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1 Introduction
While interest in the singularity formation of cosmic strings goes back more than three decades [10] and the
fact that any closed curve sweeping out a zero-mean-curvature surface in R2,1 necessarily becomes singular
in finite time was noted already 20 years ago ([5], including examples of singularity-propagations preventing
collaps to a point), a fullmathematical treatment, including the abovementionedphenomena, appeared only
recently [8].

Here we continue our investigation of M-brane singularity formation ([4], [2]) and for the first time attack
the case of (not necessarily axially symmetric) membrane motions, with methods that in principle can be
used for even higher dimensional extended objects.

Because of an intimate relation with the eikonal equation, we first describe the singularity formation for
2-dimensional surfaces moving normally with unit speed. Then we discuss a corresponding Ansatz for the
second order Born-Infeld equation (which describes the time-evolution of the graph of a relativistic mem-
brane) and provide numerical data, resp. pictures, showing the singularity formation in some examples.

2 Relativistic M-branes
Let us consider the motion of an M-dimensional extended object in Minkowski spaceRM+1,1 sweeping out an
M + 1 dimensional manifold parametrized by u = (u0, u), cp [6]. Stationary points of the world volume

S =
∫︁
duM+1√G (1)

correspond to solutions of
1√
G
∂α(

√
GGαβ∂βxµ) = 0, µ = 0, ...,M + 1, (2)

G and Gαβ, α, β = 0, ...,M, being the (absolute value of) the determinant respectively the inverse of the
induced metric Gαβ := ∂xµ

∂uα
∂xν
∂uβ ηµν, ηµν = diag(1, −1, ..., −1). Choosing u0 = x0 =: t and ẋ∂ax = 0, a =

1, ...,M, so that x in (xµ) = (t, x(t, u1, ..., uM)) describes a time-dependent surface moving orthogonal to
itself in RM+1, the µ = 0 component of (2) takes the form of a local conservation law

∂t
√︂

g
1 − ẋ2 = 0 (3)
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so that the first order system

ẋ2 + g
ρ2 = 1

ẋ∂ax = 0 (4)

is implied (ρ(u) :=
√︁

g
1−ẋ2 , and g being the determinant of the metric grs := ∂rx · ∂sx, r, s = 1, ...,M, induced

on the hypersurface), -and for co-dimension one the µ = i = 1, ...,M + 1 part of (2) follows from (4) as long
as the velocity ẋ and the tangent vectors ∂ax = ∂

∂ua x are linearly independent (cp. [5]).
In this note we explore (4), both analytically and numerically, for various cases, focusing on singularity

formation. The key observation in our analysis is the fact (cp.(3), which gives a 1-1 correspondence between
|ẋ| → 1 and √g → 0, i.e. the hypersurface developing a singularity) that solutions of (4) around a singular
point are close to those of

ẋ2 = 1 (5)
ẋ∂ax = 0, a = 1, ...,M (6)

which (assuming that the points of the hypersurface either all move inwards or all move outwards) is equiv-
alent to the eikonal equation

ẋ = n. (7)

In chapter 2 we consider the eikonal equation in detail, providing a description of its singular solutions,
in chapter 3 derive a second order shape-equation for membranes, in chapter 4 discuss axially symmetric
membranes and in chapter 5 we present some numerical solutions to the evolution equations (4) for M=2.

3 The eikonal equation
For hypersurfaces locally described as graphs, an equivalent formulation of (7) is

L2 = 1 − ż2 +∇z2 = 0. (8)

This can be seen as follows. Let x = (x||, z), so that z = h(x||, t) satisfies (8)

∂h
∂t =

√︁
1 +∇||h2. (9)

Define C(x, t) = h(x||, t) − z, so that C(x(u, t), t) = 0. It follows that

0 = dC(x(u, t), t)dt = ∂C∂t + ẋ(u, t) ·∇C = ∂h∂t + ẋ · (∇||h, −1).

But
n =

(−∇||h, 1)√︀
1 +∇||h2

,

and so
ẋ · n = 1. (10)

Note that (in arbitrary dimensions) solutions of (8) automatically solve the membrane equation for a surface
written as a graph:

(1 − zαzα)�z + zβzαzαβ = 0. (11)

While this does not immediately imply that all singularities of (11) are described by the eikonal equation,
it can be shown for co-dimension 1 surfaces using the following argument: consider the parametric form of a
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Singularities of relativistic membranes | 19

hypersurface, x(u, t), for example in three dimensions: x(φ1, φ2, t). Then the dynamical equation (4) can be
written as

ẋ = ±
√︀
1 − g/ρ2n, (12)

where n is the normal to the surface. The value of ρ is determined by the initial condition. Once ρ is known,
(12) can be solved as a first-order equation, and one expects that its solutions (as functions of the parameters
u, resp. (φ1, φ2)) remain smooth for all times (confirmed by the numerical results). This means that the only
singularities come from the fact that the tangent vectors become linearly dependent, resp.√g = |∂1x × ∂2x|
going to 0. This means that near the singular time v ≡

√︀
1 − g/ρ2 ≈ 1, i.e. solutions are close to those of the

eikonal equation.

3.1 Solutions of the eikonal equation

Solutions of the eikonal equation are wavefronts propagating in space with unit speed. According to Huy-
gens’ principle, (8) is equivalent to saying that from each point of a wavefront emanates a ray which moves
at constant speed 1 in the normal direction. To construct the wavefront at future times t, one simply has to
connect the points to which each individual ray has progressed. Writing a surface in M + 1 dimensions as
x(u, t), where u is an M-dimensional vector parameterizing the surface, and thus parameterizing rays, Huy-
gens solution says

x(u, t) = x(u, 0) + n(u, 0)t, (13)

where n(u, 0) is the normal to the initial wave front. To show that (13) satsifies (7), it remains to note that
n(u, t) = n(u, 0) for all t: differentiating (13) with respect to any component u of u, we obtain a tangent vector
to the surface

∂ax(u, t) = ∂ax(u, 0) + ∂an(u, 0)t.

Multiplying by n(u, 0), we have

n(u, 0) · ∂ax(u, t) = n(u, 0) · ∂an(u, 0)t = 0.

Let z(u, 0) = f (u) be the graph representation of the initial wave front (in any dimension), so x(u, 0) =
(u, f (u)). Then

n(u, 0) = (−∇f , 1)√︀
1 +∇f 2

,

and (13) yields
x(u, t) = x(u, 0) + (−∇f , 1)√︀

1 +∇f 2
t.

In other words, the solution is

x|| = u − ∇f√︀
1 +∇f 2

t, (14)

z = f (u) + t√︀
1 +∇f 2

. (15)

For a smooth initial condition x(u, 0), each component of (13) is a smooth function for all t. Singularities
in the shape of the wave front only arise if the mapping u ↦→ x no longer has full rank, which is precisely the
situation described by singularity theory [1]

3.2 Solutions around a singularity

Singularities of wave fronts of (8) are described by catastophe theory in [1, 7], where they are classified ac-
cording to their codimension, i.e. the number of parameters one needs to adjust in order to lie on a singularity.
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The simplest catastrophe is the fold, with codimension one [7], which means that the singularities of a wave
front (the caustics) generically lie on a two-dimensional surface in three-dimensional space. Using time as an
additional parameter, the point where a singularity occurs first is described by the cusp catastrophe, which
has codimension two. Near this singularity, the caustic surface has the shape of a cusp (see below), hence the
name. Catastrophes of higher order are also possible, but they would require to tune the initial condition to
a particular form, and are thus non-generic.

To find the spatial structure of the generic singularity, we start from the solution (14),(15), and expand
about the singularity. Taking u = (φ, ψ), the generic form of the initial wave is

f = φ2 + bψ2 + a3ψ3 + b3φψ2 + a4ψ4 + b4φψ3 + c4φ2ψ2 + d4φ3ψ + e4φ4. (16)

Terms linear in φ and ψ can be eliminated by a shift of the coordinate system, and the mixed term φψ by a
rotation. Higher order terms are neglected, because they only lead to subleading contributions to the singular
wavefront. We have chosen the length scale to normalize the curvature of the wave front in the x-direction to
2, which means a singularity first occurs at t0 = 1/2. For this to be consistent, we must have b < 1. There is
no term φ3 or φ2ψ, because each of them would lead to a higher curvature for φ ≠ 0 or ψ = ̸ 0 respectively,
and thus to a singularity for time t < t0.

We insert (16) into (14),(15), and expand the solution in t′ = t0 − t, with φ ∼ ψ ∼ t′1/2. We expand x and
y to order t′3/2 and z to order t′2, where y has the structure

y = (1 − b)ψ + (...)ψ2 + ... + φ2ψ + ....

Solving this equationperturbatively forψ in terms of y andφ, in order to eliminateψ, one gets (usingMAPLE):

x = By2 + 2t′φ + 2A1φ3 + 2A2φy2 +
3A3
2 φ2y + A4y3, (17)

z = t0 − t′ + Ay2 + Cy3 + 2t′φ2 + 3A1φ4 + 2A2φ2y2 + 2A3φ3y + A5y4 − 2A2t′y2, (18)

where

B = − b
2(1 − b)2 , A1 = 1 − e4, A2 = −

b23
2(1 − b)3 + b2

(1 − b)2 −
c4

2(1 − b)2 ,

A3 = −
d4

1 − b , A4 = −
b4

2(1 − b)3 −
3a3b3

2(1 − b)4 , (19)

A5 = −
4a4 − 4b4 − b23

4(1 − b)4 + 9a23
4(1 − b)5 , A = b

1 − b , C = a3
(1 − b)3 .

Cast in similarity form:

X = x − By
2

|t′|3/2
= ±2ζ + 2A1ζ 3 + 2A2ζY2 + 3A3

2 ζ 2Y + A4Y3, (20)

h = z − t0 + t
′ − Ay2 − Cy3
|t′|2 = ±2ζ 2 + 3A1ζ 4 + 2A2ζ 2Y2 + 2A3ζ 3Y + A5Y4 ∓ 2A2Y2, (21)

where ζ = φ/|t′|1/2, and Y = y/|t′|1/2,via the ± signs making sure that the description works both for t′ > 0
(before the singularity) and t′ < 0 (after the singularity).

We now calculate the places where for t′ < 0 singularities appear on the wave front, which in optics are
known as caustics [7] (places of high light intensity). They are determined by g = 0 or (equivalently, since
g = D2

1 + D2
2 + D2

3) the condition that the rank of

D =
(︃
xφ yφ zφ
xψ yψ zψ

)︃
(22)

is not maximal, where by D1, D2, D3 we denote the minors of D. Using the fact that ℓ(x(φ, ψ)) = t, where ℓ is
the Euclidean distance between x(u, t) and x(u, 0), and the ray conditions [7] ℓφ = ℓψ = 0, one can show that

D1 =

⃒⃒⃒⃒
⃒xφ yφ
xψ yψ

⃒⃒⃒⃒
⃒ = 0 (23)
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Singularities of relativistic membranes | 21

Figure 1: A typical image of the places where the wave front has a singularity, projected onto the x − y plane, as described by
(25) and (27). The width of this “lip” shape scales like |t′|3/2, the height like |t′|1/2.

is a necessary and sufficient (!) condition for a singularity to occur. Expanding D1 to second order, this yields

−t′ = A2y2 +
3A3
2 φy + 3A1φ2, (24)

the similarity form of which is
1 = A2Y2 + 3A3

2 ζy + 3A1ζ 2. (25)

Inserting (24) into (17) yields the caustic surface

x − By2 = −4A1φ3 − 3A3
2 φ2y + A4y3, z − t0 = 3A1φ2 + 3A3

2 φy + (A + A2)y2, (26)

with similarity form

X = −4A1ζ 3 −
3A3
2 ζ 2Y + A4Y3, Z = z − t0|t′| = 3A1ζ 2 +

3A3
2 ζY + (A + A2)Y2. (27)

Notice that for A2 = A3 = A4 = A = 0 this is a cusp, but even the deformed caustic surface with generic values
of A2,A3, A4, and A is equivalent to the y-independent cusp up to smooth transformations [7]. The shape of
cuts through the wavefront itself is that of a swallowtail [4], as will be illustrated by our simulations below.

To get an idea of how the singularities on a wave front lie in space (which will be lines in three-
dimensional space), one has to consider (24) at a fixed time t′ < 0. Projected onto the plane Z = 0, the
similarity description of this is described by (25) and the first equation of (27). A typical curve is plotted in
Fig. 1, which has a “lip” shape, known from optics [7] and wave breaking [9].

3.3 Similarity equation

The singular solution (20), (21)can also be obtained considering similarity solutions of the eikonal equation
(8). This approach has the advantage of being generalizable to problems for which exact solutions are not
available [3], such as the membrane equation (11). We make the ansatz suggested by (20) and (21),

z = ∓|t′|g1(Y) + |t′|3/2g2(Y) + |t′|2h(X, Y), X = x − By
2

|t′|3/2
. (28)
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Then
ż = g1 −

Y
2 g

′
1 ± |t′|1/2

(︂
−3g22 + Y2 g

′
2

)︂
± |t′|

(︂
−2h + 3X

2 hX +
Y
2 hY

)︂
,

and
zx = |t′|1/2hX , zy = ∓|t′|1/2g′1 + |t′|

(︀
g′2 − 2BYhX

)︀
+ |t′|3/2hY .

Inserting into (8) gives

1 −
(︂
g1 −

Y
2 g

′
1

)︂2
= 0

to leading order, with solution g1 = 1 + AY2. At the next order t′1/2, we have

2
(︂
3g2
2 − Y2 g

′
2

)︂
= 0,

and so g2 = CY3. Finally, at order t′ this gives the similarity equation

4h − 3XhX − YhY ± h2X ± 4A2Y2 = 0. (29)

In order to see that (20)/(21) solves (29) one notes that (29) linearizes when assuming

X̂(ζ , Y) = X and

ĥ(ζ , Y) = h(X̂(ζ , Y), Y) (30)

to satisfy
ĥζ = ϵζ n X̂ζ (31)

(for the case of (20)/(21) n = 1 and ϵ = 2). Using

hX =
ĥζ
X̂ζ

, hY = ĥY −
ĥζ
X̂ζ
X̂Y , (32)

and (31), one gets an inhomogeneous linear equation,

4ĥ − 3ϵζ n X̂ − YĥY + ϵζ nYX̂Y = ∓ϵ2ζ 2n ∓ 4A2Y2. (33)

The Ansatz

ĥ = ϵ(a − n)ζ aYb + ϵ𝛾nζ 2n ∓ 2A2Y2

X̂ = aζ a−nYb + 2n𝛾ζ n (34)

gives
𝛾 = ± ϵ2n , a + bn = 4n, (35)

and due to the linearity, arbitrary linear combinations of the homogeneous (a, b) solutions can be taken
(explaining the linear abundance of free constants in (20)/(21)).

Note that the quadratic terms Y2 in (20),(21) can be understood as a shift in t′. Thus (putting all Ai≠2 equal
to zero) one can consider the Ansatz

z = ∓|t′|
(︁
1 + AY2

)︁
+
(︁
|t′| + A2y2

)︁2
h̃
(︃

x − By2

(|t′| + A2y2)3/2

)︃
, (36)

which means that

h(X, Y) =
(︁
1 + A2Y2

)︁2
h̃
(︃

X
(1 + A2Y2)3/2

)︃
∓ 2A2Y2 (37)

in (28).
Indeed, it is easy to confirm that if h̃ satisfies the one-dimensional similarity equation

4h̃ − 3ξ h̃ξ ± h̃2ξ = 0, (38)

then (37) satisfies (29), which possess swallowtail-type self similar solutions of the form [4]

ξ = ±ζ + cζ 3/3, h(ξ ) = ±ζ 2/2 + cζ 4/4 (39)

whose occurrence is manifested in our numerical results (see chapter 5).
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4 Shape-equation for membranes near a singularity
While above we have seen that the singularities of relativistic M-branes are described by those of the eikonal
equation, it is valuable to insert the Ansatz (28) also into the (full, second order) Born-Infeld equation (11).
To do so (for M = 2), it turns out to be much simpler (and more insightful) to perform the transformation

t, x, y → T := |t0 − t| = |t′|, X(t, x, y) = x − By
2

|t′| 32
, Y(t, x, y) = y√︀

|t′|
z(t, x, y) = Z(T(t), X(t, x, y), Y(t, y)), (40)

implying
ż = ∓Ż ± 1

2T (3XZX + YZY ), zx =
1
T 3

2
ZX , zy =

ZY√
T
− 2BY

T ZX , (41)

in the action-functional (cp. (1)/(11))
∫︀ √︁

1 − ż2 + z2x + z2ydtdxdy, yielding

S =
∫︁
dTdXdYT2(1 − Ż2 − 1

4T2 (3XZX + YZY )
2 + ŻT (3XZX + YZY ) +

Z2X
T3

+Z
2
Y
T + 4B2Y2

T2 Z2X −
4BYZXZY

T 3
2

)
1
2 , (42)

from which the equations

∂T
{︂
T2
√...

[︂
−Ż + 1

2T (3XZX + YZY )
]︂}︂

+∂X
{︂
T2
√...

[︂
− 1
4T2 (3XZX + YZY )3X +

3
2T ŻX +

ZX
T3 + 4B2

T2 Y
2ZX −

2BYZY
T 3

2

]︂}︂
+∂Y

{︂
T2
√...

[︂
− 1
4T2 (3XZX + YZY )Y + 1

2T ŻY + ZYT − 2BYZX
T 3

2

]︂}︂
= 0 (43)

follow.
Now using the Ansatz (cp. (28))

Z = ∓T(1 + AY2) + CY3T
3
2 + T2h(X, Y), (44)

i.e. inserting

Ż = ∓T(1 + AY2) + 3
2CY

3√T + 2Th(X, Y)

ZX = T2hX(X, Y), ZY = ∓2ATY + 3CY2T
3
2 + T2hY (X, Y) (45)

into (43), it is , in this form (all numerators in (43) being linear w.r.t. (45) and the square-root in leading order
being proportional to

√
T) extremely simple to identify the shape equation; one finds

± 32√
±
+ ∂X

(︂
hX − 3

2X√
±

)︂
∓ 1
2∂Y

(︂
Y√
±

)︂
= 0 (46)

where √
± =
√︁
±(4h − 3XhX − YhY ) + (h2X + 4A2Y2). (47)

Writing (46) in the form
√
±2(hXX ∓ 1

2) = ∓1
4Y∂Y (

√
±2) + 1

2(hX ∓ 3
2X)∂X(

√
±)2 (48)

one could claim it to be obvious that (29) provides asymptotic solutions of (11), while a more convincing
argument is perhaps to note that (29) "in leading T-order" minimizes (42), hence must be is a stationary point
of (42).
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5 Axially symmetric membranes

In the case of a closed string in the plane (4) (with x =
(︃
r
z

)︃
) simplifies to

r
′
ṙ + z

′
ż = 0 (49)

ṙ2 + ż2 + (z
′2 + r

′2)
ρ2 = 1 (50)

where r = r(t, φ), z = z(t, φ), t > 0, φ ∈ (0, 2π), ṙ = ∂r
∂t , r

′
= ∂r

∂φ . By a suitable reparametrization one gets

r
′
ṙ + z

′
ż = 0 (51)

ṙ2 + ż2 + (z
′2 + r

′2)
λ2 = 1 (52)

where λ is a constant. The general solution is given by

x′ = λ cos(F(φ, t))
(︃
− sin(G(φ, t))
cos(G(φ, t)

)︃
(53)

ẋ = − sin(F(φ, t))
(︃
cos(G(φ, t))
sin(G(φ, t)

)︃
(54)

with the integrability condition ∂tx′ = ∂φẋ solved by G(φ, t) = f (φ + t
λ ) + g(φ −

t
λ ) and F(φ, t) = f (φ +

t
λ )−

g(φ − t
λ ).

Closedness of the string implies that when one starts the time evolution with a regular initial data, i.e.
F(t = 0, φ) ∈ (− π2 ,

π
2 ) then F always attains the value

π
2 in a finite time. This shows that the curvature of the

string
k(φ, t) = G′

ρ cos(F) (55)

diverges there, hence singularities (as first observed in [5]) are unavoidable. Since the M = 2 case with rota-
tional symmetry is very similar to the string case (a rotationally symmetric shape is described by a curve in
the plane) one could try to perform a similar analysis for axially symmetric membranes , i.e. for x of the form

x(t, φ, ψ) =

⎛⎜⎝r(t, φ) cosψr(t, φ) sinψ
z(t, φ)

⎞⎟⎠ (56)

In this case (4) becomes

r
′
ṙ + z

′
ż = 0 (57)

ṙ2 + ż2 + r
2(z

′2 + r
′2)

ρ2 = 1 (58)

whose general solution can be again parametrized by two functions F and G

r
ρx

′ = cos(F(φ, t))
(︃
− sin(G(φ, t))
cos(G(φ, t)

)︃
(59)

ẋ = − sin(F(φ, t))
(︃
cos(G(φ, t))
sin(G(φ, t)

)︃
(60)
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However in this case the integrability conditions remain unsolved. One can still express the curvature of the
curve (giving rise to the solid of revolution) in a concise way

k(φ, t) = r
ρ

G′

cos F . (61)

6 Numerical results
We first present, for various initial conditions, numerical solutions (obtained with Mathematica) to the evo-
lution equations (58) rewritten in the more convenient form

ṙ = −z
′

√︃
1

z′2 + r′2 −
r2

ρ(φ)2 (62)

ż = r
′

√︃
1

z′2 + r′2 −
r2

ρ(φ)2 . (63)

We then also attack the system (4) without assuming radial symmetry. All numerical data confirm that the
embedding functions are smooth.
Ellipsoid

We consider an initial shape of the form of an ellipse

r(0, φ) = a sin(φ) z(0, φ) = − cos(φ)

with a homogeneous initial density distribution, i.e. ẋ2 = v2 = const

ρ = a sin(φ)
√︀
a2 cos(φ)2 + sin(φ)2
√
1 − v2

Let us first consider the case a > 1. The time evolution is presented in Fig 2-3. We can see that the object
initially remains smooth and then develops a swallowtail (popping up first at the equator, see also the cross-
section curves which grows up towards the poles and finally vanishes after some time. On the other hand,
when one starts with a < 0 (Fig. 4) then again a swallowtail is observed, but in this case it develops first at
the poles and grows up towards the equator where it disappears and the shape becomes smooth again
As one can see in Fig 3 we obtained a non-generic axial singularity of the r → 0 type. It can be described by
the ansatz

r(φ, t) = A(t) + Bφ2 (64)
z(φ, t) = C(t)φ (65)

Eq.(49) gives
2ȦB + ĊC = 0 (66)

which integrates to (α is a constant)
C2 = α − 4AB (67)

Eq. (50) at the lowest order gives
Ȧ2 = 1 (68)

Thus A = t− t0 and C = ±
√︀
α − 4B(t − t0). In Fig. (5) we present a comparison of this ansatz (with some choice

of the constants α and B) with the numerics for an ellipsoid.
Torus

As the initial shape we take a torus

r(0, φ) = R + cos(φ) z(0, φ) = sin(φ), φ ∈ (0, 2π), R > 1
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Figure 2: A typical time evolution of an ellipsoid with a > 1. The swallowtail first appears at the equa-
tor and then grows towards the poles. The pictures on the left show full 3-dimensional pictures while
those on the right are cross sections along the rotational axis
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Figure 3: A typical time evolution of an ellipsoid with a > 1 (continuation). The swallowtail disappears
at the poles and the shape becomes regular again. The pictures on the left show full 3-dimensional
pictures while those on the right are cross sections along the rotational axis
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Figure 4: A typical time evolution of an ellipsoid with a < 1 (cross sections along the rotational axis).
This time the swallowtail first appears at the poles.
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Figure 5: A comparison of the numerics and the ansatz for non-generic singularities of the r → 0 type
around φ = 0 for an ellipse.
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Figure 6: Time evolution (cross section along the rotational axis) of a torus. As for the ellipse, two
swallowtails are being developed (however at different times). Note that the shape is drastically
shrinking, i.e. the different scales in the above pictures.

with a homogeneous velocity distribution

ρ = R + a cos(φ)√
1 − v2

The time evolution presented in Fig. 7 shows that the initial shape shrinks almost to a loop and then
extends back to the original shape. A closer look onto the cross-section curves around t=100 reveals that
again a swallowtail has been developed

Elliptorus

The initial shape is a deformed torus with an ellipse as the cross-section

r(0, φ) = R + a cos(φ) z(0, φ) = sin(φ), φ ∈ (0, 2π), R > a

density
ρ = R + cos(φ)√

1 − v2

√︁
a2 sin(φ)2 + cos(φ)2

We take a > 1 first. The time evolution is very similar to the previous case. However here we can see that the
swallowtails appear simultaneously (according to the precision of the numerical solution) on both sides of
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Figure 7: Time evolution (cross section along the rotational axis) of an elliptorus. This time the swal-
lowtails are observed simultaneously.

the curve (the two points of highest initial curvature i.e. r
′2 + z

′2 minimal) while for the torus the swallowtail
closer to the rotation axis was developed first.

General 3D case
We consider the system (4) in three space dimensions (without axial symmetry) written in a dynamical

form (cp. (12))

ẋ = ± ∂1x × ∂2x|∂1x × ∂2x|

√︂
1 − g

ρ2 (69)

with a uniform initial velocity distribution i.e. ẋ2 = v2 = const. and an ellipsoid as the initial condition,

x(0) = a cosφ cos θ
y(0) = b sinφ cos θ (70)

z(0) = c sin θ,

with a = 1, b = 1.2, c = 1.4, where φ ∈ [0, 2π], ψ ∈ [− π2 ,
π
2 ] and the ± sign is chosen in such a way that

the shape initially shrinks. Here we also observe swallowtails (in planar cross-sections) formed first at the
points of highest initial curvature i.e. at the poles (see Fig. 8). Note that the characteristic shape of a lip is also
observed (Fig. 9).
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Figure 8: Time evolution of a non axially-symmetric ellipsoid with the axes of length a = 1, b = 1.2, c = 1.4
and a homogeneous initial velocity distribution. On the left full 3 dimensional pictures, in the middle the cross
section by the z = 0.1 plane and on the right the cross section by the y = 0.1 plane. The singularity first appears
at the poles. Note that at t = 0.82 the first cross section is still regular while the other one has already formed a
swallowtail.
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Figure 9: The places where the surface has a singularity projected onto the x − y plane t′ = 0.06, 0.1
and 0.12 after the singularity had formed. One can check that the width of the shape scales approxi-
mately like |t′|

3
2 and the hight like |t′|

1
2 . Here due to the reflection symmetry the lip is also symmetric

(compare with Fig. 1).
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