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It is common to relate the dynamic contact angle θd to the relative speed between
the substrate and the contact line; theory suggests θ3

d ∝ U . In fact, available physical
models show that the dynamic angle involves speed logarithmically and in a model-
dependent manner. Experimental data consistent with this interpretation are cited.

1. Introduction
One area of fluid mechanics that has been the subject of a large admixture of

analysis, experiment and speculation is the subject of the moving contact line. A
typical situation, common in many coating processes, refers to the contact line at
the intersection of solid, liquid and gas regions, where the three-phase line moves
relative to a solid substrate. A basic question in this subject stems from the violation
of the no-slip condition in the immediate neighbourhood of the three-phase line of
contact (e.g. Huh & Scriven 1971; for reviews see Dussan V. 1979; de Gennes 1985;
Kistler 1993). As a result, within the usual continuum analysis, the stress diverges as
the contact line is approached and the energy per unit length of the moving contact
line is unbounded. This result may be viewed as an embarrassment of continuum
modelling, but, in fact, it does indicate the need for a small cutoff length scale in
macroscopic theories, as well as some more input from the physics at smaller length
scales to interpret properly the meaning of any such cutoff scale.

Perhaps the most basic feature of this problem is the aim to relate the local dynamic
contact angle θd(x), which is the arc tangent of the slope of the interface at a distance
x from the contact line, to the local speed U with which the contact line moves
over the substrate. For the case of a perfectly wetting fluid (vanishing equilibrium
contact angle θeq =0) and small θd , we find θ3

d ∝ U , which is known as Tanner’s
law. Theoretical justification for this result has been given (e.g. de Gennes 1985) and
various generalizations have been offered. In dimensionless form, the speed is reported
in terms of the capillary number C = Uη/γ , which measures the relative importance
of viscous to surface tension forces, where η is the fluid viscosity and γ the interfacial
tension. In fact, the functional form for the contact angle-speed relation is commonly
written for small angles as θ3

d (x) ≈ 9C ln(x/�micro), where �micro is generally taken as a
molecular length (e.g. Leger & Joanny 1992). Typically, the capillary number varies
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over many orders of magnitude; values 10−7 < C < 10−1 are common. The prefactor
multiplying the speed in this formula can be important for interpreting experimental
data, and so it is reasonable to interrogate more closely the functional dependence
on speed.

In this paper, we wish to comment on one aspect of the moving contact line
problem that has been largely neglected and/or unappreciated. In particular, we
note that detailed models for the perfectly wetting situation actually yield a dynamic
contact angle versus speed relation

θ3
d (x) ≈ 9C ln

(
x

�micro

Cβ

)
, (1.1)

where β > 0 depends on the physical model introduced in the neighbourhood of the
contact line. We do not believe that it is necessarily appropriate simply to suppress the
additional dependence on speed (i.e. C) by replacing the argument of the logarithm
by either �macro/�micro, where these two length scales are taken as constants, or x/�micro.
Because of the large variation in C, not including this additional factor of capillary
number when using (1.1) to interpret dynamical experiments may lead to significant
discrepancies between theory and experiment. Here, we outline the basic idea behind
(1.1) and present experimental evidence that supports the above interpretation of a
model-dependent value of β .

Another point that has received insufficient attention is the range of validity of
equation (1.1). Near the contact line, (1.1) breaks down where x is of the same order
as �microC−β . This restriction is evident as the general structure comes from a balance
of viscous and surface tension forces alone. Not surprisingly, we estimate below that
the microscopic scale is between several ångstroms and tens of ångstroms, depending
on the microscopic forces assumed to be acting near the contact line.

Toward large scales, x is commonly taken to be a static scale such as the capillary
length or the size of a spreading drop (de Gennes 1985). Nevertheless, it should be
noted that the flow near a moving contact line often resembles a coating flow, similar
to the classical problem studied by Landau and Levich (e.g. Levich 1962). This leads
to the appearance of another, dynamical length scale, that can become much smaller
than the capillary length as the capillary number is small, which is typically the case.
Thus, a meaningful comparison between (1.1) and a macroscopic measurement of the
dynamical contact angle might require a spatial resolution significantly below 1/10
or even 1/100 of the capillary length.

In the next section, we will introduce two different models commonly used to treat
moving-contact-line problems such as a spreading drop or a tape plunging into a
pool of fluid. Then, in § 3, we show that the lubrication equations corresponding to
both models have similarity solutions for the interfacial shape that fix the functional
dependence on the capillary number. Section 4 discusses the dynamical problem that
equation (1.1) has to be matched to on an appropriate outer length scale. In § 5, we
explain measurable consequences of the two models for the dynamic contact angle,
and discuss an experiment that helps to distinguish between them. We close with a
summary and possible directions of future work.

2. The model
The usual dynamic balance for the steady flow ‘far’ from the contact line involves

capillary and viscous stresses. As the contact line is approached, the capillary-viscous
flow leads to a stress singularity. A number of different physical effects have been
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Mechanism Reference

Van der Waals Hervet & de Gennes (1984)
Navier slip Huh & Scriven (1971)
Nonlinear slip Thompson & Troian (1997)
Shear thinning Gorodtsov (1990)
Diffuse interface Seppecher (1996)
Generalized Navier slip Shikmurzaev (1997)

Table 1. Different models for the flow in the neighbourhood of the contact line,
with representative references.

suggested to relieve the singularity, and these either account for the fact that on
very small length scales van der Waals forces act to maintain a finite-thickness liquid
layer on the solid substrate, or that at very high shear rates the boundary conditions
and the transport coefficients of the fluid are likely to be altered. Which model is
appropriate might depend on the physical system at hand, or be a combination of the
above. In table 1, we provide a short overview of proposed physical models for flow
in the neighbourhood of a contact line; see also McKinley & Ovryn (1998). There
has been a considerable effort to base the understanding of the contact-line physics
on a microscopic particle-based description (see for example Koplik, Banavar &
Willemsen 1989; Ruijter, Blake & de Coninck 1999; Abraham, Cuerno & Moro
2002). The so-called ‘diffuse interface’ model (see e.g. Seppecher 1996; Chen, Ramé &
Garoff 2000; Pomeau 2002) represents an intermediate approach in that it attempts
to model the inner structure of the liquid–gas interface, but uses a continuum model.

Below, we restrict our attention to two different models which have proved
particularly popular. The results are sufficient to highlight the measurable differences
between different physical mechanisms. In model I, due to de Gennes and coworkers
(e.g. Hervet & de Gennes 1984; de Gennes 1985), van der Waals forces are taken
into account, so, very close to the contact line, there is a balance between surface
tension and van der Waals stresses alone. In model II, proposed for example by Huh
& Mason (1977) and Hocking (1977), the fluid is allowed to slip across the solid
surface over a small slip length.

For simplicity, we consider only the case of perfectly wetting fluids, i.e. of zero
equilibrium contact angle. Consistent with the local balances, the interface near the
contact line remains nearly flat and we can use lubrication theory to describe the fluid
motion. This approach amounts to a significant simplification of the mathematical
treatment relative to the full two-dimensional flow problem (Cox 1986), but agrees
with the full calculation when the dynamic contact angle is small. There are numerous
indications that the small-angle theory in fact remains valid for slopes of order unity.
For example, θ3

d /9 in equation (1.1) differs by only 2% from the full expression (Cox
1986), derived without the benefit of lubrication theory, up to a slope of 1. Also,
Fermigier & Jenffer (1991) reported that small-angle theory holds experimentally up
to an angle of 100◦, in agreement with earlier experiments by Hoffman (1975).

To be able to describe an experiment like a flat plate plunging with velocity U into
a reservoir of fluid (see figure 1), it is necessary to include other terms beyond the
lubrication terms close to the contact line; namely, we keep the full curvature term
and include gravity. By doing this, the model is able to describe the crossover to a
purely static, horizontal surface far away from the dynamical region. A basic unit
of length is the capillary length �c =

√
γ /gρ, which dictates the scale of the interface
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Figure 1. A typical application involving a moving contact line: a plate plunges with velocity
U into a liquid-filled container; the capillary length �c =

√
γ /ρg. Since we assume wetting

fluids, the meniscus creeps up the plate opposite to the direction of motion and a non-zero
dynamic contact angle θd (x) is established. In the experiment of Marsh, Garoff & Dussan V.
(1993) referred to below, the plate is replaced by a cylinder which can be tilted at different
angles α. We also schematically indicate the different length scales relevant for this problem.

curvature far away from the contact line. In the van der Waals model I, which
accounts for pressure variations owing to capillary, van der Waals and gravitational
forces, the equation for the stationary profile h(x) (cf. figure 1) is

3C
h2

= κ ′ + 3a2 h′

h4
− �−2

c , (2.1)

where κ(x) is the curvature and a prime refers to differentiation with respect to x. Note
that a positive C corresponds to the plate plunging into the fluid. A brief derivation
of model I, as well as model II below, is given in Appendix A. The microscopic length
parameter a, defined by

a2 =
A

6πγ
, (2.2)

measures the strength of van der Waals forces relative to interfacial forces and is
typically very small (of the order of ångstroms).

Another distinct approach for the flow near the contact line is to introduce slip
at the boundary, consistent with allowing the contact line to move parallel to the
wall at a finite speed; the slip is a function of the shear rate. The simplest such
law, introduced by Navier in the same paper that also enunciated the Navier–Stokes
equation (Navier 1823), is

u|y=0 − U = λ
∂u

∂y

∣∣∣∣
y=0

(2.3)

(see also Huh & Scriven 1971). Here, U is the speed of the moving boundary, y = 0
denotes the solid–liquid boundary, and λ is the so-called slip length. A more compli-
cated version of (2.3), in which λ is itself a nonlinear function of the shear rate, has
been proposed in Thompson & Troian (1997). A standard calculation (Appendix A),
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leads to the analogue of (2.1) for the slip model II,

3C
h2

= κ ′ − 3λ

(
�−2

c − κ ′)
h

− �−2
c . (2.4)

The slip length λ is usually considered to be of the order of tens of ångstroms.

3. Scaling solutions near the contact line
We now focus on the immediate neighbourhood of the contact line, which we

assume to be at x =0. Owing to the flatness of the interface, we can assume that
κ ≈ −h′′ and gravitational influences can be neglected, but dynamical (viscous) effects
have to be included. In the case of model I, (2.1) reduces to

3C
h2

= −h′′′ + 3a2 h′

h4
. (3.1)

To make the dependence on parameters explicit, we note that (3.1) has the exact
scaling solution

h(x) =
a

C1/3
φ1

(
a−1C2/3x

)
, (3.2)

where φ1 depends on the similarity variable ξ1 = a−1C2/3x and satisfies the equation

3

φ2
1

= −φ′′′
1 + 3

φ′
1

φ4
1

. (3.3)

Similarly, the lubrication approximation for model II gives

3C
h2

= −h′′′ − 3λ

h
h′′′. (3.4)

In this case, the scaling solutions are

h(x) = λφ2

(
λ−1C1/3x

)
, (3.5)

where the similarity variable is now ξ2 = λ−1C1/3x and the similarity equation is

3

φ2
2

= −φ′′′
2 − 3

φ2

φ′′′
2 . (3.6)

Far away from the contact line in units of the microscopic lengths a and λ,
respectively, the solutions should be the same, resulting from a balance of classical
viscous forces and surface tension. Indeed, as ξ → ∞, we find to leading order

φ1,2(ξ ) ≈ 32/3ξ [ln(ξb1,2)]
1/3 (ξ 	 1), (3.7)

where the numerical constants b1,2 have to be determined by numerical integration
starting from the contact line.

The boundary condition at the contact line incorporates the wetting behaviour
of the fluid, and uses the fact that, on microscopic length scales, static forces will
dominate over dynamical ones. In the presence of van der Waals forces (model I), and
for a perfectly wetting fluid, a thin liquid film precedes the contact line (Voinov 1977;
Hervet & de Gennes 1984), in which surface tension and van der Waals forces are
balanced. The existence of such a ‘precursor’ film has been confirmed experimentally
by several groups, and its properties compare favourably with theory (e.g. Kavehpour,
Ovryn & McKinley 2003). Instead of integrating (3.1) or (3.3) from the location of
the contact line, solutions of (3.3) have to be matched to the precursor film. Following
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Figure 2. The rescaled slope φ′
1 = h′a−1C1/3 versus log10(ξ1) = log10(a

−1C2/3x) for C =

10−5, 10−6 in the geometry of figure 1. The ratio a/�c = 10−8. The full line is a solution
of (3.1), the dashed line corresponds to the asymptotic form (3.7). The two dotted lines are
solutions of the full system (2.1) including gravity, marked with their values of the capillary
number. Note that for the smaller capillary number, the size of the overlap region where the
asymptotic form (3.7) can be applied has shrunk to zero.

Hervet & de Gennes (1984), we are going to match φ1(x) to a ‘maximal’ film solution,
corresponding to very strong wetting, whose thickness only goes to zero at (minus)
infinity. This maximal solution very closely approximates precursor film solutions of
(3.3) having finite length (Hervet & de Gennes 1984). To leading order, the maximal
film solution is of the form

φ1(ξ1) = − 1

ξ1

+ ε exp
{
ξ 3
1

/√
3
}
; (3.8)

further details are to be found in Appendix B. Using (3.8) as an initial condition
with adjustable parameter ε, we integrate (3.3) toward ξ1 → ∞. The parameter ε is
fixed to select the solution with vanishing curvature at infinity. Figure 2 compares
this solution with the asymptotic form (3.7). We plot the rescaled slope φ′

1 from
the solution of (3.3) as the full curve and the corresponding prediction from (3.7)
with b1 = 1.44 as the dashed curve. After accounting for differences in normalization,
this numerical value for b1 differs significantly from b1 = 0.4 × 31/6 ≈ 0.48 given in
de Gennes (1985). We believe the difference is simply due to the large values of ξ

necessary for integration until a true asymptotic value is reached.
Model II, on the other hand, does not include a precursor film, but describes a

macroscopic film that extends directly down to φ2(0) = 0. A vanishing equilibrium
contact angle θeq =0 can thus be implemented by taking the boundary condition
φ2(0) = φ′

2(0) = 0 at the contact line and integrating (3.6) toward ξ2 → ∞. The
corresponding value of b2 for the case of the Navier slip law was given in Hocking
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(1992). Thus the two constants, which establish the form of the interface profile, are

b1
∼= 1.44, b2

∼= 31/3 exp(0.74/3) ∼= 1.85. (3.9)

4. Crossover to Landau–Levich-type behaviour
We now estimate the range of validity of the solution (3.7) as we move farther

away from the contact line. These ideas have close analogy to the classical analysis
of Landau and Levich of a dynamical lubrication film (Levich 1962). Evidently, the
contact-line physics plays no role far away from the contact-line, so the relevant
lubrication equation is

3C
h2

= −h′′′, (4.1)

which is to be matched to a static profile at large distances. This equation has the
general solution

h(x) = �Cα1+1/3f (x/(�Cα1 )), (4.2)

which has to be matched to a static meniscus on the capillary scale, with a curvature
of the order of �−1

c . This implies α1 = 1/3 and � = �c, so that we have

h(x) = �cC2/3f
(
x
/(

�cC1/3
))

, (4.3)

which suggests that the crossover will occur on a scale �cC1/3, on which the logarithmic
dependence in (3.7) for the slope begins to fail.

The crossover to scaling of the form of (4.3) is demonstrated in figure 2, by
showing a full solution of (2.1), rescaled according to (3.2). Results are given for two
(small) values of the capillary number differing by a factor of ten. Again, the free
parameter in the maximal film solution (3.8) is used to shoot for the flat interface
corresponding to the surface of the fluid-filled container. For small values of ξ1, the
solution corresponds to the lubrication form given before, while on a scale x/�c ≈ C1/3

the transition to the Landau–Levich region is observed. In rescaled coordinates ξ1

the location of this crossover should thus be proportional to C itself, as is clearly
seen from figure 2. We have chosen the smaller of the two values of C such that the
region over which the asymptotic form (3.7) of the interface can be applied is zero,
to highlight possible problems in comparing asymptotic solutions with experimental
data. To interpret the measured dynamical contact angle, equation (3.7) is no longer
sufficient, but the full solution of the similarity equation (3.3) has to be considered.

5. Comparison with experiment
It is common practice in the literature (e.g. de Gennes 1985; Cox 1986) to consider

the derivative of the profile h(x), evaluate it at some macroscopic distance from the
contact line x = �macro, and to interpret the slope of the interface in terms of the so-
called ‘dynamical contact angle’, tan θd(x) = dh/dx. This approach is the common one
taken in experiments. Thus, using the solution (3.7) in the similarity forms (3.2) and
(3.5) for models I and II, respectively, and neglecting lower-order terms, we obtain

θ3
dyn(x) = 9C ln(�macro/L1,2), (5.1)

where L1,2 are microscopic lengths appropriate for each model. There are two
fundamental issues with this approach. First, depending on the experimental system
it is not clear what is the best choice for �macro. Namely, it needs to be significantly
smaller than the scale on which the logarithmic law (5.1) breaks down. This scale, as
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we just showed, may itself be given dynamically by �cC1/3. Therefore, it is in general
not sufficient to make �macro smaller than the linear size of a system such as the drop
size.

Secondly, what is usually taken as a fixed microscopic length L1,2 is actually strongly
dependent on the capillary number. Namely, the two models give

L1 = aC−2/3
/
b1, L2 = λC−1/3

/
b2, (5.2)

as established in (3.2) and (3.5), respectively. Thus it is impossible to interpret L1,2

directly in terms of some fixed microscopic length near the contact line, but rather it is
a dynamical quantity. In particular, the C-dependence that appears in the microscopic
length is different in the two models. This appears to be significant, since comparing
the C-dependence potentially allows us to distinguish between different microscopic
models from a macroscopic measurement.

A number of experiments with perfectly wetting fluids come to mind for such
a comparison. Chen & Wada (1989) imaged the whole profile near the contact
line of a spreading droplet and so provided the first experimental confirmation of
the full functional form of (5.1). However, owing to the small range of capillary
numbers studied, it is difficult to distinguish between the two lengths L1,2 defined
in (5.2). Below we will therefore concentrate on another experiment (Marsh et al.
1993), which allowed C to be varied over more than two orders of magnitude. These
authors measured the dynamic contact angles on a cylinder plunging at an angle
into a liquid bath, and essentially used the form (5.1) to fit the whole shape of the
interface close to the contact line, but included static contributions to account for the
effects of surface tension and gravity away from the contact line. (Note that instead
of the third power on the left-hand side, they used a more complicated function
g(x), which becomes g(x) ≈ x3/9 for small arguments. This limit is relevant for the
small-angle case we are studying here.) This approach leaves out dynamical effects
of the kind predicted by Landau and Levich (Levich 1962), which are important
on an intermediate scale between the microscopic ones and the capillary length, and
should be taken into account in a more refined theory. Marsh et al. (1993) treat the
microscopic interface angle at the contact line (called θact in their paper) as another
free, and possibly C-dependent, parameter, to be determined from experiment. From
their fitting procedure, the authors conclude that θact = 0, consistent with the model
assumption θact = θeq = 0 we have made from the outset.

From the fit of (5.1) to their data, Marsh et al. (1993) extract a length L, which is
found to depend significantly on capillary number, as suggested by (5.2). They also
report L to be independent of the tilt angle α within experimental error, which further
emphasizes that the response is dominated by local features. In figure 3, we present a
plot of the measured length as a function of capillary number, and compare it with
the slopes suggested by the van der Waals model I and the Navier slip model II,
respectively. Although it is difficult to draw firm conclusions owing to the large
scatter in the data, 2/3 seems to be favoured. Using the two different fits plotted
in figure 3, we are also able to determine the cutoff lengths a and λ, assuming that
the corresponding physical mechanism is really relevant for the particular materials
involved. We find a ≈ 4 Å for the van der Waals model and λ≈ 30 Å for the slip
model. Using the value of A= 10−20 J (Russel, Saville & Schowalter 1989) for the
Hamaker constant for water and an adjacent solid surface, and γ =0.07 Nm−1, we
find a =

√
A/(6πγ ) ≈ 1 Å, consistent with the above value. However, it is important to

keep in mind that there is no reason why a single cutoff mechanism should necessarily
dominate in the experiment, which would lead to still other exponents. Additional
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Figure 3. A plot of the microscopic length L, taken from figure 4 of Marsh et al. (1993), as
a function of the speed U . Their L is the equivalent of L1,2 as given in (5.1). The angle α
refers to different tilts of the solid relative to the liquid surface. To make a comparison with
the dynamical length sales L1,2 as given in (5.2), we have added to the figure the solid and the
dashed lines with slope 2/3 and 1/3, respectively.

mechanisms for relieving the contact-line singularity are given in table 1; which is the
dominant mechanism could also depend on capillary number and, in particular, on
the type of solid substrate or fluid involved.

6. Conclusions
We have considered flow local to a moving contact line using a lubrication approach.

Our basic message has been to indicate that the appearance of logarithmic corrections
in capillary number to the usual ‘Tanner’s law’, θ3

d ∝ C, are a general feature of
the mechanical response. The interpretation of the results is that the ‘microscopic’
length scale that is involved when supplying a small-scale cutoff to relieve the well-
known stress singularity in the moving contact-line problem is a dynamical (speed-
dependent) quantity. Experimental data consistent with this interpretation are cited,
and microscopic parameters that come from the comparison with different theories
agree with physical considerations. In droplet-spreading problems where the contact
angle is a function of time, the logarithmic dependence on capillary number shows
up as an additional factor in the expression for the drop radius, that depends
logarithmically on time (Hocking 1992; Giacomelli & Otto 2002).

It is interesting to note that the speed-dependent cutoff scale is a special property
of the zero contact angle (perfectly wetting) case. For example, Hocking (1992) has
investigated the slip model in the case of finite θeq in a manner analogous to § 3. He
finds a cutoff length of

Lsl = 3λ/θeq, (6.1)

while de Gennes, Hua & Levinson (1990) find

Lvdw = a
/(

2θ2
eq

)
, (6.2)
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in the case that van der Waals forces are important in the contact-line region. Thus,
while there are still differences between the two models, they will be much harder to
distinguish experimentally, since we would have to determine the absolute value of a
constant inside the logarithm. Note that the divergence of both (6.1) and (6.2) in the
limit θeq → 0 predicts the trouble of the perfectly wetting case.

Since important applications of contact-line theories apply to angles up to 180◦,
it would be useful to extend the lubrication theory considered here to a full two-
dimensional treatment of the flow in the corner region, as done by Cox (1986).
However, Cox explicitly excludes the case of small- or zero-equilibrium contact
angles, thus avoiding the singularities mentioned in the preceding paragraph. It
would therefore be worth including the possibility of a speed-dependent cutoff in the
two-dimensional calculation. This means that the dynamical contact angle has the
scaling form θd = f (C, x/L1,2), where L1,2 is one of the dynamical length scales defined
by (5.2), with corresponding forms for the velocity field as well. Such a theory might
be able to explain more recent experiments (Chen et al. 1995) on moving contact
lines performed at higher capillary numbers, yielding dynamical contact angles of up
to 155◦.

Furthermore, the velocity of the contact line relative to the substrate is, in general,
not perpendicular to the contact line, as highlighted in recent experiments of droplets
running down an inclined plane (Podgorski, Flesselles & Limat 2001). In this case, the
flow is truly three-dimensional, and it may no longer be sufficient to simply project
the velocity onto the normal to the contact line (Blake & Ruschak 1979). Such a
three-dimensional description would be necessary to complete our understanding of
corner singularities that form at the back of running drops (Stone et al. 2002; Limat &
Stone 2004), and may apply to a range of other contact-line phenomena as well.

We thank Cyprien Gay, Pirouz Kavehpour, Laurent Limat, Gareth McKinley,
Thomas Podgorski and David Quéré for helpful conversations. H. A. S. thanks the
Harvard MRSEC for partial support of this research.

Appendix A. Derivation of lubrication equations
Here, we briefly recall the derivation of the interface, or lubrication, equations

for thin viscous films (Levich 1962). For pressure-driven flow along the surface and
absorbing hydrostatic pressure variations into the pressure p, the velocity parallel to
the plate can be represented as a second-order polynomial

u = a0 + a1y + y2 p′

2η
, (A 1)

where y is the distance normal to the plate. At the free surface y = h(x), shear
gradients ∂u/∂y vanish, giving a1 = −p′h/η. Finally, from the slip condition (2.3) we
have a0 = U − λp′h/η.

Since the contact line is stationary, the mass flux through the film is zero everywhere,∫ h

0
u(y) dy =0, and thus

0 = (U − λp′h/η)h − p′h3/3η (A 2)

is the equation for the film profile h(x). In the presence of van der Waals forces, the
dynamic pressure in the liquid is

p = γ κ − A

6πh3
− gρx, (A 3)
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where A is Hamaker’s constant. Substituting (A 3) into (A 2) and assuming λ=0 gives
(2.1), while A= 0 at finite λ leads to (2.4).

Appendix B. Expansion for the maximal film
Here, we give some more details on the solution of (3.1) for the ‘maximal film’ of

Hervet & de Gennes (1984). The general form of the film profile is

φ0 =
1

ξ

∞∑
i=0

ai

ξ 6i
, (B 1)

where we denote the similarity variable by ξ . This expansion has no free parameters,
as the values of the coefficients ai are obtained directly from substituting (B 1) into
(3.1). We find

a0 = −1, a1 = −2/5, a2 = −1764/275, . . . . (B 2)

However, there is a one-parameter family of solutions of (3.1) that decay for
ξ → −∞. This solution is found by linearizing around the base solution (B 1), i.e.
φ(ξ ) = φ0(ξ ) + δ(ξ ):

δ
(
6φ0 + 4φ3

0φ
′′′
0

)
− 3δ′ + δ′′′φ4

0 = 0. (B 3)

Equation (B 3) is solved using a WKB-type ansatz,

δ(ξ ) = ε exp

{
ξ 3

√
3

+ . . .

}
. (B 4)

The O(ξ 0) contribution in the exponent turns out to be a logarithm, so the full
structure is

δ =
ε

ξ 2
exp

{ ∞∑
i=0

biξ
3−3i

√
3

}
, (B 5)

and the coefficients are found to be

b0 = 1, b2 = 0, b3 = 32/15, b4 = 9
√

3/5, . . . . (B 6)

Thus the general form of the solution in the film region is

φ(ξ ) = φ0(ξ ) + δ, (B 7)

with a single free parameter ε. An alternative description would be an expansion of
the form

φ(ξ ) =

∞∑
i=1

ci

ξ i
, (B 8)

with c1 = −1 and c2 a free parameter. However, the convergence of the asymptotic
series (B 8) turns out to be very poor, as perhaps is to be expected from the structure
of the WKB solution.
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C.R. Acad. Sci. Paris II 299, 499–503.

Hocking, L. M. 1977 A moving fluid interface. Part 2. The removal of the force singularity by a
slip flow. J. Fluid Mech. 79, 209–229.

Hocking, L. M. 1992 Rival contact-angle models and the spreading of drops. J. Fluid Mech. 239,
671–681.

Hoffman, R. L. 1975 A study of the advancing interface. J. Colloid Interface Sci. 50, 228–241.

Huh, C. & Mason, S. G. 1977 The steady movement of a liquid meniscus in a capillary tube.
J. Fluid Mech. 81, 401–419.

Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid
contact line. J. Colloid Interface Sci. 35, 85–101.

Kavehpour, H. P., Ovryn, B. & McKinley, G. H. 2003 Microscopic and macroscopic structure of
the precursor layer in spreading viscous drops. Phys. Rev. Lett. 91, 196104(1)–(4).

Kistler, S. 1993 Hydrodynamics of wetting. In Wettability (ed. J. C. Berg). Marcel Dekker, New
York.

Koplik, J., Banavar, J. R. & Willemsen, J. F. 1989 Molecular dynamics of fluid flow at solid
surfaces. Phys. Fluids A 1, 781–794.

Leger, L. & Joanny, J. F. 1992 Liquid spreading. Rep. Prog. Phys. 55, 431–486.

Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice–Hall.

Limat, L. & Stone, H. A. 2004 Three-dimensional lubrication model of a contact line corner
singularity. Europhys. Lett. 65, 365–371.

McKinley, G. H. & Ovryn, B. 1998 An interferometric investigation of contact line dynamics
in spreading polymer melts and solutions. In Proceedings of the Fourth Microgravity Fluid
Physics and Transport Phenomena Conference, Cleveland, Ohio.

Marsh, J. A., Garoff, S. & Dussan V., E. B. 1993 Dynamic contact angles and hydrodynamics
near a moving contact line. Phys. Rev. Lett. 70, 2778–2781.

Navier, C. L. 1823 (appeared in 1827) Sur les lois du mouvement des fluides. Mem. Acad. R. Sci.
France 6, 389–440.

Podgorski, T., Flesselles J. M. & Limat, L. 2001 Corners, cusps, and pearls in running drops.
Phys. Rev. Lett. 87, 036102(1)–(4).

Pomeau, Y. 2002 Recent progress in the moving contact line problem: a review. C.R. Mec. 330,
207–222.

Ruijter, M. J., Blake, T. D. & De Coninck, J. 1999 Dynamic wetting studied by molecular
modeling simulations of droplet spreading. Langmuir 15, 7836–7847.

Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Suspensions, p. 148, table 5.3.
Cambridge University Press.

Seppecher, P. 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Engng Sci. 34, 977–992.



Characteristic lengths at moving contact lines 321

Shikhmurzaev, Y. D. 1997 Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334,
211–249.

Stone, H. A., Limat, L., Wilson S. K., Flesselles, J. M. & Podgorski, T. 2002 Corner singularity
of a contact line moving on a solid substrate. C. R. Phys. 3, 103–110.

Thompson, P. A. & Troian, S. M. 1997 A general boundary condition for liquid flow at solid
surfaces. Nature 389, 360–362.

Voinov, O. V. 1976 Hydrodynamics of wetting [English translation]. Fluid Dyn. 11, 714–721.

Voinov, O. V. 1977 Inclination angles of the boundary in moving liquid layers [English translation].
J. Appl. Mech. Tech. Phys. 18, 216–222.


