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THE SPATIAL STRUCTURE OF BUBBLE PINCH-OFF∗

M. A. FONTELOS† , J. H. SNOEIJER‡ , AND J. EGGERS§

Abstract. We have previously found [J. Eggers, M. A. Fontelos, D. Leppinen, and J. H. Snoeijer,
Phys. Rev. Lett., 98 (2007), 094502] that the pinch-off of a gas bubble in an inviscid environment is
controlled by scaling exponents which are slowly varying in time. To leading order, these results did
not require the spatial profile of the interface near break-up. Here we refine our previous analysis by
computing the entire shape of the neck. The neck shape is characterized by similarity functions that
are also slowly varying on a logarithmic scale. We compare these results to experiments and find
agreement within the experimentally accessible range. More detailed confirmation of the asymptotic
analysis is provided by the excellent agreement with numerical simulations of the bubble pinch-off.
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1. Introduction. In this paper, we address the collapse of a cavity or the pinch-
off of a bubble in a body of fluid whose viscosity is sufficiently small as to be negligible.
A typical experimental situation is shown in Figure 1.1: an air bubble is released
from a pipette submerged under water. As the bubble rises, it pinches off at a point,
preserving radial symmetry [23]. The purpose of the present paper is to find the
asymptotic form of the profile around the pinch-point as the minimum neck radius
goes to zero. For the rest of this paper, we will assume that the pinch-point is located
at the origin z = 0.

Fig. 1.1. The pinch-off of an air bubble in water. The air is released from a nozzle whose outer
radius is R0 = 1.57. The time between two successive panels is 0.5ms. [Reprinted with permission
from Thoroddsen, Etoh, and Takeora, Phys. Fluids, 19 (2007), 042101. Copyright 2007, American
Institute of Physics.]

Another important case is that of a cavity [8] that is produced near the surface
of water, for example by the impact of a solid object. Recently, there has been a
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flurry of experiments using the bubble [4, 16, 18, 23] or the cavity geometry [2, 8]
in water. In the presence of perturbations, axisymmetry can be broken significantly
[18, 2]. However, if the bubble is sufficiently small, the shape is perfectly axisym-
metric down to the smallest experimentally observed scale of a few μm. It was also
confirmed experimentally that the air inside the bubble, as well as the viscosity of the
surrounding fluid, has a negligible effect on the dynamics [23]. However, even in water,
a tiny satellite bubble about 5μm in diameter is observed after break-off occurs. If the
viscosity of the surrounding fluid or the density of the gas is increased, the dynamics
changes [23]. In particular, the size of satellite bubbles becomes substantial [15].

A naive expectation would have been that the pinch-off of a bubble in water is
governed by the same scaling laws as the “inverse” case of a drop of water pinching
off in air, for which the minimum drop radius scales like h0 ∝ t′2/3, where t′ = t0 − t
and t0 is the pinch-off time [6, 7]. This scaling law follows from the simple physical
picture of pinch-off being driven by surface tension and resisted by inertia [22]. If
γ is the surface tension and ρ the density, (γt′2/ρ)1/3 is the only local length scale.
Surprisingly, the scaling exponent α for bubble pinch-off was found to be close to 1/2,
the value proposed by [20] and [21]. This implies faster pinch-off than anticipated, and
surface tension must become subdominant, inertia being the only remaining factor.

In [12] it was shown that the scaling behavior of bubble pinch-off is described by
a scaling exponent α(τ) = 1/2 + 1/(4

√
τ ), where τ = − ln t′. The approach to the

asymptotic limit 1/2 is therefore exceedingly slow. When evaluating at experimentally
accessible time scales, one indeed obtains values significantly larger than 1/2 and
consistent with experimental values of 0.56 [18] and 0.57 [23] reported in the literature.
Note that there is no dimensional argument for the value of 1/2: as surface tension
drops out of the leading order balance, the equation of motion becomes invariant
under a change in time scale. This also implies that there is no intrinsic time scale
by which to make t′ dimensionless, and thus τ is defined only up to a constant shift
τ0. The value of τ0 is nonuniversal and set by the initial condition.

The results of [12] were obtained by considering local quantities near the pinch-
point alone, namely the minimum radius and the curvature. In the present paper we
reveal the surprising spatial profile of the neck. We show that the pinch region is
characterized by similarity profiles, which themselves are logarithmically dependent
on time. We find that the profile is symmetric around the pinch-point, while away
from the neck the radius increases as a power law with an exponent that is once more
slowly varying in time. Both features are consistent with experimental observations
and are verified in more detail using numerical simulations. As an added benefit of our
analysis, we obtain subleading expressions for the time dependence of the exponent
for the neck radius.

2. Description of the dynamics.

2.1. Source distribution. We would like to solve the inviscid, irrotational,
axisymmetric flow problem outside a cavity, which we model as being at constant
pressure. The axis of symmetry is aligned with the direction of gravity, as shown,
for example, in the experimental images of Figure 1.1. The velocity u can thus be
written as

(2.1) u = ∇Φ, ΔΦ = 0.
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Our approach is based on representing the velocity potential by point sources dis-
tributed along the centerline of the cavity of length 2L [1]:

(2.2) Φ =

∫ L

−L

C(ξ, t)dξ√
(z − ξ)2 + r2

.

It remains to be seen whether a given flow can be represented in the form (2.2).
However, we stress that (2.2) is an exact solution of (2.1), with vanishing flow at
infinity. When used in slender-body theory, the kernel of the integral in (2.2) is
usually expanded in a parameter ε characterizing the slenderness, while we avoid such
an expansion for the moment.

We assume that there are no overhangs, so the shape of the cavity can be repre-
sented by the local radius h(z, t). As usual, the motion of the surface is determined
by the kinematic boundary condition

(2.3) ∂th+ h′uz = ur|r=h(z,t) ,

where the prime denotes the derivative with respect to the spatial argument. Using
(2.2), the velocity on the surface is given by

uz(z, t) = −
∫ L

−L

C(ξ, t)(z − ξ)dξ√
(z − ξ)2 + h2(z, t)

3 ,(2.4a)

ur(z, t) = −
∫ L

−L

C(ξ, t)h(z, t)dξ√
(z − ξ)2 + h2(z, t)

3 .(2.4b)

Integrating Euler’s equation from infinity (where the pressure is assumed to van-
ish) to the surface, one obtains

(2.5) ∂tΦ+ (∇Φ)2/2 = −p/ρ
∣∣
r=h(z,t)

,

where p is the pressure on the exterior of the surface. Thus if p0 is the pressure in the
cavity, by Laplace’s formula [19] we have p− p0 = −γκ+ ρgZ, where κ is (twice) the
mean curvature, ρ is the fluid density, g is the acceleration of gravity, and Z denotes
the depth from the fluid surface. Thus we arrive at the following equation for the
source distribution C(z, t):

(2.6)

∫ L

−L

∂tC(ξ, t)dξ√
(z − ξ)2 + h2(z, t)

+
u2
z + u2

r

2
= −p0

ρ
+

γ

ρ
κ+ gZ.

Equations (2.3), (2.4), and (2.6) form a closed system of equations for h(z, t) and
C(z, t), which can be studied numerically. Although the system comes from the ansatz
(2.2), which is usually associated with slender-body theory, this system is formally an
exact solution of the full inviscid, irrotational flow problem that we set out to solve.
However, a problem with the representation (2.2) is that not all smooth irrotational
flows can be represented in that way. For example, if one places a delta function on
the axis inside the cavity, this produces a perfectly acceptable flow on the outside
of the cavity yet cannot be written in the form (2.2) with a smooth C. This means
not all initial conditions can be realized by using the formulation (2.3), (2.4), (2.6).
In particular, there is a problem in describing the motion of a closed surface, as the
following example of a steadily moving spherical bubble shows.
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The main problem in describing the flow field around a closed cavity in the form
(2.2) arises near the end of the cavity, where the shape is no longer slender. How this
problem can be dealt with in a perturbation expansion [17] has been demonstrated.
However, this issue is not relevant to the dynamics of pinching, which is a localized
phenomenon, independent of flow conditions away from the pinch-point. We therefore
avoid the description of a closed bubble, but rather allow for a finite bubble radius at
the boundaries of the computational domain. Under these conditions our simulations
of (2.3), (2.4), (2.6) indicate that C(z, t) remains smooth at all times before the real
pinch-off singularity occurs. As far as we are aware, this system has not been derived
or studied before.

2.2. Slender body. To make analytical progress, we wish to derive an approx-
imation of (2.3), (2.4), (2.6) that is valid for slender cavities. We define h0 as the
minimum radius of the cavity, which we take to occur at z = 0, and Δ measures the
width of the pinch region:

(2.7) h0 = h(0, t), Δ =

(
2h2

0

(∂2
zh

2)(0, t)

)1/2

.

Throughout, we will be making the approximation that h0 is much smaller than Δ.
This suggests the introduction of the small aspect ratio parameter

(2.8) ε(τ) = h0/Δ.

We will now perform a systematic expansion in ε to derive a simplified integral equa-
tion, previously introduced by us [12] on the basis of intuitive arguments. Corrections
to the leading slender-body asymptotics will be smaller by a factor of the order of
the aspect ratio ε(τ), as expected. We will see below that h0(τ) ≈ e−τ−√

τ and
ε(τ) ≈ e−

√
τ/2, so the aspect ratio is indeed small in the limit of τ = − ln t′ → ∞. In

particular, uz = ∂zΦ ≈ ε(τ)∂rΦ � ∂rΦ = ur, so only the radial part of the velocity
field needs to be considered in (2.6).

The integral for ur (cf. (2.4)) is dominated by local contributions, as one finds by
considering the substitution η = (z − ξ)/h(z), which gives

(2.9) ur(z) = − 1

h(z)

∫ z−L
h(z)

z+L
h(z)

C(z − ηh(z))

(1 + η2)
3
2

dη.

To find the leading order contribution as well as corrections, we expand C according
to Taylor’s theorem:

(2.10) C(z − ηh(z)) = C(z)− C ′(z)ηh(z) + C′′(z0)η2h2(z)/2,

where z0 = z − η0h(z) for some η0 in (−η, η). Since Δ is the width of the profile, it
is safe to assume that C′′/C is of order 1/Δ2 and C′′/C′ is of order 1/Δ uniformly.

We now introduce (2.10) into (2.9) and estimate the integrals corresponding to
each term in (2.10). Hence we have to evaluate∫ z−L

h

z+L
h

η

(1 + η2)
3
2

dη ≈
∫ ∞

z+L
h

dη

η2
−
∫ z−L

h

−∞

dη

η2
=

hz

z2 − L2
≈ −hz

L2

and ∫ z−L
h

z+L
h

η2

(1 + η2)
3
2

dη ∼ 2 ln(h/L),
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and therefore

(2.11) ur(z) ≈ −2C(z)

h(z)
− C′(z)

h(z)z

L2
+ C′′(z0)h(z) ln

(
h(z)

L

)
.

The second term on the right-hand side of (2.11) is much smaller than the third
term,

2C′(z)hz/L2

C′′(z0)h lnh
≈ 2Δ/L

lnh
= ΔO

(
1

lnh

)
� O

(
1

ln ε

)
,

if |z| ≤ L. The third term, on the other hand, is smaller than the leading term by a
factor of

(2.12)
C′′h lnh
2C/h

≈ 1

2

h2
0 lnh0

Δ2
=

1

2
ε2 lnh0 = o(ε),

where we have used |ε lnh0| ≈ τe−
√
τ/2 � 1. Hence we conclude

ur(z) = −2C(z)

h(z)
(1 + o(ε)).

The quality of this leading order approximation,

(2.13) ur(z) ≈ −2C(z)/h(z),

is tested in Figure 2.2 below. For the analysis to follow, it is convenient to use the
cross-sectional area πa(z, t) of the cavity, rather than the radius, to describe the
slender approximation:

(2.14) a(z, t) ≡ h2(z, t).

Accordingly, we set a0 = h2
0. Inserting (2.13) into (2.3) and neglecting uz, one obtains

ȧ = −4C, where a dot denotes the time derivative. Finally, once more neglecting uz

relative to ur, we arrive at

(2.15)

∫ L

−L

ä(ξ, t)dξ√
(z − ξ)2 + a(z, t)

=
ȧ2

2a
− 4γ

ρ
κ+ 4gZ +

4p0
ρ

,

which is accurate up to corrections of order ε.
As for the study of the pinch-off singularity, two observations are in order [12].

First, the contribution to the integral is local, so we can effectively set L → ∞. This
results from the spatially localized form of the acceleration ä, as discussed in section 3
and calculated in section 4. Second, surface tension as well as gravity is irrelevant to
the asymptotic problem. Namely, the asymptotic behavior of the cross-sectional area
is a0 ∝ t′. This means that the first term on the right-hand side of (2.15) diverges like
t′−1, while the surface tension contribution diverges only like κ ∼ h−1

0 ∼ t′−1/2, and
gravity as well as the cavity pressure remain of order one. Thus the last three terms
from the right-hand side of (2.15) can be dropped as far as the asymptotic behavior
is concerned. As a result, for most of the paper we will be dealing with the simplified
equation

(2.16)

∫ ∞

−∞

ä(ξ, t)dξ√
(z − ξ)2 + a(z, t)

=
ȧ2

2a
.

As we will see below, (2.16) performs very well in describing real experimental data
close to pinch-off. We reiterate that (2.16) remains invariant if time is multiplied by
any constant. For all our numerical tests, we will approximate the integral on the left
by the integral between −L and L, as in (2.15).
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2.3. Numerical simulation. We solve (2.3), (2.4), (2.6) using a fully implicit
method, using a numerical scheme developed originally by [11]. The solution is de-
scribed in terms of the two fields h and C. In the case of (2.16), the formulation
is in terms of a and ȧ. The time stepping is of second order, and the step size is
controlled by comparing a step of size Δt with two steps of size Δt/2. Adaptive
spatial refinement is of course crucial and is performed whenever the minimum h0

has changed a certain small percentage. The grid spacing around the pinch-point is
based on the width of the profile as determined from the previous solution. After a
new grid is found, the old solution is interpolated to the nodes of the new grid. The
integrals are evaluated simply over the computational domain, and no other boundary
conditions are imposed. Since the phenomenon we describe is local, the precise form
of the boundary conditions is not expected to have significant impact on the results.

As long as surface tension is finite, our method works well up to a minimum
radius of h0 ≈ 10−4 at least. However, eventually instabilities become more and more
difficult to control; this is to be expected, since surface tension drops out from the
leading order balance close to the pinch-point and is thus less and less effective at
regularizing any short-wavelength instabilities. We therefore opt for a stronger form
of regularization, which remains effective for very small h0. To this end, we add
a correction to the equation, which is small on the scale of the expected pinching
solution but which is of higher order in the derivative. This is achieved by adding a
term εregĊ

′′h2 to the left-hand side of (2.6). Clearly, this term is going to dominate
over the integral in the limit of large wave numbers, and thus fixes the ill-posedness.
The second derivative is multiplied by h2, to make sure it stays of roughly constant
size relative to u2

r, which is driving the motion toward pinch-off.
Namely, ur scales like C/h according to (2.11). In the simplest approximation

[12], C ≈ ȧ ∼ t′0, and h2 ∼ t′, which means that u2
r ∼ t′−1. On the other hand, the

width of the profile scales like Δ ∼ t′1/2, and one obtains Ċ′′/h2 ∼ t′−1 as well. The
prefactor εreg, which we typically choose to be 10−3, ensures that the stabilizing term
is very small. This is confirmed directly from the simulation and holds true uniformly
in space and time. We also checked that a variation of εreg by a factor of 10 did not
affect the results significantly.

A typical numerical result of the full system of equations (2.3), (2.4), (2.6) is
shown in Figure 2.1. The half-width of the domain was L = 4. The initial condition
was chosen symmetric about the origin, and we neglected the effects of surface tension
and gravity. In the simulations reported here, the initial cavity radius R0 was chosen
as the length scale. Since pinch-off is provoked by an inward pointing initial velocity
field of maximum value V0 ≈ 0.91, a typical time scale of the simulation is T = R0/V0.
However, we have not normalized time by this value, since all quantitative comparisons
are made allowing for an arbitrary scale factor in the time scale.

For the rest of this paper, we will study the profile in the neighborhood of the
point at which the radius goes to zero; see Figure 2.1. This permits us to use the
slender-body description (2.16) as a starting point, both for our analytical arguments
and for numerical tests. To confirm the quality of approximation of the latter, we
took the radial velocity ur as used in the simulation of Figure 2.1, and compared
it to its counterpart in the slender-body approximation. In Figure 2.2 we show this
comparison for a profile very close to pinch-off. To be able to show more of the profile,
we use a logarithmic scale. As expected, the agreement is extremely good and is lost
only if the distance from z = 0 becomes of order one.

We also compared a simulation of the asymptotic equation (2.16) directly to
experiment. We chose L = 2, and once more used a symmetric initial condition, while
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Fig. 2.1. A sequence of profiles leading to pinch-off, obtained by integrating (2.3), (2.4), (2.6)
numerically. Surface tension and the external pressure p0 are chosen to vanish, and L = 4. The
initial conditions are h(z, 0) = 0.7 − 0.3 cos(πz/L) and C(z, 0) = 0.2 cos(πz/L). A positive source
strength corresponds to a radial velocity field pointing inward, provoking pinch-off.

Fig. 2.2. Comparison of the radial velocity field as given by (2.4) (solid line) with the local
approximation (2.13) (dashed line) for |t′| = 10−5.

the experiment was very similar to that of Figure 1.1. A bubble of sulfur hexafluoride
was released from an underwater nozzle of radius R0 = 0.235 cm [3]. A sequence of
four profiles, with a time distance of 1.5×10−4s between them, is shown in Figure 2.3
as the solid lines. This is compared to the simulation, at corresponding values of the
dimensionless radius hmin/R0 (dashed lines). This does not yet fix the axial length
scale, which was adjusted in the simulation by multiplying the z-axis by a constant
factor. However, this was done only once, using the profile closest to pinch-off; the
same factor was used for all the other profiles. The comparison is very convincing,
emphasizing once more the practical validity of our approximations: use of the leading
order expansion in the slenderness, as well as neglect of gravity and surface tension.
Each of these approximations is, of course, also justified in an asymptotic sense as
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Fig. 2.3. A comparison between a sequence of experimental profiles of a bubble of sulfur hexa-
fluoride pinching off in water [3]. The lines are the measured bubble radii in cm at a rate of 6688
frames per second; the dashed lines come from a simulation of (2.16). The initial conditions are
a(z, 0) = 0.7+0.3(z/L)4 and ȧ(z, 0) = 0.1((z/L)2 −1). The four theoretical profiles have been timed
to give the correct minimum radius; the axial scale of the profile has been adjusted once, using the
last profile; and the other profiles use the same axial scale.

pinch-off is approached. Note as well that the experimental profile is extremely close
to being symmetric about the pinch-point, even though the experiment is not up-down
symmetric. In section 4 below we will calculate the asymptotic shape of the profile
explicitly, thus confirming that it is indeed symmetric. All comparisons to numerical
data to be reported below, used to check the validity of our asymptotic analysis, will
be based on the simulation shown in Figure 2.3.

2.4. Strategy. In the following sections, we will analyze (2.16) using asymp-
totics. The idea is to write the solution in the form

(2.17) a(z, t) = a0(t
′)A(η, τ), η = z/Δ(t′).

Thus the main time dependence is in the scale factors a0(t
′) and Δ(t′), while the

subleading time dependence is expected to be captured by the dependence of A on
τ = − ln t′. The corresponding similarity form for ä(z, t) is

(2.18) ä(z, t) = ä0(t
′)φ(η, τ).

In previous examples of drop pinch-off [10], the scales a0,Δ were simply power laws.
In the present case, these scales acquire logarithmic corrections. As a consequence
the aspect ratio ε will turn out to vary as

(2.19) ε ≡ a
1/2
0

Δ
∼ e−

1
2

√
τ ,

which goes to zero as τ → ∞. Indeed, the neck becomes increasingly slender upon
approaching the pinch-point, ensuring that the analysis is self-consistent.
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The similarity functions and their time dependences will be computed using the
following steps:

(a) First, in section 3, we focus on the time dependence of a0, Δ. This time
dependence can be found from expanding a(z, t) and ä(z, t) around the mini-
mum at z = 0, yielding a dynamical equation for a0(t) and Δ(t). Solving this
system, we find that a0 = C0t

′e−
√
τ and Δ2 =

√
et′/4 (see (3.12) below).

(b) In the following section 4 we derive a simplified local expression for the integral
on the left of (2.16), using the time dependence of the scale factors found in
(a). The result is (4.8).

(c) We then determine the similarity profiles A(η, τ) and φ(η, τ) as they appear
in (2.17) and (2.18). This is first done based on the local approximation (sec-
tion 5), by taking the distinguished limit of keeping η fixed as τ → ∞. This
provides the “inner” part of the neck profile. The acceleration ä converges to
a Lorentz peak at fixed η.

(d) Finally, in section 6 we find the “outer” profile of ä, away from the central
region where it has a sharp peak. This asymptotics applies to the case where
ηe−

√
τ/2 � 1.

3. The time dependence. Our aim is to explain the observed scaling behavior
of the minimum cross section a0 ≡ a0(t) ≡ a(0, t), as well as of the axial length scale Δ
of the profile, which can be characterized by the inverse curvature Δ ≡ (2a0/a

′′
0)

1/2; cf.
(2.7). By definition, we write a′′0 ≡ a′′0(t) ≡ (∂2

za)(0, t) for the curvature of the profile
a(z, t) at the pinch-point. As shown later, and confirmed numerically in Figure 3.1,
to leading order ä(z, t) behaves as

(3.1) ä(z, t) =
ä0(t)

1 + (z/Δ)2
.

Fig. 3.1. Convergence of the central peak of ä toward (3.1). The heavy line is the Lorentz curve
1/(1 + η2). The solid ( |t′| = 10−6) and dotted ( |t′| = 10−3) lines are the result of a numerical
simulation of (2.16), rescaled according to (3.1). The initial conditions are the same as in Figure
2.1. Note that the acceleration becomes negative in the tails of the peak; this will be explained in
section 6 (cf. (6.6)).
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But this means that, by evaluating (2.15) and its second derivative at z = 0, we obtain
a closed system of equations for a0 and Δ. The quadratic decay of (3.1) ensures that
contributions to the integral are local, as anticipated above.

Using (3.1), we can evaluate the integral at z = 0 explicitly:

(3.2)

∫ ∞

−∞

ä0(t)dξ(
1 + (ξ/Δ)

2
)√

ξ2 + a0
=

ä0(t)√
1− a0/Δ2

ln

(
1 +

√
1− a0/Δ2

1−√1− a0/Δ2

)
.

We rewrite the aspect ratio a0/Δ
2 = a′′0/2, so that for a′′0 � 1 and z = 0, (2.16)

simplifies to

(3.3) ä0 ln

(
8

a′′0

)
=

ȧ20
2a0

.

Next, taking the second derivative of (2.16), we obtain from a similar calculation

(3.4) ä′′0 ln
(

8

e3a′′0

)
− 2

ä0a
′′
0

a0
=

ȧ0ȧ
′′
0

a0
− ȧ20a

′′
0

2a20
.

As seen from a calculation analogous to that of the appendix, (3.3) and (3.4) are
accurate up to corrections of order of the square of the aspect ratio, and thus consistent
with our earlier approximations.

Following [12], we now rewrite (3.3), (3.4) as equations for the local (time-
dependent) exponents

(3.5) 2α ≡ −∂τa0/a0, 2δ ≡ −∂τa
′′
0/a

′′
0 .

Note that (3.5) is equivalent to taking the slope of a log-log plot but differs from
h0 ∝ t′α if α is time-dependent. The result is

(
ατ + α− 2α2

)
ln

(
8

a′′0

)
= −α2,(3.6)

(
δτ + δ − 2δ2

)
ln

(
8

e3a′′0

)
= 2α− 3α2 − 2αδ + 2ατ ,(3.7)

where the subscript denotes the τ -derivative. The time dependence of a′′0 is found
from integrating

(3.8) ln(a′′0 )τ = −2δ.

Compared to our earlier work [12], in (3.6) and (3.7) we have now computed all
constants inside the logarithms. This is possible using the explicit shape of the accel-
eration profile (3.1), to be derived below; we conclude that Γ1 = 8 and Γ2 = 8/e3 in
the notation of [12].

The behavior of the third order system (3.6)–(3.8) in the limit τ → ∞ is de-
termined by the neighborhood of the fixed point (α, δ, v) = (1/2, 0, 0). Putting
α(τ) = 1/2 + u(τ) and v(τ) = 1/ ln(a′′0 ), the leading order behavior of (3.6)–(3.8)
becomes

(3.9) uτ = u+ v/4, δτ = −δ − v/4, vτ = 2δv2.

The linearization around the fixed point thus has the eigenvalues 1, 0, and −1. As
explained, for instance, by [13] and [24], the positive eigenvalue corresponds to a
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Fig. 3.2. Approach of the exponents to their asymptotic value, obtained from a numerical
simulation of (2.16). The initial conditions are the same as in Figure 2.1. The solid line is α−1/2;
the dotted line is δ. The two dashed lines are the predictions (3.11), but with a shift in the value of
τ , which is the same for the two curves.

change of the unknown origin of time and has no dynamical significance. On the
other hand, the vanishing eigenvalue is the origin of the slow approach to the fixed
point observed for the present problem. The derivatives uτ and δτ are of lower order
in the first two equations of (3.9), and thus to leading order u = δ and v = −4δ. This
means that the last equation of (3.9) can be simplified to

(3.10) δτ = −8δ3.

The high (third order) nonlinearity explains the extremely slow approach to the scaling
limit.

The approach to fixed-point behavior is best found by expanding (3.6)–(3.8) in
powers of τ−1/2, fractional powers providing the right balance:

(3.11) α =
1

2
+

1

4
√
τ
− 1

4τ
+O(τ−3/2), δ =

1

4
√
τ
+O(τ−3/2).

Knowing the constants Γ1,Γ2 (cf. equations (4) and (5) in [12]), we were able to
calculate the exponents to order 1/τ , going beyond the previously known result. In
particular, (3.11) implies that the coefficients are universal at this order.

We also explored full numerical solutions to (3.6)–(3.8). Owing to the positive
eigenvalue, initial conditions must be chosen from a two-dimensional subspace to reach
the fixed point. However, in spite of having an additional adjustable parameter, the
numerical solution did not significantly expand the range over which exponents could
be predicted. Therefore, in Figure 3.2 we show only the comparison between the
expansion (3.11) and the exponent values obtained from a numerical simulation of
(2.16). The time dependence of α and δ differs only at order 1/τ , so it is only with
the new result (3.11) at hand that we can perform a meaningful comparison of both
α and δ. Equation (2.16) is invariant under a rescaling of time, i.e., a shift in τ . Such
a shift in τ is therefore determined by the initial conditions and has to be adjusted in
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a comparison of the exponents, as we did in Figure 3.2; of course, the shift was the
same for both curves.

Our theory was validated further by [14], who simulated bubble breakup in a
variety of systems, such as the wake of an impacting disk and gas bubbles detaching
from an orifice. The value of α was plotted as a function of a′′0 , which for all cases
displayed the universal behavior of (3.6). To achieve a comparison without adjustment
of parameters, [14] relied on the calculation of the constant Γ1, first performed in the
present paper. Interestingly, the time scales over which these quantities evolve were
found to differ by orders of magnitude, depending on the physical realization of the
collapse. This once more reflects the invariance under a rescaling of time of the
asymptotic regime.

Note that (3.11) is also consistent with previously published experiments, where
exponents were determined from fitting a straight line to a doubly logarithmic plot
over a limited range. As a result of the limited experimental time resolution, values of
alpha slightly larger than 1/2 were reported. For example, [23] found α = 0.57±0.03,
where smaller values of α were reported if the time resolution was increased for the
same experiment (cf. Figures 5 and 10 in [23]). The width of the profile was also
investigated in detail, and its scaling exponent was consistently found to be very close
to 1/2, in agreement with (3.13) below.

The expansion (3.11) yields estimates for the leading order time dependencies of
various key quantities:

(3.12)

a0 = C0t
′e−

√
τ , ȧ0 = −C0e

−√
τ

(
1 +

1

2
√
τ

)
,

ä0 =
C0

2t′
√
τ
e−

√
τ

(
1 +

1

2
√
τ
+O(τ−1)

)
,

where C0 is a prefactor which depends on initial conditions. Inserting this back into
(3.3), one finds the approximation

(3.13) a′′0 ≈ 8√
e
e−

√
τ , and thus Δ =

(√
e

4
t′
)1/2

.

We conclude that the aspect ratio ε ≡ h0/Δ indeed behaves as anticipated in (2.19),
so our calculation is self-consistent. In particular, neglected terms are exponentially
small (in terms of τ) compared to terms in the series expansion (3.11).

4. Local approximation. Now we compute the spatial structure of the pinch
region, that is, the similarity function A(η, τ) in (2.17). This will also yield the
corresponding profile of ä, which is a Lorentzian according to (3.1). To this end we
derive a localized version of the integral equation (2.16), which captures the leading
order asymptotics of the problem. The key is to recognize that significant accelerations
ä(z, t), which determine the region over which there are significant contributions to
the integral in (2.16), occur only over the scale Δ. We localize the integral by isolating
this region and splitting the integral according to

(4.1)

∫ ∞

−∞

ä(ξ, t)dξ√
(z − ξ)2 + a(z, t)

=

∫ Δ+z

−Δ+z

. . . dξ +

∫ ∞

Δ+z

. . . dξ +

∫ −Δ+z

−∞
. . . dξ.

Now we consider the integrals on the right-hand side of (4.1) one by one.
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The first integral on the right-hand side of (4.1) can be rewritten as

(4.2)

∫ Δ√
a(z,t)

− Δ√
a(z,t)

ä(z + ξ
√

a(z, t), t)dξ√
ξ
2
+ 1

.

If z is of order Δ, it follows from (3.1) that the limits of (4.2) can be approximated as

Δ/
√
a(z, t) ≈ Δ/h0 ≡ ε−1 ∝ e

√
τ/2,

where we have used (2.19). This is large in the limit τ → ∞ that we are interested
in. Now we expand the numerator of the integrand in (4.2) according to

(4.3) ä(z + ξ
√
a(z, t), t) = ä(z, t) + ä′′(z, t)a(z, t)

ξ
2

2
+O(ξ

4
).

Using the integral

∫ ε−1

−ε−1

dξ√
ξ2 + 1

= 2 ln
(
ε−1 +

√
ε−2 + 1

)
,

the contribution of the first term of (4.3) to (4.2) is

(4.4) ä(z, t) ln

(
4Δ2

a(z, t)

)
≈ ä0 ln

(
ε−2
) ∝ 1

eτ t′
.

The second term of (4.3), using

∫ ε−1

−ε−1

dξξ2√
ξ2 + 1

= ε−1 +
√
ε−2 + 1− ln

(
ε−1 +

√
ε−2 + 1

)
,

leads to

(4.5)
ä′′(z, t)Δ2

2
≈ ä′′0Δ

2

2
≈ − 1

2eτ
√
τt′

.

Clearly, (4.5) is small compared to (4.4) in the limit τ → ∞, and so only the first
term of the expansion (4.3) needs to be considered. The fourth order correction is
even smaller.

Next we evaluate the second integral on the right-hand side of (4.1). Using the
form (3.1) of ä(z, t), the integral can be estimated as

(4.6)

∫ ∞

Δ+z

ä(ξ, t)dξ√
(z − ξ)2 + a(z, t)

dξ ≈
∫ ∞

Δ+z

ä0Δ
2

ξ3
dξ =

ä0Δ
2

2(Δ + z)2
≈ ä0

2

if z is of order Δ. Clearly, (4.6) is small compared to the leading contribution (4.4)
as ε → 0. An identical argument holds for the third integral on the right-hand side of
(4.1). In summary, we have found that (4.4) is the leading contribution to (4.1), and
so we have

(4.7)

∫ ∞

−∞

ä(ξ, t)dξ√
(z − ξ)2 + a(z, t)

≈ −ä(z, t) ln ε2.



BUBBLE PINCH-OFF 1709

Fig. 4.1. Comparison between the local description (4.8) (small circles) and the integral equa-
tion (2.16) (solid line). The initial conditions are the same as in Figure 2.1. The scale is logarithmic,
and a snapshot is taken for |t′|−6.

But this means that the localized version of (2.16) becomes

(4.8) −ä(z, t) ln ε2(τ) =
ȧ2(z, t)

2a(z, t)
,

which is the formulation that is the basis for the calculations of the next section.
The description (4.8) is superficially similar to the scalar equation for the min-

imum radius given in [21] or [2] but differs in two important aspects. First, the
logarithm of the aspect ratio ln ε is replaced by the logarithm of the minimum radius
itself; this yields an incorrect time dependence for the exponent α; cf. (3.11). Second,
(4.8) is an equation for the entire profile a(z, t), not just for the minimum. As seen in
Figure 4.1, the description is extremely good over a wide span in the rescaled variable,
provided one is sufficiently close to pinch-off.

5. Neck profile: Inner region. The spatial variable z is only a parameter in
(4.8), which thus can easily be solved. Namely, transforming the independent variable
according to ∂t = ∂τ/t

′, and the dependent variable according to d = a/aτ , we find
the linear equation

(5.1) dτ − d = 1− 1

ln ε2(τ)
.

Now using ln(ε2(τ)) = −√
τ + ln ε20 and expanding, we have

(5.2) dτ − d = ν +O(τ−3/2),

where for ease of notation we have put ν = 1 − 1/(2
√
τ ). Taking only leading order

corrections in τ into account, (5.2) can be integrated to give

(5.3) d = −C1(z)e
τ − ν +O(τ−3/2).
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One more integration then gives

(5.4) ln a(z, t) ≈ C2(z)−
∫ τ

τ0

dτ ′

C1(z)eτ
′ + ν

.

To compute the similarity form (2.17) of a(z, t), we need to evaluate (5.4) at a

constant value of the similarity variable η = z/Δ ∝ z/
√
t
′
. Thus in the limit of t′ → 0,

we have to consider (5.4) for z → 0. The constant of integration C2(z) describes the
initial condition for the profile on a spatial scale of order unity; in the limit, its
argument is replaced by z = 0. The constant of integration C1(z), on the other
hand, is rescaled by a time-dependent factor and encodes the form of the profile in
similarity variables. We must have C1(0) = 0, because otherwise the integral in (5.4)
would remain finite, and a(0, t) would not go to zero at the singularity, as required.
For C1 vanishing at the origin, on the other hand, we find from (5.4)

(5.5) ln a0 ≈ C2(0)−
∫ τ

τ0

dτ ′

ν
≈ C2(0)−

∫ τ

τ0

(
1 + 1/(2

√
τ ′)
)
dτ ′ = −τ −√

τ + lnC0,

where the notation for the arbitrary constant C0 has been chosen in accordance with
the notation of section 2.4. As expected, (5.5) agrees with the earlier calculation of
the scale factors; cf. (3.12).

Now we determine the spatial form of the similarity profile. The expansion of C1

around z = 0 is C1 = Bz2 + O(z3). Since this is evaluated at constant η, the third
order term is smaller than the leading term by a factor of

√
t′ and can be dropped.

To evaluate the integral in the limit C1 → 0, we integrate by parts, to produce an
integral that is of lower order in τ . Namely, setting Ξ = ln (C1 + νe−τ ), we find that

(5.6)
∂

∂τ
Ξ = −ν +O(τ−3/2)

C1eτ + ν
,

and thus

(5.7) ln a(z, t) ≈ Ξ

ν
+

∫ τ

τ0

Ξ

4τ3/2ν2
dτ ′ + const.

Remembering that C1e
τ ≈ Bz2/t′ = eBη2/4, the first term in (5.7) becomes

(5.8)
Ξ

ν
≈ −τ + ln(1 + eBη2/4)

ν
.

The remaining integral in (5.7) can now be evaluated by expanding the integrand in
powers of C1 and using ν ≈ 1 to leading order. The result is

(5.9)
ln(C1 + e−τ )

4τ3/2
=

1

4
√
τ
+

1

4τ3/2
[
C1e

τ +O(C1e
τ )2
]
.

The integral over the first term gives −√
τ/2, which contributes to the correct

value of the scaling factor a0. The integral over the exponential can be estimated as

(5.10)

∫ τ C1e
τ

τ3/2
dτ ≈ −2C1e

τ

√
τ

∝ η2√
τ

for τ → ∞. But this, at constant η, is clearly of lower order than the nonuniversal
constants that contribute to (5.7). Thus in summary we obtain from (5.7)

(5.11) ν ln a(z, t) ≈ −τ + ln(1 + eBη2/4)−√
τ/2,



BUBBLE PINCH-OFF 1711

Fig. 5.1. The asymptotic behavior of a sequence of experimental profiles [23], 52, 27, and
7 μs away from pinch-off, plotted on a logarithmic scale. The thick line shows a slope of one for
comparison. The inset shows the slope of the profile, determined in the range 100.6 ≤ h/hmin ≤ 10.
The time scale used to nondimensionalize t was chosen, somewhat arbitrarily, as 500 μs.

and therefore

(5.12) a(z, t) ≡ a0A(η, τ) ≈ a0
[
1 + η2

]1+ 1
2
√

τ .

Here we have made use of the fact that Δ2 = 2a0/a
′′
0 , and thus B = 4/e.

In particular, this means that the profile h(z, t) behaves like a power law with
exponent μ ≈ 1 + 1/(2

√
τ ) for large values of η. The interesting and subtle feature

here is that μ is varying logarithmically in time. We first attempted to confirm this
prediction directly from experimental data; cf. Figure 5.1. It is seen clearly that μ is
indeed greater than unity, and that it is decreasing in time. However, both the limited
temporal and spatial resolution do not permit a fully quantitative comparison. We
therefore determined the exponent of the profile (5.12) from the simulation described
before, which follows h0 through six orders of magnitude. The result (cf. Figure
5.2) shows good agreement with the predicted exponent, but only for large values
of τ ; as usual, transients are very slow to decay. For typical values of τ as found
experimentally, deviations between simulations and asymptotics are quite large.

The spatial dependence of ȧ = aτ/t
′ ≡ a/(vt′) is easily found from (5.3):

(5.13) ȧ =
ae−τ

C1(z)eτ − 1
≈ ȧ0

(
1 + η2

) 1√
2τ .

Now, with a and ȧ in hand, (4.8) can be used to find the similarity form of ä, as
defined by (2.18):

(5.14) ä ≡ ä0φ(η, τ) = ä0
(
1 + η2

)−1+ 1
2
√

τ .

In the limit of large τ , this reduces to (3.1), as required, and as confirmed in Figure
3.1. Convergence in the tails of the peak, however, is slow, and the acceleration
actually becomes negative. This is because the spatial integral over the acceleration
must vanish, as we show now.
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Fig. 5.2. The asymptotic slope μ of the profile, determined from a doubly logarithmic plot. We
used a numerical simulation of (2.16), with initial conditions as in Figure 2.1. A linear regression
was performed in the range 10 ≤ h/hmin ≤ 100. For large τ , μ agrees well with the theoretical
prediction μ ≈ 1 + 1/(2

√
τ), allowing for a shift in time as usual.

6. Neck profile: Outer region. The above arguments, based on the local
equation (4.8), predict the spatial structure of the profile in the inner region. By
this we mean that the limit τ → ∞ is taken, keeping the similarity variable η fixed.
However, we will now show that this is not sufficient to get a global picture of the
universal behavior near pinch-off. Instead, one has to introduce an outer region of
the neck profile, where we describe the profile at a fixed size in the spatial variable
z. For this, it is necessary to go back to the original equation (2.16), and to invert
the integral kernel. Thus, writing (2.16) in similarity variables as in (2.17), (2.18), we
obtain, using the result of the previous section,

(6.1)

∫ ∞

−∞

φ(ζ, τ)dζ√
(η − ζ)2 + a(ηt′1/2)/t′

=

√
τ

(1 +Bη2)
1− 1√

τ

.

The right-hand side of (6.1) is valid for any finite η. But this means that ηt′1/2 goes
to zero in the limit τ → ∞, so can replace a(ηt′)/t′ ≈ a0/t

′ ≈ e−
√
τ and solve (6.1)

by Fourier transform.
Using (A.4), we find

(6.2) φ̂(k) =
ŝ(k)

√
τ

2K0(ke
√
τ/2)

,

where

(6.3) ŝ(k) =

∫ ∞

−∞

cos(kη)

(1 +Bη2)
1− 1√

τ

dη and φ̂(k) =

∫ ∞

−∞
φ(η) cos(kη)dη.
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Fig. 6.1. The scaling function φ(η) corresponding to ä, defined by (2.18), is shown on a
logarithmic scale. The profile was computed for t′ = 10−6. We used a numerical simulation of
(2.16), with initial conditions as in Figure 2.1. In the center, there is a Lorentzian peak, but φ
becomes negative for large arguments. In the inset, the decay of φ is compared to (6.9), which
is shown as the dot-dashed line. The argument 1 + η inside the logarithm was chosen simply for
convenience, to be able to show part of the central region as well as the tail.

The inverse Fourier transform then gives the real space profile

(6.4) φ(η) =

√
τ

4π

∫ ∞

−∞

ŝ(k) cos(kη)

K0(ke
√
τ/2)

dk.

In the limit τ → ∞, ŝ(k) becomes

(6.5) ŝ(k) =
π√
B
e
− k√

B ,

and even the general case can be done in terms of Bessel functions. Since we want
to compute φ(η) for large arguments, we are interested in the limit of small k in
which ŝ becomes a constant and K0(ke

√
τ/2) ≈ − ln(ke

√
τ/2) =

√
τ/2 − ln k. For

k � e−
√
τ/2, the constant can be neglected. Thus the first observation we can make

is that φ̂(0) = 0, so it follows from (6.3), putting k = 0, that

(6.6)

∫ ∞

−∞
φ(η, τ)dη = 0 and thus

∫ ∞

−∞
ä(z, t)dz = 0.

Clearly, our initial approximation (5.14), which predicts a positive acceleration, cannot
apply uniformly: for large arguments φ must be negative, to ensure a vanishing total
area under the graph of φ. This is confirmed in Figure 6.1, where φ is seen to be
positive in the center but negative for large arguments. To find the behavior in the
outer region, we consider the case ηe−

√
τ/2 � 1, for which (6.4) becomes

(6.7) φ(η) ≈ −
√
τ

4
√
B

∫ ∞

−∞

cos(kη)dk

ln k
.

With a change of variables, and integrating by parts, we find

(6.8)

∫ ∞

−∞

cos(kη)dk

ln k
=

1

η

∫ ∞

−∞

sin ydy

y(ln(y/η))2
≈ π

η(ln η)2
.
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In the last step we have neglected the slow y-dependence inside the logarithm, allowing
us to perform the integral. This means we finally have

(6.9) φ(η) ≈ − π
√
τ

4η
√
B(ln η)2

, ηe−
√
τ/2 � 1,

so φ is negative as expected, to be consistent with (6.6). The asymptotic behavior
(6.9) is compared to a numerical simulation in Figure 6.1, showing good agreement.

Thus to summarize, when the profile is considered at constant η, the result is
(5.14). This approximation holds for η � e

√
τ/2 and can be considered as the inner

part of the similarity profile. In the opposite limit of η � e
√
τ/2, one instead finds

the outer profile (6.9). According to (6.6), the area of both parts adds up to zero.

7. Discussion. We have analyzed the collapse of an axisymmetric cavity in
an inviscid fluid. It was found that the minimum neck radius, h0, has a universal
dynamics that is intimately coupled to the axial length scale, Δ. This dynamics
can be expressed in terms of an effective exponent that has a very slow logarithmic
evolution, according to (3.11). We were able to calculate the exponents to higher order
than in our previous paper [12]. For example, this permits distinguishing between the
time dependence of the two exponents α and δ.

However, the main results of this paper relate to the spatial structure of the
profile, which were previously unknown. As seen from (5.12), the “near” tail of the
profile is again characterized by an exponent which depends logarithmically on time.
However, (5.12) does not describe the profile in a finite region of space as t → t0.
This distinguishes the asymptotics of bubble pinch-off from other, superficially sim-
ilar pinch-off problems, like the break-off of a fluid drop in air [9]. Instead, another
asymptotic region needs to be investigated to find the “far” tail (6.9). Each asymp-
totic result has in this paper been checked quantitatively by comparison to numerical
simulation.

We also went into great detail to test our numerical simulations, as well as our
analytical results, directly against experiment. The agreement with numerical simu-
lation is very good; this remains true if terms of leading order in the slenderness have
been dropped. Our asymptotic results for scaling exponents agree with experiment
as well, but their time dependence can be detected only as far as their trend is con-
cerned, since one is restricted to a limited number of decades. Typical experimental
values for the exponent α are about 0.56 [4, 16, 18, 23, 2, 8], although the precise
value depends on initial conditions [2] and on the frame rate [23]. To interpret these
findings in terms of our theory requires an estimate of τ ≡ − ln t′, and we have at
best an educated guess for the time scale in which to express t′. However, at higher
frame rates, but otherwise under the same experimental conditions, the exponent α
decreases. The exponent of the width Δ, on the other hand, remains very close to
1/2 [23]. For the exponent μ, characterizing the tail of the self-similar profile, we were
able to detect a decreasing trend (cf. Figure 5.2), in agreement with theory.

Perhaps the best dimensionless parameter with which to parameterize the pinch
process is the aspect ratio (2.8), for which a′′0 ∼ ε2. To leading order we found that√
τ  − lna′′0 , so that we can express the exponent as

(7.1) α =
1

2
+

1

−4 ln(a′′0)
+O

(
1

ln2 a′′0

)
,

as inferred readily from (3.6). This interpretation is consistent with experiments by
[2], where cavities of different aspect ratios were created by forcing a disk through a
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water surface: higher impact velocities provide increasingly slender cavities. Indeed,
the exponent was found to decrease logarithmically with the impact velocity, to values
that approach 1/2. We thus believe that such experiments explore different parts of
a universal collapse that is governed by the square of the aspect ratio a′′0 .

Appendix. Linear stability. It is instructive to perform a linear stability
analysis around a cylindrical cavity, based on the equations of motion derived above.
To maintain a stationary cavity of radius h0, one needs a cavity pressure of p0 = γ/h0

in (2.15). We set h = h0 + εh, and thus a = a0 + 2h0εh, where h0 is the unperturbed
cavity radius. Since C = O(εh), we have to linear order

(A.1)

∫ ∞

−∞

Ċdξ√
(z − ξ)2 + a0

= −γ

ρ

(
εh
h0

+ ε′′h

)
,

where we have used

(A.2) κ =
1

h(1 + h′2)1/2
− h′′

(1 + h′2)3/2

for the mean curvature. The corresponding linearized version of (2.3) is

(A.3) − ε̇h
h0

=

∫ ∞

−∞

Cdξ√
(z − ξ)2 + a0

3 .

Expanding the perturbation into plain waves, we set εh = eωt cos kz. The integrals
can now be done using using the Fourier transforms
(A.4)∫ ∞

−∞

cos kξdξ√
(z − ξ)2 + a0

= 2K0(kh0) cos kz,

∫ ∞

−∞

cos kξdξ√
(z − ξ)2 + a0

3 =
2k

h0
K1(kh0) cos kz,

whereK0,K1 are modified Bessel functions of the second kind. Thus, combining (A.1)
and (A.3), we find

(A.5) ω2 = ω2
0(1− (kh0)

2)
kh0K1(kh0)

K0(kh0)
,

with the characteristic frequency ω0 =
√
γ/(ρh3

0). Reassuringly, this result is identical
to the exact result as found in, e.g., [5]. If, on the other hand, the linearization is
performed using the slender-body equation (2.15), the result is

(A.6) ω2 = ω2
0(1 − (kh0)

2)
1

K0(kh0)
.

Both (A.5) and (A.6) show that the instability is cut off at short wavelengths, owing
to surface tension. Namely, for kh0 > 1 the growth rate becomes complex.
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