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Abstract. A slender-jet model for the pinching of a liquid column is considered in the limit of
vanishing viscosity. We find the model to develop a singularity in the gradients of the local radius
and the velocity at a finite thread radius, so it does not describe breakup. However, the observed
steepening of the profile corresponds to experiments and simulations with fluids at low viscosity.
The singularity has a self-similar form, which we compute analytically. The result agrees well with
numerical simulations of the model equations.
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1. Introduction. Considerable attention has been devoted recently to the break-
up of an axisymmetric column of fluid [1, 2, 3, 4, 5]. The breakup is driven by surface
tension forces which reduce the surface area by contracting the fluid thread until its
radius goes to zero at a point. Very similar systems have been considered in [6, 7].
As a typical example, we show a drop of water falling from a faucet in Figure 1 [8, 9].

Close to the point of breakup, the interface looks like a cone attached to a nearly
flat interface. This is characteristic for low viscosity fluids, where viscosity is impor-
tant only in a small spatial region around the point of breakup. Details of the initial
conditions or external forces like gravity are believed to have little impact on the very
localized behavior close to pinch-off. Indeed, experiments with or without gravity
and for a variety of nozzle diameters show very similar shapes [4]. This is because
surface tension forces become very strong near pinching and drive very small amounts
of fluid. Thus the very rapid motion close to breakup is separated dynamically from
the motion on the scale of the nozzle diameter both in space and time. A proper
measure of length and time are the local scales

�ν = (ν2ρ)/γ, tν = (ν3ρ2)/γ2,(1)

which depend only on the properties of the fluid. Here ν is the kinematic viscosity, γ
is the surface tension, and ρ is the density of the fluid. In the case that the minimum
radius hmin of the fluid neck is much smaller than �ν , a universal pinching solution
has been observed [1, 3]. As the radius of the fluid neck goes to zero, surface tension,
viscous, and inertial forces are of the same order.

For a low viscosity fluid like water, however, �ν is only 100 Å, so this asymptotic
solution is hardly of relevance experimentally. Accordingly, it would be extremely
desirable to develop a similarity theory valid in the range hmin � �ν . Assuming that
all flow features of a hypothetical Navier–Stokes solution are of the same order as
hmin, it is natural to look at solutions of the inviscid (Euler) equation for that regime.
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Fig. 1. A drop of water falling from a faucet 0.51cm in diameter. The lines represent a
computation using one-dimensional model equations. This figure is taken from [9].

Unfortunately, the Euler equation is known [10] to exhibit spurious blow-up of the local
vorticity, even starting from smooth initial data. This problem can be avoided only by
considering the subclass of solutions which are irrotational and are thus described by
potential flow. Numerical simulations of inviscid, irrotational flow driven by surface
tension were used by a number of authors [11, 12] to describe pinching. After the
minimum radius has reached a value of about 1/20 of its initial value, all simulations
show an overturning of the profile. This means that the neck radius h(z) is no longer a
single-valued function of the position along the axis z. Recently [5] it was shown that
this overturning can be understood as the convergence onto a universal similarity
solution of the inviscid, irrotational equations. Similar findings were reported by
Chen and Steen [13] for the related problem of a soap film which drives a flow in the
surrounding air. Neglecting the inertia of the film, this corresponds to the motion of
two fluids of equal density with surface tension between them.

In [14] we use a slender-jet model, originally developed in [9], to address the
possible importance of a very small amount of viscosity for pinching in the regime
hmin � �ν . By including the full curvature term the model can quite successfully
reproduce experiments in a regime where the profile is not slender [14, 9], although
the assumptions going into the formal derivation of the model are violated. As an
example, in Figure 1 a few profiles calculated from the model [9] at finite viscosity are
superimposed on the experimental picture. In the absence of viscosity this model is
often referred to as Lee’s model [15]. Using the slender-jet model it is shown [14] that
an arbitrarily small amount of viscosity can invalidate scaling arguments based on
the inviscid equations alone. This is because of an instability of the inviscid solution
which leads to an increase in the gradients of both the local radius and the velocity
field like (tc − t)−1. At the singularity time tc the minimum radius is still finite.

The present paper contains a detailed numerical and analytical study of the sin-
gularity of the inviscid equations, which leads to a blow-up of gradients in finite time.
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In particular, we construct a local similarity solution which solves the equations for
ν = 0. We extend the numerical code used previously in [14] to even smaller viscosities
to show that in the limit ν → 0 of small viscosities the slender-jet equations always
select this inviscid singularity. The blow-up occurs while the minimum radius is still
finite and an analytical description of the local profiles is given. Thus the inviscid
equations are not able to describe breakup, although the full curvature term is kept.

In the next section we introduce the one-dimensional slender-jet model which
forms the basis of our analytical description of the inviscid singularity. We then
present conclusive numerical evidence for the existence of a inviscid singularity at a
time tc. Derivatives of the surface profile and of the velocity diverge like a power law
as function of tc−t. In the third section we present an analytical theory of the inviscid
singularity. The resulting surface profiles agree well with numerical simulations.

2. Model and simulations. The main assumption underlying the model of
axisymmetric free-surface flow to be considered here is that the fluid motion is directed
mostly in the axial direction. This allows us to set up an asymptotic expansion [16]
in the thread radius, which at leading order gives equations for the radius h(z, t) of
the thread and for the velocity v(z, t), which depend only on the axial coordinate z.
In what follows we will deal with the model introduced in [9],

∂th = −vhz − vzh/2,(2a)

∂tv = −vvz − pz + 3Re−1 (h2vz)z
h2

,(2b)

p =
1

h(1 + h2
z)1/2

− hzz
(1 + h2

z)3/2
,(2c)

where the index refers to differentiation with respect to the variable. The fields
h(z, t) and v(z, t) have been nondimensionalized using some fixed length scale L of
the problem, which in the following is always taken to be the initial radius of the fluid
cylinder. The length L can be combined with surface tension γ and density ρ to make
up a time scale T = (ρL3/γ)1/2 and a velocity scale U = L/T . Every quantity to
follow will be nondimensionalized using these units. Combined with the viscosity, it
gives the Reynolds number Re = LU/ν.

Equation (2a) expresses mass conservation for a radially uniform velocity field.
Conservation of momentum (2b) not surprisingly has the form of Burgers’ equation in
the inviscid limit, driven by surface tension forces which are proportional to the mean
curvature (cf. (2c)). Along the same lines of reasoning (2a)–(2c) were guessed by Lee
[15] for ν = 0. By including the full mean curvature in (2c) we have gone beyond
the leading-order asymptotics to reproduce exactly the static shape of a hanging
drop suspended from an orifice. As an additional benefit, the most dangerous short-
wavelength instabilities of the leading-order model p = 1/h [16] have been removed.
In fact, the leading-order model is elliptic for ν = 0 [17, 18, 19] and is thus ill-posed
as an initial value problem.

In [9, 14] a finite difference scheme was developed capable of simulating (2a)–(2c)
at very low viscosities. To resolve the small-scale structures we are interested in, it
is crucial to use an adaptive scheme, both in time and space. The minimum thread
radius and the maximum gradient of h were taken as predictors where additional
spatial resolution was necessary. Thus in a typical run the grid spacing at the position
of the inviscid singularity was six orders of magnitude smaller than at the boundary of
the computational domain. Since the equations at low viscosity are very sensitive to
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noise, grids with smoothly varying grid spacings had to be used, where the spacing did
not change by more than 1% from one grid point to the next. With these precautions,
no numerical damping or dissipation had to be used, except for the physical viscosity ν.
Since the refinement of the grid is only local, the number of grid points needed to
achieve a certain resolution ∆ only varies like the logarithm of ∆. Thus, starting
with N = 1000 grid points on the unit interval, a simulation typically ended with
N = 4000, at which point the resolution had increased by five orders of magnitude.

Since we are interested in the limit of small viscosity, it would be tempting to put
ν = 0 directly into (2b). However, we found that as soon as the motion is sufficiently
nonlinear, our scheme developed instabilities on the scale of the grid, which caused
the code to break down. Thus the inclusion of the full curvature term in (2c) is
not enough to stabilize the numerical scheme. Similar short-wavelength instabilities
have also been reported in [20] using a finite-element approach. On the other hand,
exceedingly small amounts of viscosity are sufficient to stabilize the scheme, even
though the viscous term is smaller than the others by several orders of magnitude
throughout the domain. In the following, when speaking of a numerical solution of
the inviscid equations, we will always refer to the limit of zero viscosity at constant
time.

We also experimented extensively with other means of regularizing the inviscid
equations, for example by using numerical viscosities as in [9]. In the upwind differ-
encing scheme introduced in [9], the numerical viscosity is proportional to the grid
spacing. The hope was to develop a scheme which automatically converges to the
inviscid limit as one increases the resolution. Indeed, if the grid is coarse, a numerical
viscosity is often sufficient to remove instabilities. But with improved resolution we
always found the instabilities to return. Thus keeping a finite viscosity turns out to
be the only reliable and, at the same time, the most physical way of dealing with the
instabilities. These results indicate that the system (2a)–(2c) might be an ill-posed
initial-value problem, in spite of the short-wavelength regularization introduced by
(2c). If on the other hand the problem is well-posed, and the instabilities are a prob-
lem of the numerical scheme, the above limit of small viscosity will yield a solution
which coincides with the one defined by the inviscid (Lee’s) equations.

Figure 2 shows a simulation of (2a)–(2c) at Re = 5·109 in a liquid bridge geometry
with a small sinusoidal perturbation of wavelength λ = 4π and amplitude a = 10−2

superimposed on it. At the ends z± = 0, 20 of the computational domain h(z±, t) = 1
and v(z±, t) = 0 are held constant. Owing to the Rayleigh instability, the bridge starts
to pinch. Shown are three profiles close to the inviscid singularity, where the minimum
radius has already decreased by a factor of 20. To the right of the minimum, an almost
conical neck region is seen; on the other side a round drop has formed. Because of its
small radius, the pressure in the flat region is high, pushing fluid over to the right.
This causes the interface to perform a sliding motion, which lets the interface become
steeper and steeper, since the drop cannot move appreciably owing to its large inertia.
Note that the pressure goes to a value close to zero at the eventual place of the inviscid
singularity, marked by an arrow.

Next we zoom in on the point around which hz goes to infinity, marked by an
arrow in Figure 2. The value of Re−1 = 2 · 10−10 was sufficiently small to resolve the
singularity to a maximum slope of hz = 104 without viscosity becoming important.
This means that the viscous term in (2b) was still three orders of magnitude smaller
than all others. An increase of Re−1 by a factor of 5 had no significant effect on all
simulations to be reported here, implying that all findings are characteristic of the
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Fig. 2. A closeup view of simultaneous radius, velocity, and pressure profiles close to the
inviscid singularity. The Reynolds number is Re = 5 · 109, and the time between successive profiles
is 5 · 10−5. All profiles are in units of L and T . The arrow marks the asymptotic location of the
shock.

inviscid limit ν → 0. With such a small Reynolds number we are no longer able
to resolve the huge range of length scales between the outer and the viscous scale,
because L/�ν is now 2 · 1019. However, the early stages of the evolution of the liquid
bridge, where viscous effects are still small, can safely be resolved. In [14] it was
demonstrated that the slope goes to infinity near the inviscid singularity and thus
the singularity time tc can be estimated from the blow-up of hz. It follows from our
scaling theory, to be presented in the next section, that (hz)max ∼ (tc− t)−1. Thus tc
can be computed very accurately by plotting ((hz)max)−1 versus time and fitting with
a linear law. In Figure 3 we plot the maximum pressure gradient pz, which drives the
fluid motion, and the maximum velocity gradient as functions of tc− t. It is seen that
both pz and vz settle on a power law

(pz)max ∼ (tc − t)−1, (vz)max ∼ (tc − t)−1.(3)

The pressure gradient contains the highest (third) derivative in the problem. The
fluctuations seen in the curve thus give an estimate of the amount of noise introduced
by the regridding procedure. No noise is seen in the first velocity derivative, which
clearly confirms the scaling given in (3). We thus see that the inviscid singularity is
governed by power law scaling, which will be investigated in more detail in the next
section.

We also performed numerous other simulations with different boundary conditions
and initial conditions of widely varying amplitude and wavelength. Besides the liquid
bridge geometry, where h and v are held fixed at the end of the computational domain,
this includes the free boundary problem of [14], which corresponds to a falling drop.
In all cases, the same inviscid blow-up (3) was observed, while the minimum jet
radius remained finite. This confirms the statement of [9] that Lee’s equations do not
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Fig. 3. The maximum of the gradient of the pressure and of the velocity as function of the time
distance from the inviscid singularity. The Reynolds number is 5 · 109. Both curves asymptote to a
slope very close to −1.

describe pinching. To further illustrate this point, we have repeated the simulation
of Lee’s equations reported in [18], with periodic boundary conditions on the interval
[0, 2π]. By using the transformations

h(z, t) = S(εz, εt),

v(z, t) = W (εz, εt)
(4)

and the initial condition

h0(z) = 1, v0(z) = −a sin(εz),(5)

the simulations of section 4.2 in [18] correspond to (2a)–(2c) on the interval [0, 2π/ε],
the parameter ε2 being 0.1.

On the basis of these simulations it is claimed [18] that hz goes to infinity at a
finite minimum radius for the case a = 1, while for a smaller a between 1 and 0.1 a
transition to a different type of solution occurs, in which hz blows up at the same time
that the jet pinches, contradicting the results of [9, 14]. Figure 4 shows the profile
h(z) for the initial amplitudes a = 1, 0.1, and 0.01 at a time when a maximum slope
of 104 has been reached. Owing to the symmetry of the problem, the computation
could be restricted to the interval [0, π/ε]. The inset shows the minimum height as a
function of the maximum slope. The former is seen to asymptote to a constant value
of hmin = 0.3 for a = 1 (circles) and hmin = 0.07 for a = 0.1 (squares) and 0.01
(diamonds). The dotted line marks the height of 0.1, where the computations of [18]
were stopped due to limited resolution. At that point we find the maximum value of
(h2)z to be 6.37, in excellent agreement with the reported value [18] of approximately
20ε. Since 0.1 lies just above the asymptotic value of hmin at small perturbation
amplitudes, the limited resolution lead to the erroneous conclusion of a transition
to a new type of pinching solution. For initial amplitudes smaller than a = 0.1 the
solution does not change much, because the initial evolution is in the linear regime,
characterized by exponential growth of the prescribed wavelength.
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The reason for the observed behavior is that a = 1 implies a strong initial flow,
which squeezes the liquid cylinder in the middle, steepening the profile. Thus a
sufficiently steep front for the shock singularity to set in is produced at a time when the
conical solution of Figure 2 is not yet fully developed. For the two smaller amplitudes,
on the other hand, the sliding motion of the conical solution described before is
responsible for the initial steepening. Thus even if the initial condition does not
provoke a steepening, the inviscid dynamics contains a universal mechanism by which
sufficiently high slopes are reached eventually. This lends further support to our
conjecture that Lee’s model does not support pinching.

3. Inviscid similarity solution. We have seen in the previous section that
derivatives grow sharply near the inviscid singularity, while on the other hand the
height and the velocity remain finite. This means that a similarity ansatz has to
include a “background” height and velocity profile, which is slowly varying on the
scale of the singular part. At the same time, the singularity may be moving with
some speed Vs, which is not necessarily the speed V with which it is convected. Thus
one ends up with the similarity form

h(z′, t′) = H + t′αf
(
z′ + Vst

′

t′β

)
,

v(z′, t′) = V + t′αg
(
z′ + Vst

′

t′β

)
,

(6)

where

z′ = z − zc and t′ = tc − t(7)

measure the spatial and the temporal distance from the singularity, respectively. On
the spatial scale on which the inviscid singularity develops, H, V , and Vs are ap-
proximately constant. Note that (7) has self-similar form, which is superimposed on
a traveling wave solution. Also, we assumed h(z′, t′) and v(z′, t′) to have the same
scaling exponents, because this automatically balances the terms hzv and vzh in (2a).

For the ansatz (6) to be consistent, one needs α > 0, so in the singular limit
t′ → 0 one is left with the finite height H and velocity V . For the derivatives to blow
up, β > α. To see whether (6) solves the model equations (2a)–(2c), we balance the
most singular terms in t′, deriving equations in the similarity variable

η =
z′ + Vst

′

t′β
.(8)

One thus finds from (2a)

(βf ′η − αf)t′α−1 = −
[
(V − Vs)f

′ +
1

2
Hg′

]
t′α−β .(9)

We expect the right-hand side of (9) to make the dominant contribution, which will
be the case if β > 1. This is because then the function f drops out of the equation,
and the similarity equations depend only on the derivatives f ′ and g′. Thus both f
and g are determined only up to constants, which are needed for consistency because
our ansatz (6) has a free constant built in.

Consequently, the angular bracket must vanish, giving

g′ =
2(Vs − V )

H
f ′,(10)
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which means that up to constants and a difference in amplitude 2(Vs − V )/H the
profiles of the height and of the velocity are the same.

Turning to (2b) with ν = 0, one finds to leading order

−(Vs − V )g′t′α−β =

(
f ′′

f ′3

)′
t′−2α.(11)

Note that the term on the left corresponds to the highest derivatives in pz as given
by (2c). Balancing the left- and the right-hand sides, one finds the scaling law

β = 3α.(12)

Combining (10) and (11), the similarity equation reads

−af ′ =

(
f ′′

f ′3

)′
,(13)

where a = 2(Vs − V )2/H. Evidently, the constant a can be eliminated by the trans-
formation

φ(η) = a−1/3f ′(η).(14)

The most general solution of the equation for φ,

−φ =

(
φ′

φ3

)′
,(15)

has the form

φ(η) = φ0F [φ
3/2
0 (η − η0)],(16)

where F (ξ) is a particular solution of (15).
Equation (13) can easily be solved using standard [21] tricks. In view of the

freedom implied by (16), we choose F (ξ) to have its maximum at ξ = 0 and to fall
off to 1/2 at ξ = ±1/2. Then F is given implicitly by

ξ =
1

8F 3/2
(1 + 2F )(1 − F )1/2.(17)

This function is represented in Figure 5 as the solid line. It decays to zero like ξ−2/3

at infinity. In view of the similarity form (6) this ensures that the leading dependence
on t′ drops out far away from the singular point. This is necessary for the solution to
match onto the slowly varying background field.

We note that the singularity described above is not just kinematic in nature,
since a contribution from the capillary forcing enters the dominant balance in (11).
In addition, the form (6) of the singularity with Vs �= V implies that it is also a
traveling wave. Surprisingly, the local shape (17) of the first derivative of the local
radius is identical to that of a local solution h = H + t′G((z′ − Ht′)/t′3/2) of the
simple kinematic wave ∂th + h∂zh = 0. (I am grateful to an anonymous referee for
this remark.) This can be checked directly from the similarity equation for G(ξ). At
present we do not know if this is a coincidence or the result of a deeper analogy.

To test the prediction of the theory, the three profiles of Figure 4, taken at a
time when the maximum slope was 104, were used for a comparison. In Figure 5
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Fig. 4. A simulation of (2a)–(2c) with periodic boundary conditions and initial condition (5).
The profiles are shown at a time when the maximum slope has reached 104. The inset shows the
minimum radius as a function of the maximum slope for a = 1 (circles), a = 0.1 (squares), and
a = 0.01 (diamonds). The dashed line indicates the minimum radius where the simulations [18]
were stopped.
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Fig. 5. The normalized similarity function F (ξ), cf. (14), (16). The symbols correspond to the
simulation of Figure 4, for a = 1 (circles), a = 0.1 (squares), and a = 0.01 (diamonds).

the three profiles of hz, with the maximum shifted to the origin and the half-width
normalized to unity, were superimposed on the theoretical prediction. Although the
initial amplitudes were quite different, the local solutions all fall atop of our universal
prediction (17). The free constants φ0, η0 in (16) and the parameter a in (13) are
not determined by the similarity theory. Indeed, we confirmed that they depend on
initial conditions and therefore cannot come out of a local theory.

Our next concern is to find the scaling exponents α and β, which are not deter-
mined from dimensional reasoning as in [1], but which are constrained by the scaling
relation (12). In addition, (13) does not depend on the values of the exponents, so
α cannot be selected by properties of the similarity equation, as was the case in [22].



2006 JENS EGGERS

To investigate this problem, we must look at next to leading order terms such as the
ones contained in (9). Correspondingly, there are subleading terms in h and v which
have the form

h(z′, t′) = H + t′αf
(
z′ + Vst

′

t′β

)
+ t′2αf1

(
z′ + Vst

′

t′β

)
+ · · · ,(18)

and correspondingly for v(z′, t′). Then (2a) becomes at the next to leading order:

[3αf ′η − αf ] t′α−1 =

[
−gf ′ − 1

2
fg′ + (Vs − V )f ′

1 −
H

2
g′1

]
t′−α.(19)

Since the terms must balance, we get

α =
1

2
, β =

3

2
,(20)

which are the desired exponents. Note that this conforms with the scaling of both
the pressure and the velocity gradient from (3), since

pz ≈ t′−2α

(
f ′′

f ′3

)′
and vz ≈ t′α−βg′.(21)

Thus both the value of the exponents and the shape of the profiles is in excellent
agreement with theory.

4. Discussion. In [14] we studied the steepening of the height profile for small
but finite viscosities. The slopes saturate at a large value, the maximum slope roughly
following a scaling law (hz)max ∼ Re1.25. As long as the viscous term is much smaller
than the pressure gradient, one can use the inviscid similarity solution. The naive
expectation is that the slope saturates as soon as the viscous term is of the same order
as the pressure gradient. Using (6) and (20), the temporal scaling of the pressure
gradient is pz ∼ t′−1 and that of the viscous term Re−1(vzh

2)z/h
2 ∼ Re−1t′−5/2,

where Re−1 = ν/(UL) is constant. Equating the two we find (hz)max ∼ Re2/3,
which is far too small an exponent. A possible explanation is that the Reynolds
numbers for which the exponent 1.25 was found are still too small. But more likely
there is an intricate interplay between the inviscid singularity and viscosity, leading
to a more complicated intermediate scaling range. Indeed, for the Reynolds numbers
considered, the slope continues to grow far beyond the time at which the pressure
gradient first balances the viscous term at a point. It thus remains a challenge to find
the mechanism which makes the slope saturate.

Equations (2a)–(2c) with (ν = 0) or systems very similar in structure have been
used by a number of researchers [15, 23, 24, 25, 20, 26, 17, 18] to describe pinching.
However, in Lee’s original paper [15] and most of the later work, no attempt is made
to resolve the detailed structure of the pinch region. For example, in units of the
length of the computational domain, the grid spacing is dx = 1/20 in [15] and 1/50
in [23]. For comparison, the minimum grid spacing used in the present paper is
dxmin = 10−10. In [18] the simulation of (2a)–(2c) with initial conditions (5) was
stopped at a minimum radius of 0.1, which for small initial perturbations we showed
to be insufficient to find the singularity described here. In [20], which uses a finite
element code, the computations were stopped when numerical instabilities on the scale
of the grid were observed. The leading-order equations investigated in [26], which use



SINGULARITIES IN DROPLET PINCHING 2007

p = 1/h for the pressure, can also lead to infinite-slope singularities [18]. However,
the analytical calculations of [19] show that pinching solutions are also supported for
appropriate initial conditions. It remains to be seen whether the inviscid version of
the Cosserat model [23], which was also considered in [20], is more well behaved and
supports pinching.

We have seen that the slender-jet model (2a)–(2c) in the limit of small viscos-
ity is characterized by more than just the scale of the minimum radius. Instead, a
shock-type singularity develops whose width represents another, much smaller scale.
This means that inviscid scaling solutions of the type described in [26] become unsta-
ble. The crucial question is of course whether a similar mechanism is at work in the
small-viscosity limit of the Navier–Stokes equation, which could make this limit sin-
gular. It is unlikely that the three-dimensional equation has precisely the same spatial
singularity structure as the one found in the model equations, which constrain axial
velocity gradients to a far greater extent. Instead it is probable that high-pressure
fluid in the neck is injected into the drop, a situation which is only poorly captured
by the slice average of the model. The Navier–Stokes equation might thus form a
very thin boundary layer around the jet, in which viscosity remains important even
for arbitrarily small ν. This is a possible scenario which would invalidate the purely
inviscid calculation of [5], at least from a physical point of view.

Even for the model equations, many unanswered questions remain. It is fascinat-
ing that even a simple one-dimensional model is capable of such complexity, the key
to its understanding lying in the analysis of the singularities.

Acknowledgment. I have benefited greatly from discussions with Michael
Brenner.
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