universal
phenomenological parameters that depend on the self-
propulsion speed v0 and are determined by microscopic
properties. The terms proportional to these coefficients
in (2), (3) are exclusive to polar systems. Since they
all come from self-propulsion, they can be expressed (us-
ing the lengthscales of the system) as: βp = βℓ2, −βc =
β′ℓ2, βσ = β′′c2

0, where the β, β′, β′′ have dimensions of
velocity and have been estimated in a variety of micro-
scopic models as βi ∼ v0 [23–25]. Hereafter, we assume
that β = β′ = β′′.

Focussing on the hydrodynamic modes [1], we consider
only the orientation of P, expressing it in terms of the po-
larization angle θ: P/|P| ≡ p = (cos θ, sin θ, 0). Transla-
tional invariance in x, y allows us to reduce the dimension
of the problem by assuming ∇ = (0, ∂z, 0), with all quan-
tities varying in the direction of the film thickness, z only.

We impose a stress-free boundary condition at the sur-
faces, i.e., σij(0, t) = σij(L, t) = 0. Stokes equation
then implies that σij(z, t) = 0 throughout the film. The
incompressibility condition implies uz = 0. On account
of Galileian invariance, ux is determined only up to a
constant. For the polarization, we consider BCs with
p parallel to the 2 boundary surfaces, i.e., we consider
θ(0, t) = θ(L, t) = 0 or π. We non-dimensionalise by
measuring lengths in units of ℓ, temporal variables in
terms of the time scale of splay and bending fluctua-
tions τ = ℓ2/K. A mass scale is set by ℓ3τ/Γ0. The
concentration is normalized by the mean density c0, all
the other quantities are redefined accordingly: z → z/ℓ,
t → t/τ0 = (K/ℓ2)t, φ(r, t) → c(r, t)/c0. Direct substitu-
tion in (2), (3) and (7) leads to equations for the dynamics
of φ(z, t) and θ(z, t) [20].

It is known from linear stability analysis that for α > αc

there is an instability from a quiescent (u = 0) aligned
(θ = 0 or π) state to a spontaneous flowing state,
with both inhomogeneous alignment and velocity pro-
files [17,19–22]. The location of the critical value of ac-
tivity, αc(L, β) depends on BCs. For non-zero β > βc,

spontaneous oscillations due to the coupling of gradients
of concentration to the polarization director appear. Upon
increasing β the oscillatory behaviour becomes increas-
ingly complex. Here we restrict ourselves to β < βc.

Weakly nonlinear analysis: first-order modes.
– We can expand the fields about the quiescent state:
φ(z, t) = φ0 + δφ(z, t), θ(z, t) = θ0 + δθ(z, t). The BCs
imply the following mode expansion:

δθ =
∞∑

k=1

Θk(t) sin (kπzℓ/L) ,

δφ =
∞∑

k=1

Φk(t) cos (kπzℓ/L) .

To get the linear stability threshold we use Θk(t) =
Θ̃keiωkt, Φk(t) = Φ̃keiωkt, with Θ̃k, Φ̃k constant, which
substituted into the system of PDEs and keeping terms to
linear order, gives a dispersion relation ωk = ω(k), with
a steady-state instability (at zero frequency) at a critical

value [20]: αc(k) =
(

kπℓ
φ0L

)2
η(w−1)

λ−1 + wβ[η+ 1
2 (1−λ)2]

(1−λ)(D−w) , fixing
the threshold of linear stability to be αc(1) of the most
unstable mode (k = 1).

To test the nonlinear theory to be developed below, we
solve the full nonlinear equations numerically. Beyond the
onset, the steady-state velocity and density profiles grow
in amplitude as the parameters α and β are increased.
To resolve the nonlinear dynamics beyond the onset, we
use a finite-difference scheme, second order in space and
time. The diffusive terms in (3)–(7) are treated implic-
itly,the other terms explicitly; we implement an adaptive
time stepping strategy. The BCs require careful attention,
because (3) is conservative and non-constant effective dif-
fusion coefficients appear in it. The dynamics of the profile
as it approaches the steady state are shown in the inset of
fig. 3, and the stationary profiles obtained are reported in
fig. 3, 4. These results show the symmetry breaking noted
in the introduction and represented in fig. 1. Indeed, as
we can see in fig. 3, 4, the orientation and density profiles
present an evident up-down asymmetry with respect to z.

In order to describe the instability theoretically, a first
extension of the linear stability result can be obtained by
keeping the modes as general functions of t, but restricting
the expansion to the 1st mode:

φ(z, t) = φ0 + Φ1(t) cos(πzℓ/L), (8)
θ(z, t) = θ0 + Θ1(t) sin(πzℓ/L). (9)

The orthogonality of the trigonometric functions leads to
a system of nonlinear first-order ODEs for Θ1, Φ1:

Θ̇1 = f(Θ1, Φ1) (10)
Φ̇1 = g(Θ1, Φ1), (11)

where f, g depend on the parameters of the problem
(D, w, β, α, λ, φ0, ℓ/L). The system evolves to a steady
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Fig. 3: (Colour online) Left: amplitude of θ as a function of the control parameter α. Numerical simulations (red squares) and
theory. The solid line corresponds to the expression Θ⋆

1 ≃ 0.269(α − αc)1/2, whereas the dashed one takes into account the
effect of the second mode Θ2 discussed in the third section. Inset: time dependence of the maximum value of the orientation
field throughout the film. Right: stationary profile of orientation across the channel with different BCs, for ϵ = 0.1. Theory
(with two modes): θ(0, t) = θ(L, t) = 0 (black solid line), π (grey solid line), and numerics (black and grey dashed lines).
w = 0.13, λ = β = 0.1, L = D = 1, ξ = 0, η = 0.5.

Fig. 4: Left: stationary profile of density across the channel with different BCs, for ϵ = 0.1. Right: velocity gradient profile
for ϵ = 0.1, comparison between numerics and theory (with two modes), and θ0 = 0; the curves for θ0 = π can be derived by
symmetry with respect to the center of the channel. The theory captures the qualitative features of the numerical solution: the
presence of two relative minima, and the side of the global one.

state corresponding to a stable non-zero fixed point
(Θ∗

1, Φ∗
1), in agreement with numerics, for α > αc. We

can identify a control parameter ϵ ≡ (α − αc)/αc and we
find fixed point values Φ∗

1, Θ∗
1 ∼ ϵ1/2. A comparison of

the analytical solution for Θ∗
1(α) and the numerically ob-

tained steady-state amplitudes is shown in fig. 3. The re-
sults show that very close to the threshold the amplitudes
of the stationary profiles are well described by a weakly
(first-order) nonlinear theory. However, the first unstable
mode for θ is symmetric, and cannot produce the asym-
metry observed in the channel (cf. fig. 1), nor the flip
caused by the inversion at the boundaries. Consequently,
we have to include the terms with k ≥ 2 appearing in the
mode expansion.

Higher-order analysis and instability mecha-
nism: beyond the weakly nonlinear theory. – A
generalization of the weakly nonlinear analysis is the the-
ory of amplitude equations [26] which allows one to study

the nonlinear stability problem by reorganizing the expan-
sion in the higher modes using the small control parame-
ter ϵ, so that the amplitudes of the higher modes decrease
with ϵ. This suggests that we can express asymptotically
Θk(t) = ϵλkθk(t), where λk > λk−1. The exponents λk

characterize the decay of the k-wavelength mode in terms
of the normalized distance ϵ from the onset of instability,
and they are closely connected to the dispersion relation
of the system. The exponents λk are such that modes
with increasing k come into play at increasingly higher or-
ders in ϵ. We can thus for small enough ϵ approximate
the solution by truncating the series at k = N , to obtain
a system of 2N ODEs for θ1(t), φ1(t), . . . , φN (t), θN (t).
To capture the asymmetry in the film, we need to have
at least N = 2, for which we start by assuming that
λ1 = 1, λ2 = 4: this allows us to keep the contribu-
tion of θ1, φ1 as the dominant one up to the order ϵ4,
at which point θ2, φ2 appear; the assumption we check
to be consistent a posteriori. We thus obtain equations
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Fig. 5: Left: theoretical profile of θ: the contribution of the second mode gives rise to the asymmetry in the orientation profile
θ(z, ∞). Right: amplitude of the second mode θ2(α) as a function of the activity α > αc. The four profiles show θ2 for two
opposite BCs and with the crowding effects discussed in the section “High-densities corrections”.

for θ1, θ2:

dθ1

dt
= (a1θ1 + b1φ1)ϵ

+ (a3θ
3
1 + b3φ

3
1 + c12φ1θ

2
1 + c21φ

2
1θ1)ϵ3, (12)

dθ2

dt
= (c11θ1φ1 + a2θ

2
1)ϵ

2

+ (d1θ2 + e1φ2 + c13φ
3
1θ1 + c31φ1θ

3
1)ϵ

4, (13)

and similar equations for φ1, φ2. The constant coefficients
ai, cij , di, ei, . . . are reported in the appendix.

The complete set of equations thus found can be solved
numerically with θ0 = 0 and θ0 = π, and we find that a
flip in the BCs θ(0, t), θ(L, t), reflects into a flip in the
amplitude θ2 of the second mode, as plotted in fig. 5(b)
as function of α. This result identifies the origin of the
symmetry breaking, that indeed appears as a nonlinear
effect due to the higher wavelength modes of the orienta-
tion field.

Symmetry breaking can be understood physically in
terms of the relationship between the orientation P and
the density gradient ∇c. The terms with coefficients Bi in
the non-equilibrium free energy in (1) are responsible for
this coupling, since they give density contributions to the
spontaneous splay. They are allowed in equilibrium sys-
tems with polar symmetry [25] and model the tendency of
P to align to the gradients of c, so that splay of one sign
enhances and of the other sign reduces the local order ex-
pressed by c. Therefore, active particles will tend to have
greater orientation variations where the density gradients
are higher. Another contribution to this coupling is given
by the terms in β that represent the advection of density
in (3). In our system, an inversion of the BCs on θ (or,
equivalently, P) causes a sign change in these terms, which
appear in (3) and then cause the final density profile to
have a maximum on the opposite side of the channel.

Then, the initial condition (and in particular, its sym-
metry) selects the shape of the density profile in the sta-
tionary state; the zone with highest gradient appears to
be on one side of the channel, and on that side the splay

causes a maximum in the variation of θ. When we invert
the BCs, i.e., impose θ(0, t) = θ(L, t) = π, the coupling
of θ and ∇φ acts on the bulk through the nonlinear cou-
pling terms (proportional to B, β), and therefore also the
density profile is flipped. Thus, the zone with highest gra-
dients of φ and maximum θ is found on the other side of
the channel. In agreement with this picture, the asymme-
try is seen to increase with α, B or β.

High-density corrections. – Commonly, experi-
ments on active liquid crystals all show a crowded pop-
ulation of self-propelled particles. Being able to adapt the
models to high values of c(r, t) is therefore of great im-
portance to describe real polar suspensions operatively;
see also recent experiments [27]. The crowding effect can
be introduced as a correction to the kinetic parameters in
the problem. Whenever a high number of active rods is
present in a certain region, i.e., where c(r, t) is big, their
overall speed decreases. This can be modelled by assuming
that

Γi(r, t) = Γi
0e

−A c(r,t)/c0, (14)
η(r, t) = η0e

A c(r,t)/c0 , (15)

and similarly for β. The effect of this modification is a
penalization of the motion of particles in a crowded area
of the film. As a result, it smoothes the profile and reduces
the asymmetry, as confirmed by our numerical tests. As
a result, the amplitude θ2(α) has a much smaller value in
the case of crowding, causing a less noticeable asymmetry
in the solution (see fig. 5(b)).

Discussion. – In conclusion, we showed that active po-
lar films not only show a transition to spontaneous flow
above a critical intensity of activity, but they also dis-
play a spontaneous symmetry breaking with respect to the
transversal direction z. The asymmetry can be inverted
when the orientation of the suspension is flipped at the
boundaries in the x-direction. This is a typical example
of the coupling between density gradients and orientation
of polar active particles, that can lead to nonlinear effects,
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such as the observed mixing between transversal and par-
allel modes in the flow in a channel. Moreover, the crowd-
ing correction devised to account for high densities has
the effect of slowing down the instability and smoothing
out the density and orientation profiles. From a theoreti-
cal perspective, this peculiar nonlinear behaviour offers a
wide range of possible directions for further investigation.
Along the lines of [28], for instance, it would be of great
interest to explore the same system in a more complicated
geometry: with a no-slip substrate but surface tension and
curvature effects at the top boundary.

Finally, in view of the recent and current progress in the
fabrication of active colloids, we expect that symmetry-
breaking and other analogous nonlinear phenomena char-
acteristic of polar suspensions can be reproduced and
used as a means of transferring input from the parallel
to transversal direction of a channel and vice versa. This
could be of interest in the realization of experiments where
operating along one direction proves much harder than
acting on the other one.
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Appendix A: coefficients of the amplitude equa-
tions. – The coefficients appearing in (12), (13) are:
a1 = 4βηΓ0φ2

0/Ω, a3 = 2φ2
0[24(λ2β − α) − 1]/9Ω, b1 =

−4ηΓ0(D − w), b3 = 0, c12 = 4ηΓ0β/(3Ω), c21 =
8[(ηΓ0 + 2λ2)(D − w) + w(1 − λ)]/3, a′

1 = 4[η0Ω(1 −
w) − φ2

0(1 − λ)/Ωα], a′
3 = 4Ω[3η0w + 4λ2(1 − w) −

4φ2
0(4λ − 1)/(3Ω2)α]/3, b′

1 = 2w[2η0 + (1 − λ)2], c′
21 =

2[2η0(β − w) − (λ2 − 10λ + 1)w + 4φ0c0β(1 − λ)]/3,
c′
12 = −4α(1 − λ)ϵ3θ1φ2

1/(3Ω), where Ω = πℓ/L. It can
be readily noticed that eqs. (12), (13) fall back onto the
linear stability result [20], if only the first order in ϵ is
considered.

An approximated solution of (12) and (13) can be found
by fitting the numerical results, and noticing that for small
ϵ the amplitude Θ1 is well desc with an expression of the
form: Θ1 = Θ⋆

1(α − αc)1/2 ≡ Θ⋆
1αcϵ1/2. The same is

true for Φ1(α), and the numerical prefactors are given in
fig. 3. The coefficients for the second mode, are: D1 =
24η[−αλ+α+4π2η(w−1)], D′

1 = 12βη, E1 = 24πη(D−w),
E′

1 = π[2η − (λ − 1)2]w.
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