
Breakup and oalesene of free surfae owsThe piture of a dolphin, jumping out of the water in the New England aquarium in Boston(Fig.1), gives a very good idea of the hallenges involved in the desription of free-surfaeows. In a omplex series of events, whih is still not well understood, water swept up bythe dolphin breaks up into thousands of small drops. A more detailed idea of what happenslose to the point of breakup is given in Fig.2, whih shows a drop of water falling from afauet. One an elongated nek has formed, surfae energy is minimized by loally reduingits radius, and a drop separates at a point. One the nek is broken, it rapidly snaps bak,forming a apillary waves on its surfae. In the last piture on the right, the nek has beensevered on the other end as well. Thus in a single dripping event, two drops have atuallyformed, and the smaller \satellite" drop will subsequently break up to form even smallerdrops. This gives a good idea of the omplexity of just a single breakup event, driven bysurfae tension.The omplementary event of drop oalesene is illustrated by Fig.3, whih shows two dropswhih have been made to touh at a point. Surfae tension drives a motion that makes thedrop oalese, sine the ombined drop has a lower surfae energy. The intitial motion is sorapid that it is hardly resolved by the amera, and it results in quite a ompliated sequeneof apillary waves, drop osillations, et.Clearly hanges in topology brought about by breakup or oalesene are the most dramatievents in the evolution of a free surfae, haraterized by a very rapid and omplex motionof the surfae (f. Figs.2 and 3). In fat, it is not a priori lear whether ontinuum equationsare able to desribe topology hanges, sine somewhere in between ow features developwhih are of moleular size. So apart from prediting the atual motion near the singularpoint, the aim of the theory is to explain how one topology an be transformed in the otherin a unique way. The spatial and temporal resolution of any numerial simulation is limited,so a thorough understanding of the singularity is needed. One the rapid motion near thesingularity an be desribed theoretially, the numerial evolution an be mathed onto it. Inaddition, the theoretial desription of singularities will explain some universal ow features,attributable to breakup or oalesene of drops.Non-linear dynamis of drop formationTo obtain insight into the non-linear dynamis lose to breakup one has to solve a notoriouslydiÆult problem: the Navier-Stokes equation within a domain that is hanging in time. Themotion of the interfae is ditated by the uid motion itself, as the interfae is onvetedpassively by the uid motion at the interfae. The motion of the interfae has to be omputedwith great auray, beause the uid motion is driven by surfae tension, resulting in aLaplae pressure proportional to the mean urvature of the interfae. Sine the driving is1



Figure 1: Dolphin in the New England aquarium in Boston; photograph by Harald Edgerton.
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proportional to pressure gradients, aeleration of a uid element is e�etively determined bythird derivatives of the surfae shape. The numerial diÆulties inherent in this oupling ofuid motion and its driving fore are disussed thoroughly by Sardovelli and Zaleski (1999),giving an overview of available numerial methods.To obtain greater insight into drop breakup, it is neessary to redue the non-linear dynamisassoiated with it to its essentials. The idea is that near the point where the nek radiusgoes to zero, the uid motion is direted primarily in a diretion parallel to the axis. Thisallows to redue the problem to an equation for the average veloity in the axial diretionalone. Alternatively, and more or less equivalently, the veloity �eld an be expanded in theradial o-ordinate. If a typial radial length sale is smaller than the orresponding axialone, usually signaled by the interfae slope being less than one, the leading order oeÆientfor the veloity suÆes, as disussed in detail by Eggers (1997).The result is a system of equations for the loal radius h(z; t) of the uid nek, and theaverage veloity v(z; t) in the radial diretion. All other terms are of higher order in h orthe radial variable r. For a liquid with kinemati visosity �, density �, and surfae tension (negleting the e�et of the outer gas), the result of the alulation is:�th2 + �z(vh2) = 0; (1)�tv + v�zv| {z } = ���z � 1R1 + 1R2�| {z } +3� �z(�zvh2)h2| {z }inertia surfae tension visosity : (2)The simpli�ation ahieved by (1),(2) is enormous. Firstly, the dimension of the problembeen redued by one (the radial variable has been eliminated). Seondly, the moving bound-ary has been desribed expliitely by h(z; t). Equation (1) expresses the onservation of mass:it is written as a onservation equation for the volume h2dz of a slie of uid. Equation (2)is a balane of fores ating on a uid element, and thus very similar in struture to theoriginal Navier-Stokes equation (Landau and Lifshitz (1984)). The l.h.s. of (2) orrespondsto inertial fores, driven by surfae tension and visous fores on the right. As to be expetedfrom Laplae's formula, surfae tension fores are proportional to the mean urvature, whihfor a body of rotation is 1R1 + 1R2 = 1hp1 + (�zh)2 � �zzhp1 + (�zh)23 : (3)Stritly speaking, the radial expansion implied by (1),(2) would have required us to replaethe mean urvature by the leading-order expression 1=h(z; t) alone. This is indeed suÆientto desribe the neighborhood of the pinh point, but the appliability of the equationsis greatly enhaned by inluding the full urvature, beause the equations then inlude a3



Figure 2: A sequene of photographs showing a drop of water falling from a pipette D =5:2mm in diameter (photograph by H. Peregrine, see Eggers (1997)). The superimposedblak lines are the result of a simulation of the one-dimensional equations (1),(2).
Figure 3: A sequene of images (�t = 1ms) of two merury drops brought into ontat atthe point indiated by an arrow (Menhaa-Roha et al. (2001)).spherial drop among its equilibrium solutions.The remarkable power of the system (1),(2) in desribing a real break-up event is illustratedby Fig.2. The sequene of experimental pitures shows a drop of water falling from a pipette5.2 mm in diameter. The drop is shown at the moment of the �rst bifuration (�rst piture),after whih the uid nek reoils from the drop (seond piture). Shortly afterward the nekpinhes on its other end (third piture), thereby forming a \satellite drop". Suh satellitedrops are seen to be a diret onsequene of the long nek that is forming at pinh-o�, whihin turn reets the pro�le being extremely asymmetri around the pinh-point: on one side,the pro�le asymptotes to the drop, on the other side it is very at and forms a slender nek.It is evident from Fig.2 that the one-dimensional approximation works extremely well indesribing breakup, and the formation of satellite drops. This inludes regions near thedrop, where the pro�le is atually quite steep, so the expansion underlying (1),(2) is formallynot valid. A areful assessment of the quality of one-dimensional approximations, ahievedthrough omparison with aurate numerial simulations of the full Navier-Stokes equation,4



is given in Ambravaneswaran et al. (2002). As disussed in the introdution, it is not learhow to pass from the �rst panel in Fig.2 to the seond on the basis of (1),(2), but rathersome \surgery" was neessary. Namely, when the minimum nek radius was just 10�4 timesthe original radius, it was ut and spherial aps were plaed on either side. Below we willjustify this proedure on the basis of a more detailed understanding of the dynamis at thepinh point.Similarity solutionsWe now turn to the immediate neighborhood of the pinh point, where separation ours.Sine the evolution takes plae on length and time sales muh smaller than any externallyapplied sales suh as the diameterD of the apillary in Fig.2, the motion should be properlymeasured in some intrinsi units of the uid. The only suh units of length and time thatan be formed from the uid parameters are`� = �2� and t� = �3�22 : (4)As expeted intuitively, length and time sales inrease with visosity, whih an vary greatlybetween di�erent uids. For water, the visous length sale `� is just 10 nanometers, farbelow anything visible on the sale of the photographs in Figs.2 and 3. For glyerol, on theother hand, `� is in the order of entimeters, and the asymptotis desribed below is easilyobservable.Sine our desription is loal, it is lear that we have to represent the motion in a loal o-ordinate system. The only reasonable hoie for its origin is the point z0 and time t0 wherethe singularity ours. Making spae and time dimensionless using `� and t�, we introduez0 = (z � z0)=`� and t0 = (t0 � t)=t� : (5)Now representing the spatial pro�le as well as the veloity �eld in these o-ordinates,h(z; t) = `�H(z0; t0) (6)v(z; t) = `�t� V (z0; t0)we expet the new funtions H and V to represent properties of the singularity alone. Inpartiular, we hope that they are universal, independent of both the initial onditions andthe material parameters of the uid.Sine no external sales are thus expeted to ome into play in the desription of H(z0; t0)and V (z0; t0), these pro�les should be invariant under a hange of sale. This means both5



the height and the veloity pro�le should be self-similar:H(z0; t0) = t0�� z0t01=2� (7)V (z0; t0) = t0�1=2 � z0t01=2� :The meaning of (7) is that the shape of the pro�les does not hange as a funtion of time, onlythe radial, axial, and temporal sales are adjusted as t0 goes to zero. The exponents impliitin (7) were omputed from the requirement that all terms in the equations balane, i.e. thatinertial, surfae tension, and visous fores are of the same order lose to the singularity.In partiular, two things are noteworthy about the exponents: First, the nek radius shrinkslinearly with t0 as the singularity is approahed, while the orresponding axial sale onlyshrinks like t01=2. This implies that the pro�le is asymptotially slender, and the assumptionsunderlying the derivation of (1),(2) were justi�ed. Seond, the exponent of the veloity isnegative, so the motion is inreasingly fast lose to the singularity. This is not unexpeted,sine ever stronger surfae tension fores are driving inreasingly small uid neks. One thenek reahes mirosopi size, of ourse, the desription in terms of a veloity �eld beomesmeaningless, so there is no danger of truly in�nite veloities looming here.Finally, one the self-similar form (7) is re-introdued into the equations of motion (1),(2),one obtains a set of ordinary di�erential equations for the similarity pro�les �(�) and  (�)alone. A more thorough analysis of the struture of the equations reveals (Eggers (1997)) thatthere is only one universal solution of them, one proper boundary onditions are imposedat � = �1. These are derived from the ondition that mathing must be possible to themarosopi pro�les farther away, whih evolve on muh longer timesales than the self-similar solution itself. A remarkable onsequene of this universality is that the minimumnek radius, at a given time away from the point of breakup, is a quantity that is independentof the initial radius (Eggers (1997)):hmin = 0:03 ��(t0 � t): (8)To look at a omparison between theory and experiment in more detail, Fig.4 shows threesuessive images of a jet of glyerol pinhing o� to form a drop (a small setion of whihis seen on the right). One the temporal distane from the singularity is known (fromexperiment), the pro�le an be predited without adjustable parameters (dark ontinuouslines). The only di�erene between the three sets of lines is that the axes have been resaledby the fator implied by (7).The universality of the solution desribed by (7) of ourse implies that it holds equally well6



Figure 4: A sequene of interfae pro�les of a jet of glyerol lose to the point of breakup (theenter of the drop being formed is seen as a bright spot in the top piture). The experimentalimages orrespond to t0� t = 350�s; 298�s, and 46�s (from top to bottom). Correspondinganalytial solutions based on (7) are superimposed. (Experiment by T. Kowalewski, seeEggers (1997))for the pinhing of the drop of water shown in Fig.2, as it does for the glyerol jet of Fig.4.The reason this ommon feature is not immediately apparent is that `� is extremely smallfor water, so one would have to observe the neighborhood of the point of breakup in Fig.2under extreme magni�ation. This means that only on a very small sale will all three foresontributing to (2) ome into play. For the parts of the evolution where the minimum radiushmin is muh larger than `�, one an neglet visosity, so that Fig.2 is e�etively desribedby invisid dynamis.Thus to understand the appearane of drop pinh-o� on a given sale D (suh as the nozzlediameter), one has to take into aount the phenomenon of rossover: if initially D � `�,the dynamis is haraterized by a balane of inertial and surfae tension fores. As hminreahes `�, the dynamis hanges toward an inertial-surfae tension-visous balane. If onthe other hand D � `� initially, inertia annot play a signi�ant role: the dynamis isdominated by visosity and surfae tension. In the ourse of this evolution, however, inertiabeomes inreasingly important and �nally athes up with the other two. As a result, thesame universal solution as before is �nally observed.To eah of the new balanes desribed above orresponds a new similarity solution, dis-tint from (7) (Eggers (1997)). For example, the inertia-surfae tension balane leads to aminimum drop radius that behaves likehmin = 0:7���2=3 (t0 � t)2=3; (9)7
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hmin = 0:03`�t0Figure 5: A graphial representation of some of the saling regimes that an be observedin droplet pinhing, depending on the visosity of the liquid. For high visosity (Re small)threads form as a drop falls from a pipette of diameter D. In the opposite ase of lowvisosity (Re large) the pinhing nek is onial. As the nek radius goes to zero, however,one always ends up with the same universal saling regime. (Photographs by X.D. Shi andS. Nagel, see Eggers (1997))
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while the visous-surfae tension balane orresponds tohmin = 0:06 ��(t0 � t): (10)The spatial struture of the orresponding similarity solutions largely explains the maro-sopi appearane of high and low visosity uids, respetively. The axial and radial salesof the invisid solution (9) both behave like (t0 � t)2=3, thus leading to a nek that is one-shaped, onsistent with Fig.2. For its omputation, the lubriation equations (1),(2) areinadequate, rather, the full equations for invisid, irrotational ow have to be solved. Thereason is that the interfae pro�le turns over, so that the tip of the one-shaped nek isatually inside the drop. These preditions of similarity theory have been on�rmed by bothexperiment and full numerial simulations of the Navier-Stokes equations by Chen et al.(2002).Very visous uids, on the other hand, tend to form very elongated threads. This is reetedby the fat that the typial axial sale of the visous solution (10) behaves like (t0� t)0:175 �(t0 � t). Interestingly, the exponent � = 0:175 : : : is an irrational number oming from thesolution of a transendental equation (Eggers (1997)). This is an example of self-similarityof the seond kind, in the lassi�ation of Barenblatt (1996). The striking di�erene in thebehavior of high and low visosity uids is represented shematially in Fig.5.It would be beyond the sope of this brief overview to mention all the reent developmentsin the study of drop pinh-o�, some of whih are disussed in Lin (2003). To name someexamples, the presene of an outer uid signi�antly alters pinhing, leading to new typesof similarity solutions, with important appliations for the physis of mixing. For extremelysmall jets of the size of nanometers, thermal utuations have to be taken into aount, whihsigni�antly alter the dynamis. This has been found using moleular dynamis simulationsof a jet 6 nanometers in diameter. However, even on muh larger sales small perturbationsto the observed similarity solutions an be important. In fat, the threads shown in Fig.4are quite sensitive to perturbations, and a areful examination of the last panel shows (un-fortunately obsured by the drawn lines) the growth of disturbanes on the thread Eggers(1997).In other words, the question of what resolution (experimental or numerial) is neessary nearthe point of breakup depends very muh on what one is interested in: a lot of detail may beburied within a pinhing event, whih may or may not be important for a given question.If one is trying to desribe topologial transitions numerially, one will always have to re-noune the desription of the dynamis below some uto� length. It is therefore importantto understand the mehanisms whih guarantee the uniqueness of the ontinuation arossthe singularity. The key is again the universality of similarity solutions we already found inthe approah to the singularity. A new set of similarity solutions an be found after breakup9
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Figure 6: The breakup of a mixture of glyerol in four parts of ethanol, as alulated fromsimilarity solutions before and after breakup. Part (a) shows three pro�les before breakup,in time distanes of 46 �s, orresponding to jt0j = 1; 0:55, and 0.1. In part (b) the same isshown after breakup.- one exists on either side of the pinh point. This is illustrated in Fig.6, whih shows sometypial preditions of the similarity theory. On one side one sees the rapid retration of avery thin needle, on the other a small protrusion is left initially on the drop, whih quiklyheals o� to form a smooth drop.The di�erene to the similarity solution before breakup lies of ourse in the boundary on-dition at the retrating tip. A loser analysis reveals (Eggers (1997)) that the similaritysolutions after breakup depends on the boundary onditions for both the height and theveloity as one moves away to in�nity. The ruial ondition that guarantees unique on-tinuation is the fat that both pro�les to the left and right of the point of breakup haveto oinide with the solutions before breakup as one moves to in�nity. Information betweenthe solutions before and after breakup is thus passed on solely on the basis of the far-�eldbehavior. Whatever mirosopi physis determines the atual breakup event is irrelevantto the ontinuation.CoaleseneAs we have seen above, the understanding of drop breakup is aided greatly by the universalityof the observed solutions. One is able to almost ompletely disregard the free-surfae motionaway from the point of breakup. The main diÆulty in �nding a unifying piture for drop10



oalesene lies in the fat that one annot disregard the drop motion that leads to themeeting of the two drops, resulting in a number of problems.Firstly, the motion produed by the purely geometrial overlap between two approahingdrops is omparable or faster than the motion generated by surfae tension. Hene theveloity of approah must ome into play when desribing the dynamis of oalesene.Seondly, the uid aught between two approahing drops annot be ignored, even if itsvisosity is very small. The reason is that a very thin lubriation �lm between two dropswill still produe an appreiable pressure, whih deforms the drops prior to their meeting ata point. Thirdly, the mehanism that leads to the �rst small-sale union between the dropsis not well understood. In partiular, the presene of surfatants on the surfae produesbarriers that have to be overome, whih an signi�antly delay reonnetion, as shown byAmarouhene et al. (2001).We will therefore fous on the simplest ase of a vanishing speed of approah, in whih asethe ensuing dynamis is determined by the uid parameters and the radius R of the dropsalone. If the two drops do not have equal radius, the one with the smaller radius will play thedominant role and e�etively replae R. Sine the motion starts from rest, it will initiallybe slow, so the driving by surfae tension is ounterated by visosity alone. This behaviorwill persist until the radius rm of the liquid bridge onneting the two drops has reahed`�, after whih it rosses over to one where only inertia matters and visosity drops out ofthe problem. Finally, for rm � R, the initially loal motion in the bridge between the dropsevolves to a global motion involving all of the uid.The entral idea in investigating the dynamis of oalesene is of ourse that for rm � R themotion is self-similar, dominated by the loal behavior lose to the menisus where the twodrops meet. At the menisus the urvature is extremely high, and thus leads to a drivingthat is on�ned to a ring-shaped region, whose radius rm is expanding. Turning �rst tothe initial stage of visous motion, the problem is thus one of a line fore moving throughan in�nite medium. The fore per unit length of the line is 2, and one has to omputethe speed that results from it. It is one of the harateristi features of Stokes ow thatto obtain a �nite answer, logarithmi orretions ome into play, for whih an upper anda lower ut-o� is needed. The upper ut-o� evidently is the radius of the drop itself, thewidth of the menisus serves as the lower uto�. The result of the alulation (Eggers et al.(1999)) is (� = �� being the visosity):rm(t) � �� (�� 1)2� t ln R� t; (11)where the width of the menisus � is assumed to sale like � / r�m.Interestingly, the value of � whih determines the prefator in (11) depends on the preseneof an outer uid between the drops. If no outer uid is present, the orret value is � = 3,11
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(c)Figure 7: A loseup of the point of ontat during oalesene of two idential drops for thetwo ases of no outer uid, (a), and two uids of equal visosity, ((b) and ()). Part (a) isHopper's solution (no outer uid) for rm=R = 10�3; 10�2:5; 10�2, and 10�1:5. Part (b) is anumerial simulation of the ase where the inner and outer visosities are the same, showinguid that ollets in a bubble at the menisus. Note that the two axes are saled di�erently,so the bubble is almost irular. For large values of rm, as shown in (), the uid �nallyesapes from the bubble.
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whih an in fat be dedued from an exat solution (due to Hopper) to the two-dimensionalanalogue of the problem under study (Eggers et al. (1999)). A loseup of this extremelysharp menisus is shown in panel (a) of Fig.7. Even a small amount of interstitial uid,however, hanges the situation onsiderably. Owing to the fat that the gap between thedrops is exeedingly narrow, it is quite hard to push any uid away from the advaningmenisus. Instead, the interstitial uid is olleted in a pouh at the menisus (see Fig.7),and � is now muh larger, so that one �nds � = 3=2 (Eggers et al. (1999)).If the drop uid is very visous (`� > R), this is all that an be said from the point of view ofaymptotis. Among others, we have established that the motion is desribed by a well-de�nedasymptoti solution. Hene after a very short time, details of the mirosopi mehanismsleading to oalesene have been \forgotten". In a numerial simulation, \surgery" done ona suÆiently small sale will meet a similar fate, and on soon ends up following the uniquephysial solution.Finally, if `� � R, there is a region where the motion is almost invisid. From a balane ofsurfae tension fores with inertial fores at the menisus one dedues (Eggers et al. (1999))that rm / �R� �1=4 t1=2: (12)This behavior has been on�rmed by reent numerial simulations of Duhemin et al. (2003).However, there is an unexpeted ompliation: as the menisus retrats, apillary waves growahead of it, whose amplitude �nally equals the width of the hannel. Thus the two sides ofthe drops touh, and a toroidal void is enlosed. This proess repeats itself, leaving behinda self-similar suession of voids.In summary, one an often obtain analytial solutions to the equations of motion near asingularity, explaining some universal features of breakup and oalesene events. This isimportant for estimating errors introdued by a given numerial proedure used to desribetopologial transitions. Mathing numeris to known analytial solutions an lead to on-siderable savings in numerial e�ort.BibliographyR. Sardovelli and S. Zaleski, \Diret numerial simulation of free-surfae and interfaialow", Annu. Rev. Fluid Meh. 31, 567-603 (1999).J. Eggers, \Non-linear dynami and breakup of free-surfae ows", Rev. Mod. Phys. 69,865-929 (1997).L. D. Landau and E. M. Lifshitz, Fluid Mehanis Pergamon, Oxford (1984).13
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