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We study the evaporation rate from single drops as well as collections of drops on a solid
substrate, both experimentally and theoretically. For a single isolated drops of water, in
general the evaporative flux is limited by diffusion of water through the air, leading to
an evaporation rate that is proportional to the linear dimension of the drop. Here we
test the limitations of this scaling law for several small drops, and for very large drops.
We find that both for simple arrangements of drops, as well as for complex drop size
distributions found in sprays, cooperative effects between drops are significant. For large
drops, we find that the onset of convection introduces a length scale of about 20 mm in
radius, below which linear scaling is found. Above this length scale, the evaporation rate
is proportional to the surface area.
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1. Introduction

The evaporation of water is important for climate on earth, body temperature control
of all warm-blooded mammals, and many industrial cooling processes. These varied
problems involve both evaporation from a single drop and from collections of drops.
The physical processes which control the evaporation of a drop on a solid substrate have
been the subject of a number of recent reviews (Cazabat & Guéna 2010; Erbil 2012;
Larson 2014). Here we focus on two important aspects of this problem, which so far
have received little attention: the influence drops inside a collection of drops have on one
another, and the evaporation from very large drops. We will stay inside the limit of slow
evaporation, meaning that the temperature is almost constant throughout the system,
and evaporation is quasi-steady.
For an evaporating drop, one would guess naively that the surface area governs the

evaporation rate; however for drops smaller than about a centimeter in a temperature-
controlled environment, detailed experiments show that the rate is proportional to the
drop radius R for both pinned (Deegan et al. 2000b; Crafton & Black 2004; David et al.

2007; Gelderblom et al. 2011) and moving contact lines (Cachile et al. 2002a,b; Poulard
et al. 2003; Shahidzadeh-Bonn et al. 2006; Starov & Sefiane 2009). In fact, in the regime
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of slow evaporation considered here the evaporation is quasi-steady (Cazabat & Guéna
2010; Stauber et al. 2015), hence evaporation rates are defined by the instantaneous drop
shapes. As we will explain in more detail below, linear scaling with size results from the
evaporation rate being governed by the diffusive transport through the vapor (Deegan
et al. 1997; Bonn et al. 2009). The prefactor of this scaling law however depends on the
shape of the drop, either through the contact angle (Gelderblom et al. 2011; Sobac &
Brutin 2011), or the fact that larger drops are flattened by gravity (Cazabat & Guéna
2010).
Most of our experiments are for drops which partially wet the solid substrate. While

in this case it is often observed that drops are either pinned completely (i.e. the radius
is constant, (Gelderblom et al. 2011)) or perform a stick-slip motion (Cazabat & Guéna
2010), for our systems we observe the drop radius to shrink continuously during evap-
oration without pinning. This means the contact angle remains constant, with possibly
small corrections owing to evaporation. Since for small drops at constant contact angle the
volume V scales as R3, it follows from dV/dt ∝ R that the radius scales as R ∝ (t0−t)1/2,
where t0 is the time at which the drop vanishes.
In this paper, we focus on the total evaporation from a drop, and explore deviations

from standard scaling laws. In Section 2 we calculate the diffusion-limited total evap-
oration from a small drop, and find linear scaling with R. Experiments with partially
wetting drops show the corresponding scaling of the drop radius with time. In the next
section, we show that in a small collection of drops, evaporation from an individual
drop is reduced considerably compared to that from an isolated drop presented in the
isolated drop part. This is explained by a simple, semi-quantitative model calculation.
In Section 4, we measure evaporation from a spray with a wide distribution of drop
sizes, and find once more that the time evolution of the total evaporation is compatible
with strong coupling between drops only. Finally, we consider the limit of the diffusive
mechanism as drop sizes become large, extending considerably the range of drop sizes
investigated previously (Kelly-Zion et al. 2011).

2. A single small drop

The slow evaporation of small drops is limited by diffusion (Larson 2014). The total
rate of evaporation equals the area of the drop, multiplied by the local flux density. If
Rd is the linear dimension of the drop (which we will define more precisely below, when
we calculate the evaporation rate quantitatively), the area scales as R2

d. On the other
hand, the typical length scale of the diffusive field around the drop is also set by Rd, so
gradients, and thus the local flux of vapor, scale as R−1

d . But this means that the total
rate of evaporation J is proportional to R2

d/Rd = Rd.
We can calculate the constant of proportionality quantitatively for small drops, for

which the shape is known. Small drops, for which gravity does not play an important
role, have the shape of spherical caps. In that case, we can derive a formula for the total
evaporation for arbitrary contact angles, simplifying the earlier treatment by (Popov
2005). In the quasi-static limit, we have to solve Laplace’s equation △c = 0 in the half-
space above the substrate, and outside of the drop. The boundary conditions are c = cs
on the surface of the drop, where cs is the saturation concentration, and zero flux in the
plane z = 0 of the substrate. We start from the formula derived in (Deegan et al. 2000b)
for the concentration outside a lens-shaped drop with contact angle θ, 0 6 θ 6 π:

c(α, β) =
√
2cs

√

coshα− cosβ

∫ ∞

0

cosh θτ cosh(2π − β)τ

coshπτ cosh(π − θ)τ
P−1/2+iτ (coshα)dτ. (2.1)
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Figure 1. The normalized evaporation rate J/(DcsRd) as a function of θ according to (2.5).

Here α and β are toroidal coordinates, which are related to cylindrical coordinates by
the relations

r =
R sinhα

coshα− cosβ
, z =

R sinβ

coshα− cosβ
. (2.2)

In the equivalent electrostatic problem, J would be the total charge, and c the potential.
Hence from the multipole expansion of the static potential (Jackson 1975) it follows that
for large |r| =

√
z2 + r2, c can be expanded as:

c =
J

4πD
√
z2 + r2

+O
(

|r|−2
)

, (2.3)

keeping only the monopole term. To calculate J we analyze the asymptotics of (2.1) for
large |r| and compare the result to (2.3). The calculation is simplified by the observation
that the limit can be taken in any direction; a particular choice is to let z → ∞ as
r = 0, putting α = 0 in (2.1), so that P−1/2+iτ (coshα) = P−1/2+iτ (1) = 1, and z =
R sinβ/(1− cosβ). To achieve the limit z → ∞, we let β approach 2π, since at β = 0 the
integral (2.1) does not converge. In this limit, the prefactor in (2.1) can be rewritten as

√

coshα− cosβ =
√

1− cosβ ≈
√
2R

|z| ,

so that

c ≈ 2csR

z

∫ ∞

0

cosh θτ

coshπτ cosh(π − θ)τ
dτ. (2.4)

Comparing to (2.3) with r = 0, we find a slightly simplified, yet otherwise equivalent form
of equation (A8) of (Popov 2005), taking only evaporation into the upper half-plane into
account:

J = 4πDcsR

∫ ∞

0

cosh θτ

coshπτ cosh(π − θ)τ
dτ. (2.5)

Formula (2.5) is written in terms of the contact line radius R, while the evaporation
rate is really controlled by the linear dimension of the drop. In particular, for θ → π
the contact line radius goes to zero for a given drop size. We therefore define by Rd the
radius of the projection of the drop onto the substrate as a meaningful measure of the
drop size for any contact angle. It follows that R = Rd for θ 6 π/2, and R = Rd sin θ for
π/2 < θ 6 π.
The limit θ → π requires special analysis, since the integral in (2.5) diverges, so as to

keep J finite at constant Rd. Putting θ = π − ǫ and expanding in ǫ, we can write the
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Figure 2. (a) Mass of a single drop of water (20 µL, θ = 94◦ at equilibrium) on a polystyrene
surface vs. time. The polystyrene surface was cleaned with ethanol and water then dried with a
nitrogen flow. The red power-law fit gives a power of 1.50. The measurements of the evaporation
rate were made by measuring the weight of drop as function of time using a precision balance
while simultaneously visualizing the radii using a CCD camera, all in a controlled humidity
environment of RH = 50% and temperature T = 21◦C. (b) Radius vs. time for a 2 µL water
drop on a superhydrophobic surface made by soot deposition followed by impregnation with a
hydrophobic spray (θ = 146◦ at equilibrium). At very late times, the drop reaches a critical size
and the water penetrates the asperities of the soot surface. At this moment, the surface changes
character from superhydrophobic to relatively hydrophilic. We therefore stop taking data at this
point. The red power-law fit gives a power of 0.50.

integrand as

cosh(π − ǫ)τ

coshπτ cosh ǫτ
=

e−ǫτ

cosh ǫτ
+

τe−πτ

coshπτ
ǫ+O(ǫ3),

and perform the integral for each term individually. This yields

J = DcsRdπ

[

4 ln 2−
(

2 ln 2

3
− 1

6

)

ǫ2 +O(ǫ4)

]

, (2.6)

the leading term of which is calculated in (Smith & Barakat 1975).
The other well-known limit is θ = 0, a drop shaped like a two-dimensional disc. In that

case one finds that in the plane z = 0 of the substrate (Jackson 1975):

jz =

{

2Dcs
π
√
R2−r2

r < R

0 r > R
, c = cs

{

1 r < R
2

π arcsin
(

R
r

)

r > R
, (2.7)

where D is the diffusion constant and jz the volume flux. Then the total evaporation
from the drop is (Jackson 1975):

J = 2πD

∫ R

0

jzrdr = 4DcsR, (2.8)

which agrees with (2.5), since for θ = 0 the integral in (2.5) is evaluated as 1/π. Finally
for θ = π/2, the integral is 1/2, so the total evaporation is J = 2πDcsR, half the value for
an isolated sphere, as expected. To summarize the result for all angles, in Fig. 1 we plot
J/(DcsRd) as a function of θ. Careful experiments with small partially wetting drops
with pinned contact lines have confirmed the theoretical result (2.5) quantitatively over
a wide range of contact angles (Gelderblom et al. 2011).
In Fig. 2, we present data for the evaporation of a small water drop on a partially

wetting (a) and a superhydrophobic (b) surface. In both cases, and as shown explicitly
in Fig. 2 (b) for the superhydrophobic substrate, we observed the radius to decrease
continuously, with no indications of contact line pinning. Since the speed of retraction
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Figure 3. (a/b) Pictures/Mass as a function of time during evaporation of water drops on a
polystyrene surface (θ = 94◦ at equilibrium, RH = 50% and T = 21◦C): (1): one drop of 10
µL (radius R = 1.7 mm) × 10; (2): a collection of 10 µL monodisperse drops (R = 1.7 mm,
center-to-center distance: 7 mm); (3): one drop of 100 µL, R = 3.8 mm. The red lines correspond
to 1.5 exponent power-law fits.

is slow, as measured for example by the capillary number (Larson 2014), the dynamic
contact angle is close to its constant equilibrium value, and the mode of evaporation is
one of constant contact angle (Stauber et al. 2015). As is well known (Cazabat & Guéna
2010; Stauber et al. 2015), combining the evaporation rate (2.5) with the formula for the
volume of a small (i.e. spherical cap-shaped) drop, one finds the drop radius to shrink
like

Rd =
√
2a(t0 − t)1/2, (2.9)

where a is a constant. Clearly, the drop mass or volume then has to scale like V ∝
(t0 − t)3/2. Both scaling laws are seen to be well confirmed in Fig. 2, apart from the very
last stages of shrinkage.

3. Collection of monodisperse drops

To see whether there are collective effects between drops, we now compare the evapora-
tion rate of collections of drops separated from one another by roughly their diameter with
individual drops of different sizes. We consider three different cases of drop arrangements
on a polystyrene surface (Petri dishes, θ = 94◦ at equilibrium), as shown in Fig. 3a.
We follow the mass of the evaporating system with a precision balance (Mettler Toledo)
while visualizing the radii of the drops from above with a CCD camera (PixeLink).
The polystyrene substrate was cleaned with ethanol and water before being dried with
a nitrogen flow. The control of humidity is done in a climatic chamber described by
(Shahidzadeh & Desarnaud 2012). Drops are deposited gently on the substrates with a
micro-pipette. The array of drops is made putting the transparent substrate on a square-
patterned sheet. Case (1) is a single small drop of volume V0; its evaporation rate is
denoted as JV0

. Case (2) are 10 drops of volume V0, with evaporation rate JV0×10, while
case (3) is a single large drop of volume 10V0, whose evaporation is denoted as J10V0

.
In Fig. 3b we show the temporal evolution of the total mass as a function of time.

In case (1) the mass has been multiplied by a factor of 10, so that the initial mass is
the same in all cases. In all three cases the mass follows the same power law 3/2 as
for a single small drop. However, the prefactors are significantly different, and there is
a considerable deviation near the end of the evolution for the collection of drops. Not
surprisingly, the large drop takes much longer to evaporate than a single small drop and
also than a collection of small drops corresponding to the same volume. If there were no
interaction between the collection of small drops, the line (2) would superimpose on line
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(1). But the surroundings of each drop is partially saturated by the vapor from the other
drops, so evaporation is slower, and hence it takes longer for the drops to evaporate, as
indeed confirmed by Fig. 3b.

To investigate these effects more quantitatively, we focus on the total evaporation at
the beginning of the evolution (t = 0). We find that JV0

= 2.0 10−9 kg.s−1, for a drop
with R = 1.7 mm. On the other hand, the single large drop (case (3)), R = 3.8, has
a total evaporation of J10V0

= 5.5 10−9 kg.s−1. This is in reasonably good accord with
the notion that the total evaporation should scale like the dominant linear dimension of
the object. The large drop is bigger by a factor of 2.2, while J10V0

/JV0
= 2.75. Exact

agreement is not to be expected, since the actual shapes of two drops are different: the
size of the large drop is above the capillary length, so it starts to look like a puddle, while
the smaller drop is close to a spherical cap.

To deal with a collection of drops, we would like to describe the non-uniform evapora-
tion that takes place across it by modeling the assembly as a flat “superdrop”. Lacking
a solution corresponding exactly to the contour of the assembly shown in Fig. 3a, in a
rough approximation we assume a circular arrangement having an effective radius Rs,
and whose evaporation can be described by (2.7) for a drop of vanishing contact angle.
The superdrop is made up of N drops of radius R, whose individual rates of evaporation
are described by (2.5), which we write as J = J0DcsR with a constant J0(θ). To calculate
the total evaporation, we split the task into an “inner” and an “outer” problem. On the
scale of the outer problem, we have an effective concentration ceff(r) on the surface of
the superdrop, with c → 0 at infinity. For r > Rs, the boundary condition for the outer
problem is one of zero flux j = 0. Inside the superdrop, r < Rs, j(r) can be calculated
(at least in principle), by solving ∆c = 0 with these boundary conditions.

On the level of the inner problem, we consider the evaporation of a small drop of radius
R, kept at a concentration cs, evaporating into the local environment of concentration
ceff(r). The number density of these drops is N/(πR2

s). This means that the total
evaporation from an individual drop is

Jd = J0RD(cs − ceff(r)),

which translates into a density

j(r) =
J0NRD

πR2
s

(cs − ceff(r)). (3.1)

In principle, this closes the problem, and j(r) can be computed from ceff(r) using
an integral equation (Eggers & Pismen 2010). A further technical problem is that the
flux formally diverges at the boundary of the superdrop, owing to the mixed boundary
condition. Thus one also has to allow for the fact that the boundary is smoothed out on
the scale R of an individual drop.

A full analysis of this problem would require an extensive numerical and analytical
investigation, which is beyond the scope of this paper. Here we can only pursue a rough
approximation, which allows us to estimate the size of the correction that results from
the drop assembly. To avoid having to solve an integral equation, we assume a constant
ceff over the superdrop (which is not true in any strict asymptotic sense), and requiring
the fluxes to match at r = 0. Then from (2.7) we have

j(0) =
2Dceff
πRs

=
J0NRD

πR2
s

(cs − ceff),
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Figure 4. Reduction of the rate of evaporation of a collection of monodisperse drops as a
function of the ratio between drop radius R and the space d between drops (circles: 1 µL drops;
triangles: 2 µL drops; line: theory)

and this can be solved as

ceff =
J0NRcs

2Rs + J0NR
. (3.2)

Now we can apply (2.8) for the total evaporation to the superdrop, to obtain for the total
evaporation of the arrangement of drops:

J = 4DceffRs =
2J0NDcsR

1 + J0NR/(2Rs)
. (3.3)

In the limit of large N , this means that J ≈ 4DcsRs, i.e. the total evaporation is
determined by the radius of the superdrop. Compared to N independent drops, the rate
of evaporation is reduced by a factor of f = 2/(1 + J0NR/(2Rs)). Note that owing to
the crudeness of our approximation, this expression does not go to unity, as it should, in
the very dilute limit R/Rs → 0. Since the contact angle is nearly 90◦, we have J0 = 2π.
Estimating from Fig. 3a that Rs ≈ 5R, and using N = 10, we find a reduction by a
factor of f ≈ 0.27 owing to collective effects. Experimentally, the collective evaporation
of an arrangement of 10 drops (case (2)) is JV0×10 = 1.0 10−8 kg.s−1, which amounts to
f = 0.5.
Collective effects become weaker as the ratio of the center-to-center distance d, divided

by the drop radius R, becomes larger. To study this effect more systematically, we
measured the evaporation of smaller drops, of volume 1µl (R = 0.68 mm) and 2µl (R
= 0.86 mm), respectively. Based on our geometrical arrangement of drops, we estimate
Rs/d ≈ 3/2. As is seen in Fig. 4, the agreement between theory and experiment is much
improved, and is best for the smallest values of R/d, for which there is a substantial
separation of scales between the inner and the outer problems.
Note that in our modeling we do not take into account the fact that there is greater

evaporation at the edges of the superdrop. This is clear, since drops at the edges have
fewer neighbors, so the atmosphere is less saturated. As a result, in the course of time
drops at the edge evaporate more quickly and disappear first. We checked that this is the
case using a video recording. This is the reason that near the end of line (2) in Fig. 3b the
experimental data lie above the 3/2 power law fit: the outer drops have disappeared, so
fewer drops imply a reduced rate of evaporation. A similar mechanism has been observed
by (Schäfle et al. 1999), who found an instability caused by collective effects, leading to
non-uniform evaporation for an initially uniform drop size distribution. As in our case,
this instability starts at the boundary.
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Figure 5. (a) Water drops of widely differing sizes on a polypropylene surface (θ ≈ 90◦), made
by spraying water using a standard agricultural spray nozzle (Teejet 11004 VS); (b) Total mass
(black circles) and sum of the radii (blue circles) as a function of time during evaporation of
water drops from a mica substrate. Lines are showing exponential fitting of the mass (full line

for e−t and dashed line for e−
√

t).

4. Evaporation of a spray of drops

In many applications, a common cooling technique is to spray water over the surface to
be cooled. Spraying invariably leads to a wide size distribution of drops as seen in Fig. 5a.
Typically, the size distribution of drops in a spray follows a Gamma distribution (Eggers
& Villermaux 2008), which has a universal exponential tail. This means that small drops
outnumber larger ones exponentially, and the total evaporation of the ensemble will
be dominated by the contribution from the smallest drops. As small drops shrink and
disappear, we can expect the total evaporation to decrease according to some universal
law, determined by the exponential tail.
The spacing between drops in the distribution is however not known: the distribution

corresponds to different drop sizes with different spacing. With this in mind, we check if
collective effects are indeed important, compared to a model without collective effects,
where the spacing does not come into play. To this end we calculate the total rate of
evaporation J using the assumption that drops do not affect one another, keeping in
mind that this is questionable as we have seen above. We take the initial probability
distribution p0(R) of drop sizes R to be exponential:

p0(R) =
e−R/R

R
, (4.1)

which is normalized to one. In the limit of non-interacting drops, the total evaporation
is

J = J0Dcs
∑

i

Ri ≡ J0DcsN0

∫ ∞

0

Rp(R)dR, (4.2)

where p(R) is the current distribution and N0 the initial number of drops. In experiment,
the total mass M is measured, which is proportional to R3, giving

M ∝ N0

∫ ∞

0

R3p(R)dR. (4.3)

In time, the radius R of each drop changes according to (2.9), which can be written as

R0 =
(

R2 + 2at
)1/2

, (4.4)

where R0 is the initial drop radius at t = 0. The probability distribution transforms
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according to p(R)dR = p0(R0)dR0, and so

p(R) = p0(R0)
dR0

dR
= p0(R0)

R

R0

, (4.5)

which together with (4.4) determines p(R) for any time t.
Using (4.5), the moments of the distribution are

∫ ∞

0

p(R, t)RmdR = α
(

Rα
)m

∫ ∞

0

p0

(

α
√

1 + ξ2
) ξm+1

√

1 + ξ2
dξ, (4.6)

where

α =

√

2at

R
. (4.7)

Note that for α > 0 the distribution is not normalized, since drops are disappearing as
their radius shrinks to zero. For the exponential distribution (4.1) one finds for the total
number of drops:

N(t) = N0

∫ ∞

0

p(R, t)dR = N0e
−α. (4.8)

Now we are in position to compute the total evaporation or the total mass. For
an exponential distribution, the integral can be calculated analytically (Gradshteyn &
Ryzhik 2014), giving

∫ ∞

0

R3p(R, t)dR = R
3
α4

∫ ∞

0

ξ4e−α
√

1+ξ2

√

1 + ξ2
dξ = 3R

3
α2K2(α),

where K2 is a modified Bessel function of the second kind. Hence

M = M0

α2

2
K2(α), (4.9)

where M0 is the initial mass. For large α, this behaves like

M ≈ M0

√

πα3

8
e−α, (4.10)

which means that the total mass scales like (up to small corrections) exp(−κ
√
t), where κ

is a constant. The appearance of a stretched exponential, as opposed to the exponential
tail of the original drop size distribution, comes from the evolution of the drop size
distribution, driven by the square root law (2.9) for an individual drop radius.
However, in Fig. 5b one can see that the time dependence of the mass is well described

by an exponential fit. The theoretical result (4.10) clearly fails, as a fit of the form
exp(−κ

√
t) shows, and hence the assumption of an independent evolution of individual

drops is not justified. For other substrates (polypropylene with θ ≈ 90◦ or mica with
θ 6 5◦) the evolution follows the same trend. Collective effects, studied in Section 3
for small collections of monodisperse drops, become dominant over what would have
been expected for a collection of isolated drops. This effect is so strong so as to change a
stretched exponential into purely exponential behavior, rather than merely modifying the
prefactor. This is noteworthy since one would expect the highly non-uniform drop size
distribution we consider to be more robust than the uniform distribution considered by
(Schäfle et al. 1999), since evaporation is dominated by the smallest drops, which relative
to their size are well separated, and more so as time goes on. This would tend to reduce
collective effects. Instead, we observe that correlations introduced by the instability come
to dominate the dynamics.
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5. Limits of diffusion

A very large drop is nothing but a flat puddle of water, whose evaporation rate, if
governed by diffusion alone, should be described by (2.8). One would expect this linear
scaling with size to stop at some length scale, and eventually lead to an evaporation
rate proportional to the surface area; otherwise indeed the evaporation rate of the
Atlantic ocean would be proportional to the length of its coast line! Surprisingly, previous
investigations (Kelly-Zion et al. 2011) have found a crossover (attributed to natural
convection) to a different power law as function of radius, with exponent close to 1.648.
To investigate this limit between regimes, we extended previous experiments to much

greater linear dimensions. Two types of experiments were performed: (i) Isolated water
drops of radii between 0.6 and 60 mm on different substrates (mica, glass, polypropylene
and silanised glass), which corresponds to a wide range of contact angles: 0◦ 6 θ 6

110◦ and drop pinning conditions; some are repeated measurements on a single drop
(“instantaneous evaporation rate”) (ii) Cylindrical beakers filled to the rim with water,
with radii between 0.75 and 400 mm. Substrates are as follows: mica cleaved just before
the experiment, glass (Menzel-Glaser slides) and polypropylene cleaned with MilliQ water
as well as ethanol and dried with nitrogen flow; silanised glass prepared according to
(Brzoska et al. 1992) with Dynasylan OCTEO (Evonik) and cleaned with isopropanol
left to evaporate at 70◦C. Some experiments were made with a fan perpendicular to and
10 cm away from the water interface to investigate convection effects.
In view of Fig. 1 one should expect a variation of the prefactor of around a factor of

two, superimposed on the linear scaling for small radius. Allowing for some scatter of the
data owing to this effect, all data collapse nicely on a straight line with slope unity, up
to a radius of about 20 mm, as seen in Fig. 6.
Above that critical radius, the evaporation evolves according to the square of the

radius, i.e. the flux is proportional to the surface area. We propose that above this length
scale, natural convection sets in, and provides the dominant form of transport. This onset
is controlled by the Rayleigh number

Ra =
gR3∆ρ/ρ

νD
, (5.1)

with g = 10 m.s−2, ν = 1.510−5 m2.s−1 the kinematic viscosity of air, D = 10−5 m2.s−1

the diffusive coefficient and ∆ρ/ρ = 1�. The usual limit of stability of convection cells
for systems bounded by horizontal surfaces has a critical Rayleigh number of the order
of 103 (Bodenschatz et al. 2000), giving a critical radius Rc ≈ 25 mm, which is consistent
with the observed crossover radius. The limit size of a convection cell is the value for
which the height of the cell equals the radius R of the system. If the drop is larger, the
thickness of the convection layer is still set by the same length scale, so that the flux
density is constant. As a result, the total flux is proportional to the area.
To further test this idea, we also measured the evaporation with a fan blowing

toward the water surface. This introduces another, shorter length scale (boundary layer
thickness) into the system. As a result, the transition occurs earlier, and the rate of
evaporation lies by a constant factor above that of natural convection. We suspect that
the exponent of 1.648, found empirically by (Kelly-Zion et al. 2011) (for fluids other than
water), is still a reflection of the crossover between the linear and the quadratic regime.
There has been an ongoing discussion on the effect of convection in the vapor on the

evaporation of water. In the original experiment of (Deegan et al. 2000b), the exponent for
the variation of the radius as a function of the time distance to vanishing was reported to
be 0.6 rather than 0.5. This difference was later attributed to convection in the vapor by
(Shahidzadeh-Bonn et al. 2006). However other experiments (Cazabat & Guéna 2010),
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Figure 6. Rate of evaporation of water from single drops and from beakers, with and without
air flow; u is the speed of the air flow, measured with a hot-wire anemometer about 2 cm
above the evaporating system (Testo 425). The instantaneous evaporation rate - black squares
- corresponds to J and R evaluated every 10 s for a single drop on a hydrophobic substrate
(θ ≈ 150◦).

as well as the ones reported here in Fig. 2, retrieve the exponent 0.5. The difference
between the different experiments may reside in the vapor pressure of the laboratory; the
Rayleigh number for the onset of convection in the vapor scales linearly with the density
difference between the saturated vapor close to the drop surface and the unsaturated
vapor far from the drop. This is also the reason why we find a larger length scale for the
onset of convection compared to (Shahidzadeh-Bonn et al. 2006); in the latter a density
difference of 1% was estimated, whereas here we estimate 0.1%.

6. Conclusions

We have investigated the evaporation of drops over a wide range of length scales, in the
limit that the temperature is almost uniform throughout the system. The evaporation
rate only depends on the instantaneous shape of the drop, set by the drop volume and
the contact angle. Very large drops resemble flat disks, which we also model by beakers
filled to the rim. Experiment and theory both show linear scaling of the evaporation rate
with the linear extension of the drop.
For water drops at room temperature above a radius of about 20 mm, the linear

scaling crosses over to a quadratic scaling with the radius, making the evaporation rate
proportional to the area. This is consistent with the onset of natural convection, which
sets the flux of vapor per unit area. If convection is aided by a fan, the same quadratic
scaling is observed, but the flux increases, and the crossover occurs at a smaller scale.
If several drops are present, separated by a distance comparable to their radius, the

evaporation from a single drop is reduced significantly, owing to the saturation of the
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atmosphere by the other drops. Evaporation also becomes non-uniform, with drops near
the border vanishing first. The size distribution within a spray of drops is strongly
distorted by the interaction.

The analytical solution presented in Section 2 was the subject of a 3d year project at
the University of Bristol’s Mathematics department, done by Kate Morley.

REFERENCES

Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in rayleigh-bnard
convection. Annu. Rev. Fluid Mech. 32, 709–778.

Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading.
Rev. Mod. Phys. 81, 739–805.

Brzoska, J.B., Shahidzadeh, N. & Rondelez, F. 1992 Evidence of a transition temperature
for the optimum deposition of grafted monolayer coatings. Nature 360, 719–721.

Cachile, M., Benichou, O. & Cazabat, A.-M. 2002a Evaporating droplets of completely
wetting liquids. Langmuir 18, 7985–7990.

Cachile, M., Benichou, O., Poulard, C. & Cazabat, A.-M. 2002b Evaporating droplets.
Langmuir 18, 8070–8078.
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