
Breakup and 
oales
en
e of free surfa
e 
owsThe pi
ture of a dolphin, jumping out of the water in the New England aquarium in Boston(Fig.1), gives a very good idea of the 
hallenges involved in the des
ription of free-surfa
e
ows. In a 
omplex series of events, whi
h is still not well understood, water swept up bythe dolphin breaks up into thousands of small drops. A more detailed idea of what happens
lose to the point of breakup is given in Fig.2, whi
h shows a drop of water falling from afau
et. On
e an elongated ne
k has formed, surfa
e energy is minimized by lo
ally redu
ingits radius, and a drop separates at a point. On
e the ne
k is broken, it rapidly snaps ba
k,forming a 
apillary waves on its surfa
e. In the last pi
ture on the right, the ne
k has beensevered on the other end as well. Thus in a single dripping event, two drops have a
tuallyformed, and the smaller \satellite" drop will subsequently break up to form even smallerdrops. This gives a good idea of the 
omplexity of just a single breakup event, driven bysurfa
e tension.The 
omplementary event of drop 
oales
en
e is illustrated by Fig.3, whi
h shows two dropswhi
h have been made to tou
h at a point. Surfa
e tension drives a motion that makes thedrop 
oales
e, sin
e the 
ombined drop has a lower surfa
e energy. The intitial motion is sorapid that it is hardly resolved by the 
amera, and it results in quite a 
ompli
ated sequen
eof 
apillary waves, drop os
illations, et
.Clearly 
hanges in topology brought about by breakup or 
oales
en
e are the most dramati
events in the evolution of a free surfa
e, 
hara
terized by a very rapid and 
omplex motionof the surfa
e (
f. Figs.2 and 3). In fa
t, it is not a priori 
lear whether 
ontinuum equationsare able to des
ribe topology 
hanges, sin
e somewhere in between 
ow features developwhi
h are of mole
ular size. So apart from predi
ting the a
tual motion near the singularpoint, the aim of the theory is to explain how one topology 
an be transformed in the otherin a unique way. The spatial and temporal resolution of any numeri
al simulation is limited,so a thorough understanding of the singularity is needed. On
e the rapid motion near thesingularity 
an be des
ribed theoreti
ally, the numeri
al evolution 
an be mat
hed onto it. Inaddition, the theoreti
al des
ription of singularities will explain some universal 
ow features,attributable to breakup or 
oales
en
e of drops.Non-linear dynami
s of drop formationTo obtain insight into the non-linear dynami
s 
lose to breakup one has to solve a notoriouslydiÆ
ult problem: the Navier-Stokes equation within a domain that is 
hanging in time. Themotion of the interfa
e is di
tated by the 
uid motion itself, as the interfa
e is 
onve
tedpassively by the 
uid motion at the interfa
e. The motion of the interfa
e has to be 
omputedwith great a

ura
y, be
ause the 
uid motion is driven by surfa
e tension, resulting in aLapla
e pressure proportional to the mean 
urvature of the interfa
e. Sin
e the driving is1



Figure 1: Dolphin in the New England aquarium in Boston; photograph by Harald Edgerton.
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proportional to pressure gradients, a

eleration of a 
uid element is e�e
tively determined bythird derivatives of the surfa
e shape. The numeri
al diÆ
ulties inherent in this 
oupling of
uid motion and its driving for
e are dis
ussed thoroughly by S
ardovelli and Zaleski (1999),giving an overview of available numeri
al methods.To obtain greater insight into drop breakup, it is ne
essary to redu
e the non-linear dynami
sasso
iated with it to its essentials. The idea is that near the point where the ne
k radiusgoes to zero, the 
uid motion is dire
ted primarily in a dire
tion parallel to the axis. Thisallows to redu
e the problem to an equation for the average velo
ity in the axial dire
tionalone. Alternatively, and more or less equivalently, the velo
ity �eld 
an be expanded in theradial 
o-ordinate. If a typi
al radial length s
ale is smaller than the 
orresponding axialone, usually signaled by the interfa
e slope being less than one, the leading order 
oeÆ
ientfor the velo
ity suÆ
es, as dis
ussed in detail by Eggers (1997).The result is a system of equations for the lo
al radius h(z; t) of the 
uid ne
k, and theaverage velo
ity v(z; t) in the radial dire
tion. All other terms are of higher order in h orthe radial variable r. For a liquid with kinemati
 vis
osity �, density �, and surfa
e tension
 (negle
ting the e�e
t of the outer gas), the result of the 
al
ulation is:�th2 + �z(vh2) = 0; (1)�tv + v�zv| {z } = �
��z � 1R1 + 1R2�| {z } +3� �z(�zvh2)h2| {z }inertia surfa
e tension vis
osity : (2)The simpli�
ation a
hieved by (1),(2) is enormous. Firstly, the dimension of the problembeen redu
ed by one (the radial variable has been eliminated). Se
ondly, the moving bound-ary has been des
ribed expli
itely by h(z; t). Equation (1) expresses the 
onservation of mass:it is written as a 
onservation equation for the volume h2dz of a sli
e of 
uid. Equation (2)is a balan
e of for
es a
ting on a 
uid element, and thus very similar in stru
ture to theoriginal Navier-Stokes equation (Landau and Lifshitz (1984)). The l.h.s. of (2) 
orrespondsto inertial for
es, driven by surfa
e tension and vis
ous for
es on the right. As to be expe
tedfrom Lapla
e's formula, surfa
e tension for
es are proportional to the mean 
urvature, whi
hfor a body of rotation is 1R1 + 1R2 = 1hp1 + (�zh)2 � �zzhp1 + (�zh)23 : (3)Stri
tly speaking, the radial expansion implied by (1),(2) would have required us to repla
ethe mean 
urvature by the leading-order expression 1=h(z; t) alone. This is indeed suÆ
ientto des
ribe the neighborhood of the pin
h point, but the appli
ability of the equationsis greatly enhan
ed by in
luding the full 
urvature, be
ause the equations then in
lude a3



Figure 2: A sequen
e of photographs showing a drop of water falling from a pipette D =5:2mm in diameter (photograph by H. Peregrine, see Eggers (1997)). The superimposedbla
k lines are the result of a simulation of the one-dimensional equations (1),(2).
Figure 3: A sequen
e of images (�t = 1ms) of two mer
ury drops brought into 
onta
t atthe point indi
ated by an arrow (Men
ha
a-Ro
ha et al. (2001)).spheri
al drop among its equilibrium solutions.The remarkable power of the system (1),(2) in des
ribing a real break-up event is illustratedby Fig.2. The sequen
e of experimental pi
tures shows a drop of water falling from a pipette5.2 mm in diameter. The drop is shown at the moment of the �rst bifur
ation (�rst pi
ture),after whi
h the 
uid ne
k re
oils from the drop (se
ond pi
ture). Shortly afterward the ne
kpin
hes on its other end (third pi
ture), thereby forming a \satellite drop". Su
h satellitedrops are seen to be a dire
t 
onsequen
e of the long ne
k that is forming at pin
h-o�, whi
hin turn re
e
ts the pro�le being extremely asymmetri
 around the pin
h-point: on one side,the pro�le asymptotes to the drop, on the other side it is very 
at and forms a slender ne
k.It is evident from Fig.2 that the one-dimensional approximation works extremely well indes
ribing breakup, and the formation of satellite drops. This in
ludes regions near thedrop, where the pro�le is a
tually quite steep, so the expansion underlying (1),(2) is formallynot valid. A 
areful assessment of the quality of one-dimensional approximations, a
hievedthrough 
omparison with a

urate numeri
al simulations of the full Navier-Stokes equation,4



is given in Ambravaneswaran et al. (2002). As dis
ussed in the introdu
tion, it is not 
learhow to pass from the �rst panel in Fig.2 to the se
ond on the basis of (1),(2), but rathersome \surgery" was ne
essary. Namely, when the minimum ne
k radius was just 10�4 timesthe original radius, it was 
ut and spheri
al 
aps were pla
ed on either side. Below we willjustify this pro
edure on the basis of a more detailed understanding of the dynami
s at thepin
h point.Similarity solutionsWe now turn to the immediate neighborhood of the pin
h point, where separation o

urs.Sin
e the evolution takes pla
e on length and time s
ales mu
h smaller than any externallyapplied s
ales su
h as the diameterD of the 
apillary in Fig.2, the motion should be properlymeasured in some intrinsi
 units of the 
uid. The only su
h units of length and time that
an be formed from the 
uid parameters are`� = �2�
 and t� = �3�2
2 : (4)As expe
ted intuitively, length and time s
ales in
rease with vis
osity, whi
h 
an vary greatlybetween di�erent 
uids. For water, the vis
ous length s
ale `� is just 10 nanometers, farbelow anything visible on the s
ale of the photographs in Figs.2 and 3. For gly
erol, on theother hand, `� is in the order of 
entimeters, and the asymptoti
s des
ribed below is easilyobservable.Sin
e our des
ription is lo
al, it is 
lear that we have to represent the motion in a lo
al 
o-ordinate system. The only reasonable 
hoi
e for its origin is the point z0 and time t0 wherethe singularity o

urs. Making spa
e and time dimensionless using `� and t�, we introdu
ez0 = (z � z0)=`� and t0 = (t0 � t)=t� : (5)Now representing the spatial pro�le as well as the velo
ity �eld in these 
o-ordinates,h(z; t) = `�H(z0; t0) (6)v(z; t) = `�t� V (z0; t0)we expe
t the new fun
tions H and V to represent properties of the singularity alone. Inparti
ular, we hope that they are universal, independent of both the initial 
onditions andthe material parameters of the 
uid.Sin
e no external s
ales are thus expe
ted to 
ome into play in the des
ription of H(z0; t0)and V (z0; t0), these pro�les should be invariant under a 
hange of s
ale. This means both5



the height and the velo
ity pro�le should be self-similar:H(z0; t0) = t0�� z0t01=2� (7)V (z0; t0) = t0�1=2 � z0t01=2� :The meaning of (7) is that the shape of the pro�les does not 
hange as a fun
tion of time, onlythe radial, axial, and temporal s
ales are adjusted as t0 goes to zero. The exponents impli
itin (7) were 
omputed from the requirement that all terms in the equations balan
e, i.e. thatinertial, surfa
e tension, and vis
ous for
es are of the same order 
lose to the singularity.In parti
ular, two things are noteworthy about the exponents: First, the ne
k radius shrinkslinearly with t0 as the singularity is approa
hed, while the 
orresponding axial s
ale onlyshrinks like t01=2. This implies that the pro�le is asymptoti
ally slender, and the assumptionsunderlying the derivation of (1),(2) were justi�ed. Se
ond, the exponent of the velo
ity isnegative, so the motion is in
reasingly fast 
lose to the singularity. This is not unexpe
ted,sin
e ever stronger surfa
e tension for
es are driving in
reasingly small 
uid ne
ks. On
e thene
k rea
hes mi
ros
opi
 size, of 
ourse, the des
ription in terms of a velo
ity �eld be
omesmeaningless, so there is no danger of truly in�nite velo
ities looming here.Finally, on
e the self-similar form (7) is re-introdu
ed into the equations of motion (1),(2),one obtains a set of ordinary di�erential equations for the similarity pro�les �(�) and  (�)alone. A more thorough analysis of the stru
ture of the equations reveals (Eggers (1997)) thatthere is only one universal solution of them, on
e proper boundary 
onditions are imposedat � = �1. These are derived from the 
ondition that mat
hing must be possible to thema
ros
opi
 pro�les farther away, whi
h evolve on mu
h longer times
ales than the self-similar solution itself. A remarkable 
onsequen
e of this universality is that the minimumne
k radius, at a given time away from the point of breakup, is a quantity that is independentof the initial radius (Eggers (1997)):hmin = 0:03 
��(t0 � t): (8)To look at a 
omparison between theory and experiment in more detail, Fig.4 shows threesu

essive images of a jet of gly
erol pin
hing o� to form a drop (a small se
tion of whi
his seen on the right). On
e the temporal distan
e from the singularity is known (fromexperiment), the pro�le 
an be predi
ted without adjustable parameters (dark 
ontinuouslines). The only di�eren
e between the three sets of lines is that the axes have been res
aledby the fa
tor implied by (7).The universality of the solution des
ribed by (7) of 
ourse implies that it holds equally well6



Figure 4: A sequen
e of interfa
e pro�les of a jet of gly
erol 
lose to the point of breakup (the
enter of the drop being formed is seen as a bright spot in the top pi
ture). The experimentalimages 
orrespond to t0� t = 350�s; 298�s, and 46�s (from top to bottom). Correspondinganalyti
al solutions based on (7) are superimposed. (Experiment by T. Kowalewski, seeEggers (1997))for the pin
hing of the drop of water shown in Fig.2, as it does for the gly
erol jet of Fig.4.The reason this 
ommon feature is not immediately apparent is that `� is extremely smallfor water, so one would have to observe the neighborhood of the point of breakup in Fig.2under extreme magni�
ation. This means that only on a very small s
ale will all three for
es
ontributing to (2) 
ome into play. For the parts of the evolution where the minimum radiushmin is mu
h larger than `�, one 
an negle
t vis
osity, so that Fig.2 is e�e
tively des
ribedby invis
id dynami
s.Thus to understand the appearan
e of drop pin
h-o� on a given s
ale D (su
h as the nozzlediameter), one has to take into a

ount the phenomenon of 
rossover: if initially D � `�,the dynami
s is 
hara
terized by a balan
e of inertial and surfa
e tension for
es. As hminrea
hes `�, the dynami
s 
hanges toward an inertial-surfa
e tension-vis
ous balan
e. If onthe other hand D � `� initially, inertia 
annot play a signi�
ant role: the dynami
s isdominated by vis
osity and surfa
e tension. In the 
ourse of this evolution, however, inertiabe
omes in
reasingly important and �nally 
at
hes up with the other two. As a result, thesame universal solution as before is �nally observed.To ea
h of the new balan
es des
ribed above 
orresponds a new similarity solution, dis-tin
t from (7) (Eggers (1997)). For example, the inertia-surfa
e tension balan
e leads to aminimum drop radius that behaves likehmin = 0:7�
��2=3 (t0 � t)2=3; (9)7



PSfrag repla
ements�log(hmin)

Re =pD=`�
hmin = 0:06`�t0 hmin = 0:7`�t02=3

hmin = 0:03`�t0Figure 5: A graphi
al representation of some of the s
aling regimes that 
an be observedin droplet pin
hing, depending on the vis
osity of the liquid. For high vis
osity (Re small)threads form as a drop falls from a pipette of diameter D. In the opposite 
ase of lowvis
osity (Re large) the pin
hing ne
k is 
oni
al. As the ne
k radius goes to zero, however,one always ends up with the same universal s
aling regime. (Photographs by X.D. Shi andS. Nagel, see Eggers (1997))
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while the vis
ous-surfa
e tension balan
e 
orresponds tohmin = 0:06 
��(t0 � t): (10)The spatial stru
ture of the 
orresponding similarity solutions largely explains the ma
ro-s
opi
 appearan
e of high and low vis
osity 
uids, respe
tively. The axial and radial s
alesof the invis
id solution (9) both behave like (t0 � t)2=3, thus leading to a ne
k that is 
one-shaped, 
onsistent with Fig.2. For its 
omputation, the lubri
ation equations (1),(2) areinadequate, rather, the full equations for invis
id, irrotational 
ow have to be solved. Thereason is that the interfa
e pro�le turns over, so that the tip of the 
one-shaped ne
k isa
tually inside the drop. These predi
tions of similarity theory have been 
on�rmed by bothexperiment and full numeri
al simulations of the Navier-Stokes equations by Chen et al.(2002).Very vis
ous 
uids, on the other hand, tend to form very elongated threads. This is re
e
tedby the fa
t that the typi
al axial s
ale of the vis
ous solution (10) behaves like (t0� t)0:175 �(t0 � t). Interestingly, the exponent � = 0:175 : : : is an irrational number 
oming from thesolution of a trans
endental equation (Eggers (1997)). This is an example of self-similarityof the se
ond kind, in the 
lassi�
ation of Barenblatt (1996). The striking di�eren
e in thebehavior of high and low vis
osity 
uids is represented s
hemati
ally in Fig.5.It would be beyond the s
ope of this brief overview to mention all the re
ent developmentsin the study of drop pin
h-o�, some of whi
h are dis
ussed in Lin (2003). To name someexamples, the presen
e of an outer 
uid signi�
antly alters pin
hing, leading to new typesof similarity solutions, with important appli
ations for the physi
s of mixing. For extremelysmall jets of the size of nanometers, thermal 
u
tuations have to be taken into a

ount, whi
hsigni�
antly alter the dynami
s. This has been found using mole
ular dynami
s simulationsof a jet 6 nanometers in diameter. However, even on mu
h larger s
ales small perturbationsto the observed similarity solutions 
an be important. In fa
t, the threads shown in Fig.4are quite sensitive to perturbations, and a 
areful examination of the last panel shows (un-fortunately obs
ured by the drawn lines) the growth of disturban
es on the thread Eggers(1997).In other words, the question of what resolution (experimental or numeri
al) is ne
essary nearthe point of breakup depends very mu
h on what one is interested in: a lot of detail may beburied within a pin
hing event, whi
h may or may not be important for a given question.If one is trying to des
ribe topologi
al transitions numeri
ally, one will always have to re-noun
e the des
ription of the dynami
s below some 
uto� length. It is therefore importantto understand the me
hanisms whi
h guarantee the uniqueness of the 
ontinuation a
rossthe singularity. The key is again the universality of similarity solutions we already found inthe approa
h to the singularity. A new set of similarity solutions 
an be found after breakup9
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After Breakup
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Figure 6: The breakup of a mixture of gly
erol in four parts of ethanol, as 
al
ulated fromsimilarity solutions before and after breakup. Part (a) shows three pro�les before breakup,in time distan
es of 46 �s, 
orresponding to jt0j = 1; 0:55, and 0.1. In part (b) the same isshown after breakup.- one exists on either side of the pin
h point. This is illustrated in Fig.6, whi
h shows sometypi
al predi
tions of the similarity theory. On one side one sees the rapid retra
tion of avery thin needle, on the other a small protrusion is left initially on the drop, whi
h qui
klyheals o� to form a smooth drop.The di�eren
e to the similarity solution before breakup lies of 
ourse in the boundary 
on-dition at the retra
ting tip. A 
loser analysis reveals (Eggers (1997)) that the similaritysolutions after breakup depends on the boundary 
onditions for both the height and thevelo
ity as one moves away to in�nity. The 
ru
ial 
ondition that guarantees unique 
on-tinuation is the fa
t that both pro�les to the left and right of the point of breakup haveto 
oin
ide with the solutions before breakup as one moves to in�nity. Information betweenthe solutions before and after breakup is thus passed on solely on the basis of the far-�eldbehavior. Whatever mi
ros
opi
 physi
s determines the a
tual breakup event is irrelevantto the 
ontinuation.Coales
en
eAs we have seen above, the understanding of drop breakup is aided greatly by the universalityof the observed solutions. One is able to almost 
ompletely disregard the free-surfa
e motionaway from the point of breakup. The main diÆ
ulty in �nding a unifying pi
ture for drop10




oales
en
e lies in the fa
t that one 
annot disregard the drop motion that leads to themeeting of the two drops, resulting in a number of problems.Firstly, the motion produ
ed by the purely geometri
al overlap between two approa
hingdrops is 
omparable or faster than the motion generated by surfa
e tension. Hen
e thevelo
ity of approa
h must 
ome into play when des
ribing the dynami
s of 
oales
en
e.Se
ondly, the 
uid 
aught between two approa
hing drops 
annot be ignored, even if itsvis
osity is very small. The reason is that a very thin lubri
ation �lm between two dropswill still produ
e an appre
iable pressure, whi
h deforms the drops prior to their meeting ata point. Thirdly, the me
hanism that leads to the �rst small-s
ale union between the dropsis not well understood. In parti
ular, the presen
e of surfa
tants on the surfa
e produ
esbarriers that have to be over
ome, whi
h 
an signi�
antly delay re
onne
tion, as shown byAmarou
hene et al. (2001).We will therefore fo
us on the simplest 
ase of a vanishing speed of approa
h, in whi
h 
asethe ensuing dynami
s is determined by the 
uid parameters and the radius R of the dropsalone. If the two drops do not have equal radius, the one with the smaller radius will play thedominant role and e�e
tively repla
e R. Sin
e the motion starts from rest, it will initiallybe slow, so the driving by surfa
e tension is 
ountera
ted by vis
osity alone. This behaviorwill persist until the radius rm of the liquid bridge 
onne
ting the two drops has rea
hed`�, after whi
h it 
rosses over to one where only inertia matters and vis
osity drops out ofthe problem. Finally, for rm � R, the initially lo
al motion in the bridge between the dropsevolves to a global motion involving all of the 
uid.The 
entral idea in investigating the dynami
s of 
oales
en
e is of 
ourse that for rm � R themotion is self-similar, dominated by the lo
al behavior 
lose to the menis
us where the twodrops meet. At the menis
us the 
urvature is extremely high, and thus leads to a drivingthat is 
on�ned to a ring-shaped region, whose radius rm is expanding. Turning �rst tothe initial stage of vis
ous motion, the problem is thus one of a line for
e moving throughan in�nite medium. The for
e per unit length of the line is 2
, and one has to 
omputethe speed that results from it. It is one of the 
hara
teristi
 features of Stokes 
ow thatto obtain a �nite answer, logarithmi
 
orre
tions 
ome into play, for whi
h an upper anda lower 
ut-o� is needed. The upper 
ut-o� evidently is the radius of the drop itself, thewidth of the menis
us serves as the lower 
uto�. The result of the 
al
ulation (Eggers et al.(1999)) is (� = �� being the vis
osity):rm(t) � �
� (�� 1)2� t ln 
R� t; (11)where the width of the menis
us � is assumed to s
ale like � / r�m.Interestingly, the value of � whi
h determines the prefa
tor in (11) depends on the presen
eof an outer 
uid between the drops. If no outer 
uid is present, the 
orre
t value is � = 3,11
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(c)Figure 7: A 
loseup of the point of 
onta
t during 
oales
en
e of two identi
al drops for thetwo 
ases of no outer 
uid, (a), and two 
uids of equal vis
osity, ((b) and (
)). Part (a) isHopper's solution (no outer 
uid) for rm=R = 10�3; 10�2:5; 10�2, and 10�1:5. Part (b) is anumeri
al simulation of the 
ase where the inner and outer vis
osities are the same, showing
uid that 
olle
ts in a bubble at the menis
us. Note that the two axes are s
aled di�erently,so the bubble is almost 
ir
ular. For large values of rm, as shown in (
), the 
uid �nallyes
apes from the bubble.
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whi
h 
an in fa
t be dedu
ed from an exa
t solution (due to Hopper) to the two-dimensionalanalogue of the problem under study (Eggers et al. (1999)). A 
loseup of this extremelysharp menis
us is shown in panel (a) of Fig.7. Even a small amount of interstitial 
uid,however, 
hanges the situation 
onsiderably. Owing to the fa
t that the gap between thedrops is ex
eedingly narrow, it is quite hard to push any 
uid away from the advan
ingmenis
us. Instead, the interstitial 
uid is 
olle
ted in a pou
h at the menis
us (see Fig.7),and � is now mu
h larger, so that one �nds � = 3=2 (Eggers et al. (1999)).If the drop 
uid is very vis
ous (`� > R), this is all that 
an be said from the point of view ofaymptoti
s. Among others, we have established that the motion is des
ribed by a well-de�nedasymptoti
 solution. Hen
e after a very short time, details of the mi
ros
opi
 me
hanismsleading to 
oales
en
e have been \forgotten". In a numeri
al simulation, \surgery" done ona suÆ
iently small s
ale will meet a similar fate, and on soon ends up following the uniquephysi
al solution.Finally, if `� � R, there is a region where the motion is almost invis
id. From a balan
e ofsurfa
e tension for
es with inertial for
es at the menis
us one dedu
es (Eggers et al. (1999))that rm / �
R� �1=4 t1=2: (12)This behavior has been 
on�rmed by re
ent numeri
al simulations of Du
hemin et al. (2003).However, there is an unexpe
ted 
ompli
ation: as the menis
us retra
ts, 
apillary waves growahead of it, whose amplitude �nally equals the width of the 
hannel. Thus the two sides ofthe drops tou
h, and a toroidal void is en
losed. This pro
ess repeats itself, leaving behinda self-similar su

ession of voids.In summary, one 
an often obtain analyti
al solutions to the equations of motion near asingularity, explaining some universal features of breakup and 
oales
en
e events. This isimportant for estimating errors introdu
ed by a given numeri
al pro
edure used to des
ribetopologi
al transitions. Mat
hing numeri
s to known analyti
al solutions 
an lead to 
on-siderable savings in numeri
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