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We consider the stability of flux-driven flow through a long planar rigid channel, where
a segment of one wall is replaced by a pre-tensioned hyperelastic (neo-Hookean) solid
of finite thickness and subject to a uniform external pressure. We construct the steady
configuration of the nonlinear system using Newton’s method with spectral collocation
and high-order finite differences. In agreement with previous studies, which use an
asymptotically thin wall, we show that the thick-walled system always has at least
one stable steady configuration, while for large Reynolds numbers the system exhibits
three co-existing steady states for a range of external pressures. Two of these steady
configurations are stable to non-oscillatory perturbations, one where the flexible wall
is inflated (the upper branch) and one where the flexible wall is collapsed (the lower
branch), connected by an unstable intermediate branch. We test the stability of these steady
configurations to oscillatory perturbations using both a global eigensolver (constructed
based on an analytical domain mapping technique) and also fully nonlinear simulations.
We find that both the lower and upper branches of steady solutions can become unstable to
self-excited oscillations, where the oscillating wall profile has two extrema. In the absence
of wall inertia, increasing wall thickness partially stabilises the onset of oscillations, but
the effect remains weak until the wall thickness becomes comparable to the width of
the undeformed channel. However, with finite wall inertia and a relatively thick wall,
higher-frequency modes of oscillation dominate the primary global instability for large
Reynolds numbers.
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1. Introduction

Human physiology includes a wide number of examples of fluid flow through
flexible-walled conduits including blood flow through the circulation (from rapid flow
in the heart and large arteries to slow viscous flows through the capillaries), air flow
through the lungs and upper airways, urine flows in the excretory system and peristaltic
flows through the colon. In some circumstances these flows can exhibit instability, where
the flow can interact with the flexible wall in a non-trivial way. Of particular interest
in this study is the onset of self-excited oscillations, where the flow and the wall can
spontaneously transition to an oscillatory limit cycle; in some cases this oscillation can
even become chaotic. These oscillations manifest in physiological problems such as blood
pressure measurement in the form of audible Korotkoff noises (Bertram, Raymond &
Butcher 1989), and wheezing in the lung airways (Gavriely et al. 1989).

Self-excited oscillations in flexible-walled vessels can be studied experimentally using a
Starling resistor, a deceptively simple device featuring liquid flow driven through a section
of externally pressurised flexible tubing mounted between two rigid pipes. Originally used
as a flow resistor in cardiac experiments (Knowlton & Starling 1912), it has since become a
canonical experiment for investigating fluid–structure interaction in its own right. In these
experiments flow is driven using either a prescribed pressure or a prescribed flow rate, and
the choice of set-up heavily influences the structure of the resulting oscillations. Results
from the experiments are well summarised elsewhere (e.g. Bertram 2003; Grotberg &
Jensen 2004; Heil & Hazel 2011), but we note that these self-excited oscillations occur
in distinct frequency bands (Bertram, Raymond & Pedley 1990), and exhibit complicated
nonlinear limit cycles which can be characterised using the methods of dynamical systems
(Bertram, Raymond & Pedley 1991). Note that these experiments are typically conducted
with relatively thick-walled tubes. For example, Bertram et al. (1990, 1991) used tubes of
wall thickness to baseline radius ratio of 0.3, while Bertram & Castles (1999) used tubes
with a thickness to radius ratio of 0.37.

There have been a number of theoretical studies of the Starling resistor set-up in
an attempt to explain the underlying mechanisms leading to these different families of
oscillation. Formulation of the full three-dimensional fluid structure interaction problem in
a collapsible tube involves coupling unsteady Newtonian flow to a fully deformable elastic
tube. While most theoretical models treat the tube wall as a thin shell, slightly reducing
the complexity of the system, these models still require vast computational resources to
resolve the unsteady oscillatory flow (Heil & Boyle 2010). Some analytical progress can
be made in the limit of large membrane tension (where oscillations are high frequency,
Whittaker et al. 2010), but this formulation is restricted to a state where the tube wall is
almost uniform that has not yet been realised experimentally.

The flexible tubing used in Starling resistor experiments is typically much thicker than
is appropriate to model using thin shell theory. To date, the only theoretical studies
which incorporate a thick-walled tube have been restricted to steady flow configurations
(Marzo, Luo & Bertram 2005; Zhang, Luo & Cai 2018). In this paper we seek to address
the stability of flow in a Starling resistor analogue with a thick hyperelastic wall, and
investigate the role of wall thickness in promoting or inhibiting instability.

Given the computational difficulty and expense of full three-dimensional unsteady
models, theoretical study has often focused on empirical lumped parameter or
cross-sectionally averaged models for flow in collapsible tubes (e.g. Shapiro 1977;
Bertram & Pedley 1982; Jensen 1990; Armitstead, Bertram & Jensen 1996), which have
replicated many of the features noted in Starling resistor experiments, such as non-uniform
steady profiles and spontaneous transition to self-excited oscillations in distinct
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Flexible channel flow with a hyperelastic wall

oscillation frequencies. However, the flow field in these models is still approximate and
misses many of the subtleties of flow separation and energy dissipation.

To make progress in understanding the mechanisms of instability driving self-excited
oscillations, a compromise system is needed which is less complicated than fully
three-dimensional flow, but reduces the number of empirical assumptions needed for
the lumped models. Pedley (1992) proposed a two-dimensional analogue of the Starling
resistor, consisting of a planar rigid channel where a section of one wall has been
replaced by a flexible sheet. This set-up has since become the subject of a wide variety
of computational (e.g. Luo & Pedley 1995, 1996, 1998, 2000; Heil 2004) and theoretical
studies (e.g. Jensen & Heil 2003; Guneratne & Pedley 2006; Stewart et al. 2010;
Pihler-Puzović & Pedley 2013). Despite reduced computational cost compared with the
three-dimensional tube system, a full exploration of the parameter space for this collapsible
channel analogue has not yet been attempted, although progress toward quantifying the
mechanisms of instability has been made in various regions of the parameter space.
For example, in the case of prescribed upstream flux (the subject of this study), Xu,
Billingham & Jensen (2014) quantified the mechanism driving ‘sawtooth’ oscillations in
the asymptotic limit of a long downstream rigid section, where the nonlinear oscillation
is driven by the resonance of two distinct modes of perturbation (mode-1 and mode-2) of
similar frequency and the same wavelength, coupled by sloshing flow in the downstream
rigid section. Furthermore, Huang (2001) simplified the flux-driven collapsible channel
system by imposing an external pressure gradient on the flexible wall, which facilitated
decomposition of the oscillatory flow into a sum of sinusoidal modes. This analysis
reveals an alternative mechanism of oscillatory instability, driven by an imbalance between
(unstable) downstream propagating waves (which transfer energy from the flow to the wall)
and (stable) upstream propagating waves (which transfer energy back from the wall to the
fluid).

Further insights into the mechanisms of instability in these collapsible channel flows
have been obtained using approximate one-dimensional models of the asymmetric channel
system (derived using a flow-profile assumption, Stewart, Waters & Jensen 2009; Stewart
et al. 2010; Xu, Billingham & Jensen 2013; Xu et al. 2014; Xu & Jensen 2015;
Stewart 2017). In particular, a detailed exploration of the parameter space for flux-driven
oscillations with constant external pressure was presented by Stewart (2017), where he
found that when the fluid is inviscid, steady states only exist above a critical value of
the membrane tension (for all other parameters held fixed), with a stable branch and an
unstable branch (where the unstable branch is more collapsed than the stable branch).
This critical point appears to be an organising centre of the dynamical system, in that
many of the unsteady features of the system originate close to this point (such as the
neutral curves for the two different families of self-excited oscillations). The importance
of the critical point for inviscid steady states has previously been elucidated by Xu et al.
(2013), who used an external pressure gradient. Stewart (2017) also described another
branch of steady solutions maintained by viscous effects, which becomes increasingly
collapsed as the wall tension is reduced. As the Reynolds number increases this viscous
branch of steady solutions merges with one of the (essentially) inviscid branches. When
the viscous branch merges smoothly with the stable inviscid branch then the stable
steady state is unique. However, the other possibility is that the viscous branch merges
with the unstable inviscid branch in a limit point bifurcation, where the system then
exhibits three co-existing steady states across a narrow region of the parameter space:
the stable inviscid solutions become the upper branch, the unstable inviscid solutions
become the intermediate branch and the stable viscous solutions become the lower branch.
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Stewart (2017) also showed that the lower branch of steady solutions can become
unstable to two distinct families of self-excited oscillation, with high and low frequency,
respectively. However, in addition to the flow-profile assumption, this study considered
the flexible wall to be a thin (massless) pre-stressed membrane with no bending rigidity.
To overcome these simplifications, this study revisits the predictions of Stewart (2017) by
modelling the flexible wall as a pre-tensioned hyperelastic solid, using the finite element
method to compute the fully two-dimensional steady wall and flow profiles, and test their
stability to time-dependent perturbations using a fully two-dimensional eigensolver. Our
new model includes the wall thickness and wall mass as explicit parameters, and we
investigate their influence on the predictions below.

Another approach for theoretical modelling of this collapsible channel system has very
recently been presented by Wang, Luo & Stewart (2021a,b), who treat the flexible wall
as an asymptotically thin beam with resistance to both bending and stretching but with
no pre-tension (based on an earlier model by Cai & Luo 2003; Luo et al. 2008). Using
fully nonlinear simulations of this model, they identified a similar three-branch steady
system for some parameters, showing that both the upper and lower branches of oscillation
could (independently) become unstable to self-excited oscillations (Wang et al. 2021a)
and these families of oscillations could merge together for low external pressures (Wang
et al. 2021b). In this case the upper branch instability is restricted to a region in the near
neighbourhood of that which exhibits multiple steady states (Wang et al. 2021b). In this
study we also isolate a family of upper branch instabilities, but show that these are not
limited to the region with multiple steady states but are instead unstable well away from
the region of parameter space which exhibits instabilities of the lower steady branch (see
§ 3.4 below).

The role of wall mass in the onset of self-excited oscillations in flexible-walled vessels
has already been considered for the flexible wall modelled as a thin membrane. For
example, in the asymmetric channel system, Luo & Pedley (1998) coupled the heavy
membrane to fully two-dimensional (unsteady) flow, showing that increasing the wall
mass expands the region of parameter space where the system exhibits the primary
global instability, and also results in an additional high-frequency oscillatory mode
(superimposed on the fundamental mode) which eventually grows to dominate the
lower-frequency mode. Also, Pihler-Puzović & Pedley (2014) investigated this channel
system using interactive boundary layer theory, showing that wall mass drives an
oscillatory instability which is always unstable in the presence of a cross-stream pressure
gradient across the core flow (the system is always neutrally stable with no cross-stream
gradient). Finally, Walters, Heil & Whittaker (2018) considered the role of wall mass in a
thin shell model of flow in a collapsible tube in the limit of large pre-stress (where the tube
is almost uniform), finding that wall inertia destabilises the primary mode of instability of
the system while also lowering the corresponding oscillation frequency.

In this paper we consider the planar channel analogue of the Starling resistor introduced
by Pedley (1992), and propose a new numerical method to solve the combined fluid
and solid problem based on that developed by Snoeijer et al. (2020) (which already
has application to viscoelastic fluids, Eggers, Herrada & Snoeijer 2020). The model
formulation is described in § 2, highlighting the novel features of the numerical method.
In particular, we treat the elastic solid as a pre-tensioned hyperelastic material of uniform
initial thickness with non-negligible density and subject to a uniform external pressure.
We validate this numerical method against the steady predictions of Heil (2004), who
considered an identical set-up with a thin shell model for the wall (§ 3.1), use unsteady
simulations to examine the transition between the upper and lower branches of steady
solutions (§ 3.2), examine the onset of self-excited oscillations from these steady solutions

934 A28-4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
2.

23
8.

25
5.

16
1,

 o
n 

18
 Ja

n 
20

22
 a

t 1
4:

08
:0

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
31

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1131


Flexible channel flow with a hyperelastic wall

External gas

Elastic solid

Rigid solid

h1 (x, t)

L1 L2L

p = 0

p = Pext

h

h2 (x, t)

η1 ρ1

x
y

q

e

Fluid Ω1 (t)

Ω2 (t)μ2ρ2

Figure 1. Sketch of the flow geometry considered in this study.

(§ 3.3), before using our new model to examine the role of membrane pre-tension (§ 3.4),
the dynamics of oscillations growing from the upper branch of steady solutions (§ 3.5) as
well as the role of wall thickness (§ 3.6) and wall inertia (§ 3.7) on the nonlinear steady
solutions and the accompanying onset of oscillation.

2. Model formulation

We consider the configuration sketched in figure 1, where an incompressible Newtonian
fluid is flowing through a planar rigid (two-dimensional) channel of uniform internal width
h. An interior section of length L is removed from the upper wall of the channel and
replaced by a pre-tensioned elastic solid of (initially) uniform thickness e, subject to a
passive external gas at uniform pressure, Pext. This elastic wall can be deformed by the load
of the external gas and by the fluid traction. The rigid sections upstream and downstream of
the compliant segment are of length L1 and L2, respectively. In this case the flow is driven
by a prescribed upstream flux q, while the fluid pressure at the downstream end of the
channel can be set to zero without loss of generality. The stability of this fluid–structure
interaction problem has already been studied extensively using reduced models for the
elastic wall (e.g. Luo & Pedley 1996; Jensen & Heil 2003; Luo et al. 2008; Stewart 2017).
In this work, we model the wall as a continuum hyperelastic solid of finite thickness, with
no simplifications or reductions. Our formulation is based on first-order elasticity (elastic
strain energy function dependent on the strain tensor), which places some restrictions on
the boundary conditions that can be imposed.

2.1. Equations of motion
The fluid domain Ω1 is described by the planar coordinates x = xex + yey, where x
parametrises the lower wall of the channel, with x = 0 at the intersection between the
upstream rigid segment and the compliant segment, while y parametrises the direction
normal to the entirely rigid wall pointing into the fluid (in the plane of the channel). The
solid domain Ω2 is measured relative to a reference configuration parametrised by the
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coordinates X = Xex + Yey, where X parametrises the lower surface of the flat wall and Y
parametrises the direction pointing into the wall (in the plane of the channel).

The conservation of mass and momentum equations in the fluid (i = 1) and solid (i = 2)
subdomains are given by

∇ · vi = 0, (i = 1, 2), (2.1a)

ρi

(
∂vi

∂t
+ (vi · ∇) vi

)
= ∇ · σ i, (i = 1, 2), (2.1b)

where ρi is the density, I is the identity tensor, vi the velocity field and σ i is the stress tensor
of material i (i = 1, 2). Each stress tensor depends on the characteristics of the material
through a constitutive model. In region 1 we consider an incompressible Newtonian fluid,
where this stress tensor takes the form

σ 1 = −p1I + η1
(∇v1 + ∇vT

1
)
, (2.1c)

where p1 is the fluid pressure and η1 is the fluid viscosity. In region 2 we consider a
neo-Hookean (hyperelastic) solid which has a pre-stress, σ

(0)
2p , in the initial undeformed

state, where the stress tensor is given by (Snoeijer et al. 2020)

σ 2 = −p2I + μ2

(
F · F T − I

)
+ F · σ

(0)
2p · F T, (2.1d)

where p2 is the solid pressure, μ2 is the elastic shear modulus, x(X , t) is the position
of a material point after deformation of the solid and F = ∂x/∂X is the deformation
gradient tensor. In the initial state, x = X and F · F T = I . To make a connection between
the Eulerian formulation for the conservation of mass and momentum equations for the
solid ((2.1) with i = 2) and the Lagrangian formulation for the elastic stress, we need to
determine the deformation generated by transport by the solid velocity v2. This is achieved
using the inverse Lagrangian map X (x, t) (Kamrin, Rycroft & Nave 2012), which satisfies

∂X
∂t

+ v2 · ∇X = 0, (2.1e)

because the reference coordinates are invariant under the flow.
Given the bi-dimensionality of the problem, the material points can be expressed in

Cartesian coordinates and so the velocity vectors can be written as

vi = vyiey + vxiex, (i = 1, 2), (2.1f )

while the stress tensors can be written as

σ = σyyey ⊗ ey + σyxey ⊗ ex + σxyex ⊗ ey + σxxex ⊗ ex, (2.1g)

and finally the deformation tensor in the solid can be written as

F = ∂y
∂Y

ey ⊗ ey + ∂y
∂X

ey ⊗ ex + ∂x
∂Y

ex ⊗ ey + ∂x
∂X

ex ⊗ ex. (2.1h)

In the undeformed position the elastic solid is subject to an initial longitudinal tension, To,
and therefore the initial stress is σ

(0)
2p = (T0/e)ex ⊗ ex.
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Flexible channel flow with a hyperelastic wall

For the elastic domain, it is convenient to replace the incompressibility equation based
on the velocity field ((2.1a) with i = 2) by a constraint involving the deformation tensor F
(Snoeijer et al. 2020) in the form

det(F ) =
(

∂y
∂Y

∂x
∂X

− ∂y
∂X

∂x
∂Y

)
= 1. (2.1i)

To impose the upstream flux boundary condition for the liquid, we impose a Poiseuille
profile at the channel entrance, x = −L1, in the form

v1x = 6q
h3 y(h − y), v1y = 0, (x = −L1, 0 � y � h). (2.1j)

At the channel exit, x = L + L2, we impose zero fluid pressure, p1 = 0. Along the entirely
rigid wall we apply no-slip conditions in the form

vx1 = vy1 = 0, ( y = 0, −L1 � x � L + L2). (2.1k)

Similarly, along the rigid parts of the upper wall we apply no-slip boundary conditions in
the form

vx1 = vy1 = 0, ( y = h, −L1 � x � 0, x � L). (2.1l)

We assume that the flexible surface (where the elastic solid and the fluid interact) can be
written as a function of x (i.e. the surface does not overturn or expand beyond the range
0 � x � L), so that y = h1(x, t). Across this interface we impose that the velocity field
must be continuous, in the form

vx1 = vx2, vy1 = vy2, ( y = h1, 0 � x � L), (2.1m)

and impose a balance of normal and tangential stresses between the solid and the fluid, in
the form

n1 · (σ 1 − σ 2) · n1 = 0, t1 · (σ 1 − σ 2) · n1 = 0, (2.1n)

where

n1 = ey − exh1,x

(1 + h2
1,x)

1/2
, t1 = ex + eyh1,x

(1 + h2
1,x)

1/2
, (2.1o)

are normal and tangential vectors to the surface y = h1(x, t), respectively, and the subscript
x represents a derivative with respect to x. In this first-order elasticity approach we enforce
no deformation along the surfaces where the elastic material is adhered to the rigid walls
(i.e. the displacement of the solid is clamped along two edges of the rectangle in contact
with the rigid walls), in the form

v2x = v2y = 0, Y = y, X = x, (x = 0, x = L with h � y � h + e). (2.1p)

However, our approach does not replicate the resistance to bending of a classical
Euler–Bernoulli beam. This would require second-order (or strain gradient) elasticity,
where the elastic strain energy function is assumed to depend on both the strain tensor
and the strain gradient tensor (Bertram & Forest 2020). In that case one must impose
additional constraints on the contact between the beam and the rigid wall e.g. conditions
on the derivatives of displacement, such as prescribed slope or torque. Finally, we denote
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the external surface of the flexible wall as y = h2(x, t), (0 � x � L) and impose that the
normal and tangential elastic stresses are balanced with the external pressure, in the form

n2 · (σ 2 − PextI) · n2 = 0, t2 · (σ 2) · n2 = 0, (2.1q)

where

n2 = ey − exh2,x

(1 + h2
2,x)

1/2
, t2 = ex + eyh2,x

(1 + h2
2,x)

1/2
, (2.1r)

are normal and tangential vectors to the surface y = h2(x, t).

2.2. Mapping technique
The numerical technique used in this study is a variation of that developed by Herrada
& Montanero (2016) for interfacial flows and extended by Snoeijer et al. (2020) to
apply to hyperelastic solids. The spatial domain occupied by the fluid, Ω1(t), is mapped
onto a rectangular domain (parametrised by Cartesian coordinates ξ1 and χ1, where ξ1
parametrises the lower rigid wall and χ1 parametrises the channel inlet) by means of a
non-singular mapping

y = f1(ξ1, χ1, t), x = g1(ξ1, χ1, t), [−L1 � ξ1 � L + L2] × [0 � χ1 � 1], (2.2)

where the shape functions f1 and g1 are obtained as part of the solution. In order to capture
large anisotropic deformations, the following quasi-elliptic transformation (Dimakopoulos
& Tsamopoulos 2003) was applied:

g22
∂2f1
∂ξ2

1
+ g11

∂2f1
∂χ2

1
− 2g12

∂2f1
∂ξ1∂χ1

= Q, (2.3a)

g22
∂2g1

∂ξ2
1

+ g11
∂2g1

∂χ2
1

− 2g12
∂2g1

∂ξ1∂χ1
= 0, (2.3b)

where the coefficients take the form

g11 =
(

∂g1

∂ξ1

)2

+
(

∂f1
∂ξ1

)2

, g22 =
(

∂g1

∂χ1

)2

+
(

∂f1
∂χ1

)2

, g12 = ∂g1

∂χ1

∂g1

∂ξ1
+ ∂f1

∂χ1

∂f1
∂ξ1

,

(2.4a–c)
with

Q = −
(

∂D1

∂χ1

∂f1
∂ξ1

− ∂D1

∂ξ1

∂f1
∂χ1

)
J

D1
, J = ∂g1

∂χ1

∂f1
∂ξ1

− ∂g1

∂ξ1

∂f1
∂χ1

, (2.5a,b)

and

D1 = εp

√√√√[(
∂f1
∂ξ1

)2

+
(

∂g1

∂ξ1

)2
]/ [(

∂f1
∂χ1

)2

+
(

∂g1

∂χ1

)2
]

+ (1 − εp). (2.6)

In the above expressions, εp is a free parameter between 0 and 1 where the case εp = 0
corresponds to the classical elliptical transformation. All the simulations in this work were
conducted using εp = 0.2. Although there is no overturning in the wall profiles for the
cases analysed in this work, this transformation of the liquid domain facilitates the analysis
of more complicated geometries. For example, it has been successfully used to describe
pinch-off in pendant drops (Ponce-Torres et al. 2020).
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The spatial domain occupied by the elastic solid in the current stage, Ω2(t), and in the
initial stage, Ω2o, are also mapped onto rectangular domains (parametrised by Cartesian
coordinates ξ2 and χ2, where ξ2 parametrises the lower surface of the flexible wall and
χ2 parametrises the edges in contact with the rigid segments of the channel) by means of
non-singular mappings in the form

y = f2(ξ2, χ2, t), x = g2(ξ2, χ2, t),

Y = F2(ξ2, χ2, t), X = G2(ξ2, χ2, t), [0 � ξ2 � L] × [0 � χ2 � 1],

}
(2.7)

where again the functions f2, g2, F2 and G2 should be obtained as a part of the solution.
To determine these functions, the following equations have been used:

g2 = ξ2, (2.8a)

F2 = h + eχ2. (2.8b)

Note that (2.8a) guarantees that the discretisation used for the variable ξ2 is automatically
applied to variable x. Finally, (2.8b) indicates that at the initial stage the elastic part of the
upper channel wall is a perfect rectangle of uniform width e.

Some additional boundary conditions for the shape functions are needed to close the
problem. At the channel entrance, we impose

g1 = −L1, f1 = hχ1, (x = ξ1 = −L1), (2.9a)

while at the channel exit, we use

g1 = L + L2, f1 = hχ1, (x = ξ1 = L + L2). (2.9b)

On the lower wall, we impose

g1 = ξ1, f1 = 0, ( y = χ1 = 0), (2.9c)

while on the rigid parts of the upper channel wall, we use

g1 = ξ1, f1 = h, (−L1 � x = ξ1 � 0, x = ξ1 � L, y = h). (2.9d)

At the flexible surface, we also impose

f1 = f2, g1 = g2, (0 � x = ξ1 = ξ2 � L, y = h1(x, t), χ1 = 1, χ2 = 0). (2.9e)

Finally, we enforce no displacement of the elastic solid along the two edges of the rectangle
in contact with the rigid walls, in the form

g2 = G2 = ξ2, f2 = F2 = h + eχ2,

(x = ξ2 = 0, x = ξ2 = L, h � y � (h + e), 0 � χ2 � 1).

}
(2.9f )

Figure 2 shows an example of the mappings used in this work. The green (magenta) lines
represent the liquid (solid) mesh in the real space (bottom panel) and in the computational
domain (top panel). The unknown variables in the liquid domain are f1, g1, p1, v1x and v1y
while the unknown variables in the solid domain are f2, g2, p2, v2x, v2y, F2 and G2. All
the derivatives appearing in the governing equations are expressed in terms of χ , ξ and t.
These mappings are applied to the governing equations (2.1) and the resulting equations
are discretised in the χ -direction with nχ1 and nχ2 Chebyshev spectral collocation points
in the liquid and solid domains, respectively. Conversely, in the ξ -direction we use
fourth-order finite differences with nξ1 and nξ2 equally spaced points in the liquid and solid
domains, respectively. The results presented in this work were carried out using nξ1 = 641,
nξ2 = 201, nχ1 = 19 and nχ2 = 14. In the Appendix we demonstrate that the eigenvalues
characterising the linear modes do not change significantly when the number of grid points
is increased.
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Elastic solid
Rigid solid

Reference elastic solid

Fluid

x
y

X
Y

y = f2 (ξ2, χ2, t), x = g2 (ξ2, χ2, t) y = f1 (ξ1, χ1, t), x = g1 (ξ1, χ1, t)

Y = F2 (ξ2, χ2, t), X = G2 (ξ2, χ2, t)

χ1

ξ1

χ2

ξ2

Figure 2. Computational subdomains and grids for the original and mapped variables.

2.3. Steady solutions
Steady solutions of the nonlinear equations (2.1) with all variables independent of time are
obtained by solving all equations simultaneously (a so-called monolithic scheme) using
a Newton–Raphson technique. One of the main characteristics of this procedure is that
the elements of the Jacobian matrix J ( p,q) of the discretised system of equations are
obtained by combining analytical functions and collocation matrices. This allows us to
take advantage of the sparsity of the resulting matrix to reduce the computation time on
each Newton step.

We denote the steady solution of the system with the subscript b. We trace the steady
solutions as a function of the model parameters and quantify using the minimal and
maximal positions of the lower surface of the flexible wall, denoted as

ĥmin = min
x

(
h1b

h

)
and ĥmax = max

x

(
h1b

h

)
. (2.10a,b)

2.4. Small amplitude perturbations
To test the stability of a given steady state we calculate the linear two-dimensional global
modes by assuming the temporal dependence

Ψ (x, y; t) = Ψb(x, y) + ε δΨ (x, y)e−iωt, (ε � 1), (2.11)

where Ψ (x, y; t) represents any dependent variable while Ψb(x, y) and δΨ (x, y) denote
the base (steady) solution and the spatial dependence of the eigenmode for that
variable, respectively, while ω = ωr + iωi is the frequency (an eigenvalue). Both the
eigenfrequencies and the corresponding eigenmodes are calculated as a function of the
governing parameters. The dominant eigenmode is that with the largest growth factor ωi.
If that growth factor is positive, the base flow is asymptotically unstable.

As explained by Herrada & Montanero (2016), the numerical procedure used to
solve the steady problem can be easily adapted to solve the eigenvalue problem which
determines the linear global modes of the system. In this case, the temporal derivatives are
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computed assuming the temporal dependence (2.11). The spatial dependence of the linear
perturbation δΨ (q) is the solution to the generalised eigenvalue problem J ( p,q)

b δΨ (q) =
iωQ( p)

b δΨ (q), where J ( p,q)
b is the Jacobian of the system evaluated with the basic solution

Ψ
(q)
b , and Q( p,q)

b accounts for the temporal dependence of the problem. This generalised
eigenvalue problem is solved using MATLAB eigs function.

2.5. Fully nonlinear dynamical simulations
The numerical method can be extended to compute unsteady solutions of the full nonlinear
equations (2.1). Temporal derivatives are discretised using second-order backwards
differences and at each time step the resulting system of (nonlinear algebraic) equations is
solved using the Newton–Raphson technique (as in § 2.3). Simulations employ the same
mesh as the steady simulations with a fixed timestep of t = 0.0125 required to capture
the strong oscillations observed in the fully saturated nonlinear regime (this translates into
approximately 640 timesteps per period for the oscillation shown in figure 12 below). We
have verified that the nonlinear predictions are unchanged when the timestep is reduced to
t = 0.0075. Given the large number of timesteps required, these simulations are much
more computationally expensive than the global stability eigensolver and so only two
relevant cases will be considered to support the global stability analysis (see figures 6
and 12 below). For example, the nonlinear simulation described in § 3.5 takes more than
one week to reach the corresponding nonlinear limit cycle, while for the same machine the
computation of the eigenvalues takes just a few minutes.

2.6. Control parameters
To non-dimensionalise the system we scale all lengths on the baseline channel width h,
velocities on the mean inlet speed q/h, time on h2/q, the fluid stress on the viscous scale
η1q/h2 and the solid stress on the elastic shear modulus μ2. The solutions are characterised
by the dimensionless profile of the interface between fluid and solid ĥb1 = hb1/h, the
dimensionless frequency ω̂ = ωq/h2 and the dimensionless eigenfunction profile of the
surface between the fluid and the solid, denoted δ̂h1 = (δh1)/h. As is conventional in this
literature, a wall profile is termed as mode-n if δ̂h1 has n extrema across the compliant
segment. The resulting problem is governed by six dimensionless parameters,

Re = ρ1q
η1

, Q = η1q
h2μ2

, p̂ext = Pext

μ2
, T̂0 = T0

hμ2
, ê = e

h
, ρ̂ = ρ2q2

h2μ2
,

(2.12a–f )

representing the Reynolds number, the ratio of the viscous stresses in the fluid to the
elastic shear stresses in the wall, the dimensionless external pressure, the dimensionless
longitudinal pre-tension, the dimensionless thickness of the flexible wall and the ratio
between the inertial and the elastic forces in the solid. The dimensionless system also
involves three geometrical factors,

L̂1 = L1

h
, L̂ = L

h
, L̂2 = L2

h
, (2.13a–c)

which will be held constant throughout this study.
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3. Results

In this section we predict the stability of flow through a flexible-walled channel with a
hyperelastic wall. We first validate our model against published results for steady flow
through channels with thin flexible walls presented by Heil (2004) (§ 3.1) and then
examine the unsteady transition from beyond the upper branch limit point to the lower
branch of steady solutions (§ 3.2). We then consider the onset of self-excited oscillations
associated with these steady states across the parameter space spanned by Reynolds
number and external pressure (§ 3.3), before examining the role of wall pre-tension (§ 3.4),
the nonlinear limit cycles of oscillations which grow from the upper branch of steady
solutions (§ 3.5), as well as the role of wall thickness (§ 3.6) and the role of wall inertia
(§ 3.7) in the onset of these oscillations. Following Heil (2004), in all simulations we hold
L̂1 = 1, L̂ = 5, L̂2 = 10 and fix the fluid–structure interaction parameter as Q = 0.01,
indicating that elastic stresses dominate viscous stresses. In the results below we vary
the Reynolds number Re, external pressure p̂ext, the wall pre-tension T̂0 (§ 3.4), the wall
thickness ê (§ 3.6) and the wall inertia parameter ρ̂ (§ 3.7).

3.1. Steady flow with thin flexible walls
We first compare the predictions from our numerical method against the predictions of
Heil (2004), who studied the flow through the geometry shown in figure 1 but where his
elastic wall was modelled using (geometrically nonlinear) shell theory, intended to capture
large displacements in the elastic solid. Our choice of non-dimensionalisation is identical
to Heil (2004), with the exception that he defines a membrane pre-stress σ0, which is
related to our membrane pre-tension parameter through

σ0 = T̂0

ê
. (3.1)

To compare with the predictions of Heil (2004), we consider a small wall thickness
ê = 0.01. We then use pre-tension T̂0 = 10 to ensure that σ0 = 1000, as used by Heil
(2004). Since the inertia of the solid was neglected in that work we also set ρ̂ = 0 in our
simulations in this section (we consider non-zero wall inertia in § 3.7 below).

In order to compare the predictions of our model with those of Heil (2004), in figure 3 we
illustrate the steady flow field computed using our method (figure 3a) and the steady flow
field obtained using the model of Heil (2004) (figure 3b). We observe excellent quantitative
agreement between the two approaches, not only in the pressure distribution but also in
the streamlines, where both exhibit a recirculating flow separation region downstream of
the point of strongest wall collapse. Quantitatively, we compute the relative error in the
maximal (minimal) fluid pressure as 0.2028 % (0.2089 %) between our approach and the
data from Heil (2004) for these parameter values.

Following Heil (2004), in figure 4 we characterise the steady solutions of the system
by the minimal (ĥmin) and maximal (ĥmax) channel width as a function of the model
parameters. Similar to previous studies in collapsible channels (Luo & Pedley 2000;
Heil 2004; Stewart 2010, 2017) and collapsible tubes (Heil & Boyle 2010), we find
that for sufficiently large Reynolds numbers the system can admit multiple steady
solutions at the same point in parameter space. For example, figure 4(a) shows that the
minimum dimensionless channel width (ĥmin), when plotted as a function of the external
pressure, p̂ext, lies on a curve with three branches connected by two limit points (or fold
bifurcations), where these three branches are labelled I, II and III. In order to quantify
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ŷ
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Figure 3. Streamlines and pressure contours for the steady solution computed at fixed Reynolds number (Re =
500) and fixed external pressure (p̂ext = 3.204) obtained from: (a) the present model; (b) the model of Heil
(2004). Here, T̂0 = 10, ê = 0.01 and ρ̂ = 0.

the difference between our results and those of Heil (2004), figure 4(b) compares our
prediction of the intermediate and lower steady branches as a function of external pressure
with those depicted in figure 4 of Heil (2004) (for the same parameter values). We
observe excellent quantitative agreement, although the two approaches do diverge slightly
for larger external pressures when the channels are significantly more collapsed, which
we attribute to the increased prominence of the differences between the wall models.
Furthermore, we also produce the same plot for a smaller Reynolds number (Re = 250)
for which the wall profile is unique for all external pressures. Again we see excellent
quantitative agreement between the models, with a slight divergence as the channel
becomes increasingly collapsed.

Along branch I (solid black line in figure 4), whose points correspond to a flow
field like the one depicted in figure 5(a), where the wall is entirely bulged outwards:
this branch was termed the upper branch of steady solutions by Stewart (2017). This
upper branch persists as external pressure increases until an upper branch limit point is
reached (denoted p̂ext = p̂ext1). For values of external pressure larger than p̂ext1 the elastic
wall instantaneously collapses and the steady solution jumps catastrophically towards
branch III (solid yellow line), where the wall is highly collapsed and the steady flow has
separated beyond the constriction (figure 5c); this entirely collapsed branch was termed
the lower branch of steady solutions by Stewart (2017). This re-circulating region is a
prominent feature of branch III flow fields (figure 5c). We explore the transition from
the upper branch limit point toward the lower steady branch in § 3.2 below, showing
the birth of the re-circulation region as the channel becomes more collapsed. However,
such a re-circulation region may not necessarily be a requirement for multi-valued steady
solutions, since ad hoc one-dimensional models (which employ a flow-profile assumption
which does not allow flow separation) also exhibit these multiple steady states (Stewart
2010, 2017) The lower branch (branch III) persists as we decrease the external pressure
below p̂ext1 until the lower branch limit point is reached (denoted p̂ext = p̂ext2, where
p̂ext2 < p̂ext1). For even lower external pressures the system jumps to the upper branch, the
recirculating region disappears and the channel wall bulges outward (figure 4a). The upper
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Figure 4. Nonlinear steady solutions of the model for fixed Reynolds number (Re = 500) and pre-tension
(T̂0 = 10) showing: (a) the maximal and minimal channel widths as a function of the external pressure; (b) the
channel width at x̂ = 3.5 as a function of the external pressure (black line), compared with the prediction from
figure 4 in Heil (2004) (green line). The dotted lines in (b) show the comparison the present model (black) with
Heil (2004) (green) for a smaller Reynolds number, Re = 250, where the steady state is unique. Here, ê = 0.01
and ρ̂ = 0.

and lower branches (I and III) are connected by an intermediate branch termed branch II,
which we trace by numerical continuation. Below we confirm the observation of previous
studies that this intermediate branch is always unstable to perturbations. A typical flow
field for a solution along this intermediate branch is shown in figure 5(b).

3.2. Transition from the upper branch limit point
As the external pressure increases beyond the upper branch limit point the system abruptly
transitions to the lower branch steady state. This transition is explored in figure 6, where
we plot the unsteady evolution of the system from the upper branch limit point when
the external pressure is instantaneously increased. In particular, we consider an unsteady
simulation from the upper branch limit point at R = 500 for T̂0 = 10, displacing the
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Figure 5. Streamlines and pressure contours for three branches of steady solutions for fixed Reynolds number
(Re = 500) and fixed external pressure p̂ext = 1.52: (a) the upper branch (branch I); (b) the intermediate branch
(branch II); (c) the lower branch (branch III). Here, T̂0 = 10, ê = 0.01 and ρ̂ = 0.
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ŷ

1.0

0.5

0

(e)

ŷ

100

–100

0

p̂b

100

–100

0

p̂b

3 4 5 6 7

3 4 5 6 7

50 100 200150 250 300
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Figure 6. Unsteady transition from the upper branch limit point to the lower steady branch for a thin wall
(ê = 0.01) with no wall inertia (ρ̂ = 0): (a) time trace of the minimal channel width (ĥmin); streamlines
and pressure colour map of the channel close to the outlet of the compliant segment at four selected times:
(b) t = 215.0; (c) t = 230.0; (d) t = 245.0; (e) t = 260.0. The time points plotted in (b–e) are marked in panel
(a). Here, p̂e = 1.54, Re = 500 and T̂0 = 10..

external pressure from p̂ext = 1.52 to p̂ext = 1.54 (marked with a cross in figure 8).
Over time the channel wall collapses monotonically toward the lower branch steady state
(figure 6a). Initially, the rate of collapse is slow and the flow is laminar (figure 6b),
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but as the channel becomes increasingly constricted the rate of collapse increases and
boundary layer separation takes place (figure 6c), where a re-circulation region becomes
evident close to the downstream outlet of the compliant segment of the channel (figure 6d),
creating a region of much lower pressure (figure 6e). A movie showing the entire transition
is provided in the online supplementary material available at https://doi.org/10.1017/jfm.
2021.1131.

There is an interesting analogy between these observations and those reported for
swirling flows in pipes (see for e.g. Lopez 1994; Herrada, Pérez-Saborid & Barrero
2003), where fluid flows with a significant azimuthal velocity component through a rigid
circular tube with an axisymmetric (fixed) sinusoidal indentation over a finite length. In
this analogy the indentation of the pipe mirrors the collapse of the compliant segment
of the channel, while the azimuthal fluid velocity component (and to some extent the
compressibility of the fluid) extracts energy from the mean flow in a similar way to
the compliance of the elastic wall. These swirling flows exhibit multiple (stable) steady
solutions for a given set of parameters (when the Reynolds number is larger than a critical
one) and the steady solutions can be described using bifurcation diagrams with three
branches of steady solutions and two limit points, analogous to those presented in figure 4;
this behaviour was recently termed ‘double hysteresis’ (Shtern 2018). These swirling
flows also exhibit an unsteady transition from a nearly columnar flow to a recirculating
flow when the swirling parameter is larger than a critical value (vortex breakdown),
analogous to the spontaneous collapse of the channel we observe as the external pressure
increases above the critical value (p̂ext1). In the former case, centrifugal forces generate
an adverse axial pressure gradient that induces a recirculating flow, whereas the channel
collapse generates an adverse pressure gradient that drives detachment of the boundary
layer adjacent to the flexible wall. The flow structures in figures 6–9 of Herrada et al.
(2003) are reminiscent of the transition observed in figure 6, where in both cases the
vortex breakdown occurs just downstream of the point of greatest indentation. The only
significant difference comes in the cross-stream location of vortex shedding: the symmetry
of the cylindrical geometry in the swirling flows results in vortex shedding near the axis of
the tube, while in the collapsible channel the vortex shedding occurs near the flexible wall.

3.3. Linear stability results
Having computed the steady configurations of the system, we now analyse the temporal
linear stability of the three different steady solution branches depicted in figure 4. For this
large value of pre-tension (T̂0 = 10) we find that the steady solutions along the section
of the upper branch tested are globally stable to time-dependent perturbations (all the
eigenvalues have ωi < 0) for all external pressures greater than the outlet pressure (i.e.
p̂ext � 0), while the solutions along the intermediate branch are always unstable (at least
one eigenvalue has ωi > 0 with ωr = 0). Figure 7 illustrates the stability of the lower
steady branch, showing the eigenvalue spectrum of the frequency ω for several values of
the external pressure, p̂ext. In this case (and in figure 11 below) we focus only on the most
unstable eigenvalues, illustrating those with ωi > −0.5. We find that the lower branch
is stable for sufficiently small external pressure, becoming globally unstable via a Hopf
bifurcation when the external pressure exceeds a critical value, p̂∗

ext ≈ 1.752 (i.e. a pair
of complex conjugate eigenvalues cross the real axis with non-zero ωr). At this critical
point, the corresponding steady state is shown in figure 7(b), where it is inflated at the
upstream end and collapsed at the downstream end (termed mode-2). The corresponding
eigenfunction of the wall profile for the neutrally stable mode is shown in figure 7(c),
which has two extrema (mode-2). We label the oscillatory modes associated with the
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Figure 7. Stability of the lower steady branch to time-dependent perturbations for fixed Reynolds number
(Re = 500) and fixed pre-tension (T̂0 = 10): (a) five eigenvalue spectra in the ω-plane for increasing values of
p̂ext; (b) profile of the lower surface of the steady wall at neutral stability (p̂ext ≈ 1.752); (c) real and imaginary
parts of the wall profile eigenfunction at neutral stability (p̂ext ≈ 1.752). Here, ê = 0.01 and ρ̂ = 0.

lower branch with lower case Roman numerals (i), (ii), (iii) . . . in the order of increasing
frequency, which is generally the order they become unstable as the external pressure
increases, and so this primary instability is denoted mode-(i). These stability predictions
agree well with the results presented by Heil (2004), where his figure 5 shows that the
flow becomes unsteady and exhibits self-excited oscillations for p̂ext = 2.5, well inside
our unstable regime. These results are also qualitatively similar to the predictions of the
one-dimensional model of Stewart (2017), who showed that his lower branch of steady
solutions becomes unstable to a mode-2 oscillation as the primary global instability of the
system as the external pressure increases.

We overview the parameter space in figure 8 to summarise the regions of interest. We
illustrate the region with multiple steady solutions by tracing the value of the external
pressure at the limit points of the upper and lower steady branches (p̂ext1 and p̂ext2,
analogous to those found in figure 4) as a function of the Reynolds number; similar to
Stewart (2017), we find that this region with multiple steady states exists for Reynolds
numbers greater than a threshold (Re > Recusp ≈ 330). We further plot the critical external
pressure for the onset of oscillatory instability, p̂∗

ext, as a function of the Reynolds number,
finding that for the range of Reynolds numbers explored here the neutral stability curve lies
entirely within the range where there is a unique steady solution along the lower steady
branch, so p̂∗

ext > p̂ext1. Note that we observe no instability of the upper steady branch for
this choice of the wall pre-tension (T̂0 = 10) across the range 0 � p̂ext � p̂ext1. It emerges
below that this branch only becomes unstable for p̂ext < 0 for this value of T̂0, which is not
considered here. For large Reynolds number we might expect the neutral stability curve
to enter the region of parameter space with multiple steady states (in a similar manner to
Stewart 2017), but this possibility is discussed in more detail below.

3.4. The influence of the pre-tension in the solid
When the pre-tension of the elastic wall is reduced, we observe a decrease in the
critical Reynolds number beyond which multiple steady flows exist, and the steady state
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Figure 8. Overview of the critical conditions for self-excited oscillations for pre-tension T̂0 = 10, plotting the
critical external pressure for instability as a function of the Reynolds number. The cross symbol indicates the
point in parameter space which corresponds to the unsteady simulation shown in figure 6. Here, ê = 0.01,
ρ̂ = 0.

bifurcation diagram and neutral stability curves become more complicated. To illustrate
this complexity, in figure 9 we characterise the multiplicity of steady solutions that
exist for a lower value of the pre-tension (T̂0 = 5) while holding the Reynolds number
fixed (Re = 500), plotting the minimal (ĥmin) and maximal (ĥmax) widths of the steady
channel as a function of the external pressure, for the upper and lower branches of
steady solutions, obtained following the same procedure as § 3.1. Similar to the case we
considered in figure 4 (T̂0 = 10), when the external pressure increases beyond a certain
value, p̂ext = p̂ext1, there is a jump from a solution on the upper branch to a solution on the
lower branch (where the channel becomes much more collapsed). In the same way, as we
decrease the external pressure along the lower branch below a certain value, p̂ext = p̂ext2,
there is a jump back to the upper branch.

To overview these steady solutions across the parameter space, in figure 10 we plot the
external pressure at the limit points of the steady solutions (p̂ext1 and p̂ext2) as a function
of the Reynolds number for a lower value of the pre-tension (T̂0 = 5), where we find that
the critical Reynolds number for multi-valued solutions has reduced (Recusp ≈ 275 in this
case). To further illustrate the stability of these steady solutions, in figure 10 we also trace
the critical external pressure for the onset of instability as a function of the Reynolds
number, finding again that the lower branch of steady solutions (branch III) becomes
unstable for external pressures greater than a critical value, p̂∗

ext, and is stable otherwise
(figure 10). This observation is similar to our observation for large pre-tension (T̂0 = 10),
with the only difference that now the loss of stability is closer to the region of multiplicity
of steady solutions, with the two bounding curves almost overlapping for the largest
Reynolds numbers considered. Tracing these curves to larger Reynolds numbers is an
interesting direction of future work, where we might expect the neutral stability curve and
the trace of the lower branch limit point to eventually intersect. Such an intersection was
previously observed by Stewart (2017), where the Hopf bifurcation (associated with the
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Figure 9. Nonlinear steady solutions of the model for fixed Reynolds number (Re = 500) and pre-tension
(T̂0 = 5), showing the maximal and minimal channel widths as a function of the external pressure p̂e. Here,
ê = 0.01 and ρ̂ = 0.
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Figure 10. Overview of the critical conditions for self-excited oscillations for lower pre-tension T̂0 = 5,
plotting the critical external pressure for instability as a function of the Reynolds number. The plus symbol
indicates the point in parameter space which corresponds to the nonlinear portrait of the upper branch instability
shown in figure 12. Here, ê = 0.01, ρ̂ = 0.

oscillation) and the saddle node bifurcation (associated with the steady solutions) interact
in a co-dimension 2 bifurcation, suggesting a nearby homoclinic orbit (Glendinning 1994).

However, for this lower value of the pre-tension we also observe that steady solutions
along the upper branch (branch I in figure 9) also become temporally unstable for external
pressures below a critical value, denoted p̂∗

extI , and are stable otherwise (see figure 10).
This means that for Re > Recusp there is only a narrow interval of external pressures
compatible with a steady stable flow, focused around the region with multiple steady
solutions. Instability of the upper branch of steady solutions has recently been noted by
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Figure 11. Exploration of the lower branch instability for lower pre-tension T̂0 = 5: (a) five eigenvalue spectra
in the ω plane for increasing external pressure; (b) steady wall profiles for the choice of external pressure where
the system is neutrally stable; (c) real and imaginary parts of the corresponding eigenfunction of the wall profile
at neutral stability. Here, ê = 0.01 and ρ̂ = 0.

Wang et al. (2021a) using a flexible wall modelled as a thin nonlinear beam, but in their
case the region of instability is located within and directly adjacent to the region with
multiple steady solutions (Wang et al. 2021b), in contrast to that noted here. The fully
developed limit cycles also exhibit some significant differences (see § 3.5 below).

To further explore this upper branch instability for lower pre-tension (T̂0 = 5) and fixed
Reynolds number (Re = 400), in figure 11(a) we plot the corresponding eigenvalue spectra
for several values of the external pressure, where a complex conjugate pair of eigenvalues
cross into the upper half-plane for p̂ < p̂∗

extI ≈ 1.12 (Note that p̂∗
ext ≈ 1.66), consistent

with a Hopf bifurcation. At neutral stability the steady configuration of the flexible wall is
entirely inflated with a single hump (termed mode-1, see figure 11b), while the neutrally
stable eigenfunction of the oscillating wall profile is mode-2 (figure 11c), similar to the
instability of the lower branch. Note that the frequency of oscillation along the upper
branch is generally larger than the corresponding instability along the lower branch. Given
that this oscillation also has a mode-2 structure of the wall shape eigenfunction, we
label modes associated with the upper branch using Roman letters (a),(b),. . . in order of
increasing frequency, which is generally the order they become unstable as the Reynolds
number increases. The primary oscillatory mode associated with the upper branch is
therefore labelled mode-(a). It is interesting to note that the instability of the mode-1 steady
state exhibits a mode-2 eigenfunction profile, presumably because the prescribed upstream
flux suppresses modes that induce large volume changes in the flexible segment of the
channel (such as the mode-1 oscillations observed with prescribed upstream pressure e.g.
Jensen & Heil 2003; Stewart et al. 2009, 2010).

The upper branch neutral stability point, p̂∗
extI , can be traced (by numerical continuation)

to larger values of the wall pre-tension; we find that the critical external pressure must
become negative to induce instability for T̂0 = 10, explaining why it was not observed in
figures 7 and 8, where we restrict attention to external pressures larger than the channel
outlet pressure (p̂ext > 0).
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Flexible channel flow with a hyperelastic wall

We note that the neutral stability curves associated with both the upper and lower steady
branches trace close to the region with multiple steady solutions as the Reynolds number
increases, suggesting this region plays a key role in the structure of the dynamical system.
Stewart (2017) showed that the limit point on the upper steady branch (traced by the blue
curve in figures 8 and 10) asymptotes to the saddle node bifurcation point for steady
solutions of the inviscid system as the Reynolds number increases. Indeed, both Xu et al.
(2013) and Stewart (2017) identified the threshold where inviscid steady states emerge as
an organising centre of the dynamical system, consistent with our observation. Conversely,
the lower branch of steady solutions is entirely maintained by the fluid viscosity (Stewart
2017), and is thus absent in the inviscid limit.

3.5. Limit cycles of upper branch instability
Fully nonlinear simulations of self-excited oscillations growing from the lower branch of
steady solutions have been widely reported elsewhere (e.g. Heil 2004; Luo et al. 2008).
An instability of the upper branch of steady solutions was recently reported by Wang
et al. (2021a), who considered flow through a similar two-dimensional collapsible channel
system modelling the flexible wall as a thin (nonlinear) beam with resistance to both
bending and stretching (with no pre-stress), and the nonlinear limit cycles were explored
using fully nonlinear simulations. However, the upper branch oscillations evident from the
present model exhibit a significant difference in structure: for the oscillations reported by
Wang the unstable region restabilises as the upper branch limit point is reached (Wang
et al. 2021a) and remains confined to the neighbourhood of the region with multiple
steady states (Wang et al. 2021b), whereas for the present model the system is stable in
the neighbourhood of the upper branch limit point and instead the unstable region extends
over a wide range of external pressures away from the region with multiple steady states
(figure 10).

Given the difference in structure between our predictions and those of Wang et al.
(2021a), in figure 12 we examine the underlying dynamics of our upper branch oscillations
using fully nonlinear simulations of our model (method described in § 2.5) at a point in
parameter space within the upper branch neutral stability curve. In this case we choose
Re = 500, p̂ext = 1 and T̂0 = 5, marked with a plus inside the unstable region in figure 10.
Initiating the simulation on the upper branch steady solution, numerical noise is enough
to trigger an oscillatory instability evident in the time trace of the maximal channel width
(see figure 12(a) with growth rate and frequency consistent with the global linear stability
eigensolver), eventually saturating into a complicated nonlinear limit cycle (one period
shown in figure 12b). A movie showing the flow field and vorticity over several periods of
this limit cycle is provided in the online supplementary material.

Over a period of this limit cycle the wall profile grows a single hump at the downstream
end of the compliant segment (figure 12c); this hump propagates upstream reaching
a global maximum (figure 12d) before being reflected back downstream again by the
upstream rigid segment, where its amplitude subsequently decreases. As this hump
propagates downstream a second hump appears at the downstream end of the compliant
segment (figure 12e) which eventually dominates the first (figure 12f ). However, these
two humps do not coalesce but instead the x-location of the maximum wall deflection
changes discontinuously at the global minimum of ĥmax (figure 12( f ), explaining the
cusp in figure 12(b) at t ≈ 1138.2, 1145.5, 1152.8). This second hump grows in amplitude,
engulfing the remains of the first hump and shedding a low pressure vortex into the
downstream rigid segment (figure 12g). This propagating vortex creates a so-called
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Figure 12. The mechanism of upper branch instability for a thin hyperelastic wall (ê = 0.01) with no wall
inertia (ρ̂ = 0): (a) the maximal channel width ĥmax as a function of time; (b) zoom-in over panel (a) over one
period of oscillation; streamlines and pressure colour map of the channel close to the outlet of the compliant
segment at six selected times over a period of oscillation including: (c) t = 1149.6; (d) t = 1151.2; (e) t =
1152.8; ( f ) t = 1154; (g) t = 1155; (h) t = 1155.4. The fully developed limit cycle of interest is enclosed in the
red box in (a). The times corresponding to the snapshots in panels (c–h) are labelled in (b). Here, Re = 500,
p̂ext = 1 and T̂0 = 5.

vorticity wave in the downstream rigid segment (particularly evident in figure 12c,g,h)
while the large hump at the downstream end of the compliant segment drives a short region
of channel collapse at the upstream end. As this vorticity wave propagates downstream,
the single hump in the compliant segment propagates upstream, repeating the cycle. The
nature of this oscillation exhibits many of the features of the nonlinear upper branch
oscillations described by Wang et al. (2021a), including the development of an upstream
propagating hump. However, for their upper branch oscillations this hump is annihilated
by the upstream rigid segment (not reflected) and the flow remains entirely laminar
throughout, with no evidence of low pressure vortex shedding. However, the present model
is restricted by the assumption of first-order elasticity, meaning that we cannot apply as
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Figure 13. The influence of the wall thickness on the steady and oscillatory solutions in the absence of wall
inertia (ρ̂ = 0): (a) the minimal steady channel width ĥmin as a function of the wall thickness; (b) the maximal
steady flow speed vmax as a function of the wall thickness; (c) the growth rate of the primary oscillatory mode
as a function of the wall thickness (mode-(i)); (d) the frequency of the primary oscillatory mode (mode-(i)) as
a function of the wall thickness. Here, T̂0 = 5, p̂ext = 2.98 and Re = 50.

many boundary conditions at each end of the beam as Wang et al. (2021a) (who applied
zero slope conditions at the end of the beam in addition to the clamped conditions).

These vorticity waves have previously been observed in channel flows with self-excited
oscillations from a collapsed (lower branch) steady state (Luo & Pedley 1996; Luo et al.
2008) or with prescribed (oscillatory) wall motion in one compartment (Stephanoff et al.
1983; Pedley & Stephanoff 1985).

3.6. The influence of the wall thickness
In this subsection we analyse the influence of the dimensionless wall thickness, ê, on the
model predictions. We consider a particular case holding the pre-tension, external pressure
and Reynolds number fixed (T̂0 = 5, p̂ext = 2.98 and Re = 50). For these parameters, with
wall thickness ê = 0.01, the system has a unique steady wall shape where the external
pressure is sufficiently large to collapse the channel wall (ĥmin < 1). These parameters are
chosen so that the system is just inside the unstable regime for lower branch oscillations
(Re = 50 and T̂0 = 5 which has critical p̂∗

ext ≈ 3.001). In figure 13 we characterise how an
increase in the wall thickness influences the underlying steady flow (figure 13a,b) and the
critical conditions for the onset of lower branch oscillations (figure 13c,d). Considering the
steady system first, figure 13(a) shows that the increase in wall thickness has little effect
on the overall shape of the flexible wall for this value of Reynolds number; the channel
becomes slightly less constricted as the wall thickness increases. Similarly, figure 13(b)
shows that increasing wall thickness slightly reduces the maximal streamwise velocity
through the constriction, v̂max = maxx,y(v̂1xb) (as expected by conservation of mass).
However, the wall thickness plays a more significant role in determining the stability of
these steady solutions. The increase of the wall thickness results in the initially unstable
solution (for ê = 0.01) becoming stable for a critical value of the wall thickness ê � 0.08
(figure 13c), with a corresponding decrease in the frequency of oscillation (figure 13d).

In order to quantify the effect of increasing the wall thickness on the stability of the
system across the parameter space, in figure 14 we plot the critical external pressure

934 A28-23

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
2.

23
8.

25
5.

16
1,

 o
n 

18
 Ja

n 
20

22
 a

t 1
4:

08
:0

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
31

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1131


M.A. Herrada, S. Blanco-Trejo, J. Eggers and P.S. Stewart

ω̂r

50 100 150 200
1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
mode-(i), ê = 2
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Figure 14. Overview of the critical conditions required for the onset of oscillations while changing the wall
thickness, plotting the critical external pressure for the onset of oscillation p̂∗

ext as a function of the Reynolds
number for five different wall thicknesses (ê = 0.01, ê = 0.2, ê = 0.4, ê = 1 and ê = 2). Here, T̂0 = 5.

for the onset of the primary oscillatory instability of the lower branch (mode-(i)),
denoted as p̂∗

ext, as function of the Reynolds number for fixed pre-tension (T̂0 = 5)
and five different wall thicknesses (ê = 0.01, 0.2, 0.4, 1, 2). Note that we have limited
our investigation to values of the Reynolds numbers smaller than the critical value
required for multiple steady solutions (Recusp), so the steady profile is unique. In
the absence of wall inertia (ρ̂ = 0) the effect of the wall thickness on the critical
conditions for instability remains weak for relatively thin walls (ê = 0.01, 0.2, 0.4):
the steady flow remains almost unchanged (figure 13a,b) and there is only a mild
stabilisation of the instability, characterised by an increase in the critical pressure
needed to generate self-excited oscillations (figure 14). It emerges that the thickness
of the wall must be of the order of the channel width (i.e. ê ∼ 1) before there is any
significant difference in the stability threshold. For example, for ê = 1 and ê = 2 the
critical pressure for the onset of instability is more appreciably increased compared
with ê = 0.01 (figure 14a), while the oscillation frequency is decreased (figure 14b).
Furthermore, for ê = 2 the critical external pressure and oscillation frequency both
saturate as the Reynolds number becomes large (figure 14). We show in § 3.7 below that
changes to the stability of the system are even more prominent when we include wall
inertia.

3.7. The influence of wall inertia
We now examine the influence of increasing wall inertia. It should be noted that the
steady version of the full nonlinear equations (2.1) is independent of the wall inertia
parameter ρ̂, and so all steady results are unchanged from those reported above. To
study the additional influence of wall inertia on the onset of self-excited oscillations
growing from the lower branch of static solutions, in figure 15 we trace the growth
rate (figure 15a) and frequency (figure 15b) of the mode-(i) instability from figures 8
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Figure 15. The role of increasing wall inertia in the growth rate and frequency of self-excited oscillations
for fixed wall thickness ê = 0.2: (a) the growth rate of the first four oscillatory modes as a function of the
wall inertia parameter; (b) the corresponding frequency of the first four oscillatory modes as a function of the
wall inertia parameter; spatial profiles of real and imaginary parts of the eigenfunctions at neutral stability for
(c) mode-(i) (ρ̂ = 0.631); (d) mode-(ii) (ρ̂ = 12.73); (e) mode-(iii) (ρ̂ = 21.02). Here, T̂0 = 5, p̂ext = 2.98 and
Re = 50.

and 10 as a function of the wall inertia parameter ρ̂; at neutral stability the eigenfunction
profile of the oscillatory mode has two (three) extrema in the real (complex) part of
the wall profile (figure 15c), meaning the number of extrema can change over a period
of oscillation for these walls of finite thickness. For this choice of parameters the
primary oscillatory mode of the lower branch (mode-(i)) is stable for ρ̂ = 0, becoming
unstable as the wall inertia parameter, ρ̂, increases (figure 15a), while the corresponding
oscillation frequency decreases (figure 15b). The perturbation growth rate for lower
branch mode-(i) exhibits a local maximum at ρ̂ ≈ 10 before asymptoting toward zero
as the wall inertia parameter continues to increase. Hence, this mode of instability
approaches stability with decreasing oscillation frequency as the wall gets heavier.
However, as the wall inertia parameter increases a second mode of oscillation also becomes
unstable at ρ̂ ≈ 12.72 (figure 15a) with larger frequency than mode-(i) (figure 15b);
we term this mode-(ii), which also has a perturbation wall profile with two extrema
(figure 15d) albeit with a narrow boundary layer at the upstream end of the profile.
Unlike the primary mode, the growth rate of this instability continues to increase as
ρ̂ increases for these parameter values, while the corresponding oscillation frequency
again approaches zero (figure 15b). As the wall mass parameter becomes even larger,
we eventually observe another mode becoming destabilised for ρ̂ ≈ 21.02 with larger
frequency (figure 15b) which we term mode-(iii), where the wall profile again exhibits
two extrema with a narrow upstream boundary layer (see eigenfunction wall profile
in figure 15e). Further increases in the wall inertia parameter destabilises mode-(iv)
(figure 15a,b). Note that, in accordance with our naming convention, the oscillation
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Figure 16. An overview of the critical conditions for the onset of instability for fixed wall thickness ê = 0.2
for three different values of the wall inertia parameter ρ̂ = 0, 10, 50: (a) the critical external pressure for the
onset of the four most unstable modes of the system (modes-(i) to (iv)) as a function of the Reynolds number;
(b) the corresponding neutrally stable oscillation frequency of these four modes as a function of the Reynolds
number. Here, T̂0 = 5.

frequency of each mode increases with increasing mode number (figure 15b). In summary,
increasing the wall inertia parameter, for all other parameters held fixed, destabilises
the primary global instability of the system, but also destabilises higher modes of
instability.

In order to summarise the influence of increasing wall inertia across the parameter
space, in figure 16 we plot the critical external pressure for the onset of lower branch
oscillations, p̂∗

ext, as a function of the Reynolds number for constant wall thickness
(ê = 0.2) and fixed pre-tension (T̂0 = 5) for three different values of the wall inertia
parameter (ρ̂ = 0, 10, 50). For small values of the wall inertia parameter (ρ̂ = 0, 10) we
find only mode-(i) across the section of parameter space considered (a direct continuation
of mode-(i) identified in the absence of wall inertia); this mode becomes increasingly
unstable as ρ̂ increases (figure 16a), while the corresponding frequency of oscillation
decreases (figure 16b). This observation is consistent with the work of Luo & Pedley
(1998), who found that increasing wall mass enlarges the unstable region of parameter
space. However, consistent with figure 15, as the wall inertia parameter increases,
additional (higher-frequency) modes of instability also arise in the system. In particular,
we identify modes (i), (ii), (iii) and (iv), labelled in order of increasing frequency. In fact,
it emerges that for ρ̂ = 50, for the parameters investigated the mode-(ii) oscillation is more
unstable than mode-(i) until Re ≈ 46. Beyond this critical value mode-(iii) becomes the
most unstable mode, while for even larger Reynolds numbers (Re � 166) there is another
cross-over in parameter space and mode-(iv) becomes the most unstable mode. Note that
the frequency of the oscillation increases with increasing mode number (figure 16b). These
observations are again consistent with the predictions of Luo & Pedley (1998), who found
that a higher-frequency oscillatory mode eventually dominated the fundamental mode as
the wall inertia parameter increased.

Figure 16(a) also highlights that the structure of the neutral stability curve for mode-(iii)
oscillations is somewhat different to the traces of mode-(i), (ii) and (iv), exhibiting a
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maximal Reynolds number and a two-branch structure analogous to the tongue structures
seen in other collapsible channel systems (Luo et al. 2008; Stewart 2017).

4. Discussion

In this paper we have developed a model for the flow of Newtonian fluid through a
finite-length (asymmetric) flexible-walled channel, as a planar analogue of flow through
a Starling resistor experiment. The flexible wall of the channel was assumed to be a
pre-tensioned hyperelastic material of finite thickness, overcoming the limitation with
more approximate models that require the elastic wall to be asymptotically thin (such as a
membrane (e.g. Luo & Pedley 1996), a nonlinear beam (e.g. Luo et al. 2008; Wang et al.
2021a) or an elastic shell (e.g. Heil 2004)) and providing a much closer resemblance to
the experiments where the tube walls are typically of the order of the tube radius (e.g.
Bertram et al. 1990, 1991; Bertram & Castles 1999). It should be noted that in the limit
of an asymptotically thin wall our hyperelastic model can be rationally reduced to either
a membrane or an elastic shell depending on the assumptions. Flow through the channel
is driven by a prescribed upstream flux against a prescribed downstream pressure, while
the compliant segment of the channel is externally pressurised. This model is validated
against previous predictions which approximated the wall using nonlinear shell theory
(Heil 2004), showing excellent agreement (figures 3, 4).

The numerical method used in this study is based on an arbitrary Lagrangian–Eulerian
approach (Hirt, Amsden & Cook 1974; Donea et al. 2004; Hron & Turek 2006; Basting
et al. 2017; Ryzhakov et al. 2020), in that one can either move with the fluid (Lagrangian
description) or view the flow from a fixed position (Eulerian description). The novelty
of our method lies in the use of non-singular mappings between these two descriptions,
in which all fields are solved simultaneously and which allow the method to be fully
implicit. At the same time, we use high-order (fourth-order) finite differences or spectral
Chebyshev collocation to discretise the transformed domains. Thus, while there are other
such monolithic methods (e.g. Hron & Turek 2006; Ryzhakov et al. 2020), we are able
to construct a stable method with high spatial accuracy. The numerical method used
herein is well suited for solving other fluid–structure interaction problems (e.g. Bungartz
& Schäfer 2006) since it can handle large deformation of the solid with the help of these
non-singular mappings; many standard implementations of fluid–structure interaction fail
due to excessive mesh deformation.

The model predicts that at least one steady configuration of the system exists for all
values of the parameters. For sufficiently large Reynolds numbers the system exhibits three
co-existing steady states for a narrow range of the parameters. These states are connected
by a pair of limit points, similar to earlier predictions using more approximate models (Luo
& Pedley 2000; Stewart 2017) with two stable configurations (figures 4, 9): an upper branch
(where the channel wall is entirely inflated) and a lower branch (where the channel wall
is collapsed). Beyond the upper limit point the system transitions (dynamically) from the
upper branch of steady solutions to the lower, where the wall profile becomes increasingly
collapsed, the flow separates beyond the constriction and a low pressure vortex is shed
into the downstream rigid segment (figure 6); such an observation has many similarities to
swirling flows in pipes and open jets (Lopez 1994; Shtern & Hussain 1996; Herrada et al.
2003).

Similar to previous studies (Heil 2004; Stewart 2017), we found an instability of the
lower branch of steady solutions via a Hopf bifurcation when either the Reynolds number
or the external pressure becomes sufficiently large (figures 8, 10). For the parameter values
considered in this study we did not observe the neutral stability curve entering the region
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of multiple steady states. However, in line with observations of Stewart (2017), we expect
that the neutral stability curve will eventually terminate when it intersects the line of limit
points along the lower branch of steady solutions.

However, our model also predicted that the upper branch of steady solutions could
become unstable via a Hopf bifurcation to an entirely separate branch of mode-2
instabilities when the pre-tension is sufficiently low (figure 10). Note that an analogous
instability of the upper branch has very recently been found in a model of Newtonian
flow in a collapsible channel with a nonlinear elastic beam (Wang et al. 2021a). The fully
developed limit cycle of our upper branch oscillations bears many similarities to those
described by Wang et al. (2021a), exhibiting a hump propagating upstream along the
compliant segment and interacting with flow in the upstream rigid segment (figure 12);
however, in our oscillations the hump is reflected by the upstream rigid segment and the
flow sheds a low pressure vortex which drives a vorticity wave into the downstream rigid
segment (Stephanoff et al. 1983; Pedley & Stephanoff 1985).

Our new hyperelastic formulation provides an opportunity to investigate the role of
wall thickness on the onset of instability. Previous studies of flow in thick-walled tubes
or channels have been restricted to steady configurations (Marzo et al. 2005; Zhang
et al. 2018), while unsteady systems have typically considered asymptotically thin walls
(Luo & Pedley 1996; Jensen & Heil 2003; Luo et al. 2008). We found that, in the
absence of wall inertia, increasing the wall thickness alone makes negligible difference
to either the steady solutions (figure 13a,b) or the onset of oscillations (figures 13c,d, 14)
until the wall thickness becomes comparable to the channel thickness (in this case the
aspect ratio of the wall is relatively small h/L � 0.2 and so thin-wall approximations are
still appropriate). For even larger wall thicknesses the critical pressure for the onset of
instability is significantly increased compared with the thin walls (figure 14), while the
oscillation frequency is decreased (figure 14b). Furthermore, for the largest wall thickness
considered the critical external pressure and oscillation frequency both saturate as the
Reynolds number becomes large (figure 14).

The dimensionless parameter ρ̂ describes the strength of wall inertia compared with
the internal elastic stress, but also represents an eigen-frequency of the elastic wall
compared with the characteristic (inverse) time scale of the flow past the elastic wall.
It is therefore important to characterise how these natural frequencies of wall vibration
correlate to the other modes of self-excited oscillation of this system. Wall mass also
plays an important role in physiological applications such as human phonation (Mittal,
Erath & Plesniak 2013). We found that increasing the wall inertia parameter promotes
the onset of self-excited oscillation by enlarging the unstable region of the primary
(mode-2) global instability in the space spanned by Reynolds number and external pressure
(figure 16); inertia-driven destabilisation was previously noted by Luo & Pedley (1998). In
addition, increasing the wall inertia parameter also destabilises higher-frequency modes
of instability, which eventually dominate the primary global instability as the wall inertia
parameter increases (figure 16), again consistent with the observations of Luo & Pedley
(1998). However, it turns out that the value of the parameter ρ̂ is typically small for
the silicone rubber tubes used in Starling resistor experiments; these tubes have been
estimated to have a Young’s modulus and Poisson ratio of E = 3.8 MPa and ν = 0.423,
respectively (Bertram 1987), resulting in a shear modulus of μ2 = 1.335 MPa (assuming
an isotropic material). Silicone rubber also has an average density of ρ2 = 1240 kg m−3.
Starling resistor experiments in a tube with internal diameter 12 mm and a flow rate of the
order of 60 ml s−1 (Bertram & Tscherry 2006), exhibit a flow velocity of approximately
0.531 m s−1. Flow of this velocity in a channel of thickness 1 mm corresponds to a flow
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rate per unit length in the out-of-plane direction of q = 5.31 × 10−4 m2 s−1. Using all
this information, we estimate ρ̂ ≈ 2.62 × 10−4 � 1 for a compliant channel formed from
silicone rubber.

Our hyperelastic formulation assumed first-order elasticity, with elastic stress
proportional to the gradient of the strain energy function with respect to the strain
tensor. We imposed lateral boundary conditions of no displacement along the face of the
elastic solid in contact with the rigid wall. This approach cannot reproduce the resistance
to bending of an elastic beam, since this would require strain gradient (second-order)
elasticity, where the elastic stress has additional contributions due to the derivative of the
strain energy function with respect to the strain gradient tensor; this approach would also
require additional boundary conditions at the edges of the compliant segment. Indeed,
Luo and coworkers considered a collapsible channel model where the (asymptotically
thin) elastic wall exhibited resistance to both bending and stretching but no pre-tension,
imposing clamped and zero slope conditions at each end of the flexible wall (Luo et al.
2008; Wang et al. 2021a,b). Their wall profiles accommodated this zero slope condition
over very narrow boundary layers at each end of the compliant segment (see examples in
Wang et al. 2021a). Furthermore, Wang et al. (2021b) noted that increasing the resistance
to bending of the beam narrowed the region of multiple steady states, and eventually
suppressed the onset of self-excited oscillation. Similar to the present study, the model
of Wang et al. (2021a,b) predicted self-excited oscillations growing from both the upper
and lower branches of static solutions. However, their lower branch oscillations were
typically of higher frequency and re-stabilised for sufficiently large external pressure
(Wang et al. 2021b) (contrary to the present system where lower branch instability
persisted as the external pressure increased, figures 8, 10). Both systems exhibited an
upper branch instability of O(1) frequency, but in Wang et al. (2021a,b) the unstable
zone remained localised to the neighbourhood of the upper branch limit point (contrary to
the present system where the upper branch instability persisted to low external pressures,
figure 10). However, it is unclear if these discrepancies are due to the differences in the
constitutive assumptions between the two systems, or due to the absence of pre-tension in
the work of Wang et al. (2021a,b). A more expansive comparison will be pursued in future
work.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.1131.
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ξ1 ξ2 χ1 χ2 ω̂r ω̂i

641 201 19 14 1.052 0.0232
641 201 19 19 1.054 0.02229
641 201 25 14 1.053 0.02404
641 201 25 19 1.055 0.02314
721 226 19 14 1.051 0.02064
721 226 25 14 1.051 0.02140
801 251 21 19 1.054 0.02239

Table 1. Mesh sensitivity for an unstable case on the upper branch of steady solutions for a thin wall (ê = 0.01)
with no wall inertia (ρ̂ = 0), listing the real and imaginary parts as a function of the discretisation parameters
ξ1, ξ2, χ1 and χ2. The row listed in bold corresponds to the parameters used for the simulations in the main
text. Here T̂0 = 5, p̂ext = 0.82 and Re = 400.

Appendix. Convergence study of the numerical method

To illustrate the mesh independence of the numerical results we compute the real and
imaginary components of the eigenvalue ω̂ obtained from the global linear stability
eigensolver for different discretisations of the domain, changing the number of mesh points
ξ1, ξ2, χ1 and χ2 (listed in § 2.2). A typical example for an unstable point on the upper
branch of steady solutions is provided in table 1, where we find that the real and imaginary
parts of ω̂ show only negligible variations as the mesh is refined. The data listed in boldface
correspond to the numerical mesh used in this work.
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