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Abstract
We survey rigorous, formal and numerical results on the formation of point-
like singularities (or blow-up) for a wide range of evolution equations. We use
a similarity transformation of the original equation with respect to the blow-
up point, such that self-similar behaviour is mapped to the fixed point of a
dynamical system. We point out that analysing the dynamics close to the fixed
point is a useful way of characterizing the singularity, in that the dynamics
frequently reduces to very few dimensions. As far as we are aware, examples
from the literature either correspond to stable fixed points, low-dimensional
centre-manifold dynamics, limit cycles or travelling waves. For each ‘class’ of
singularity, we give detailed examples.

Mathematics Subject Classification: 35A20

1. Introduction

Nonlinear partial differential equations (PDEs) are distinguished by the fact that, starting from
smooth initial data, they can develop a singularity in finite time [1–4]3. Very often, such a
singularity corresponds to a physical event, such as the solution (e.g. a physical flow field)
changing topology, and/or the emergence of a new (singular) structure, such as a tip, cusp,
sheet or jet. On the other hand, a singularity can also imply that some essential physics is
missing from the equation in question, which should thus be supplemented with additional
terms. (Even in the latter case, the singularity may still be indicative of a real physical event).

Consider for example the physical case shown in figure 1, which we will treat in section 4.
Shown is a snapshot of one viscous fluid dripping into another fluid, close to the point where

∗ This paper is published as part of a collection in honour of Todd Dupont’s 65th birthday.
3 Of course, there are also many examples of nonlinear PDEs for which global existence can be established!
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Figure 1. A drop of glycerin dripping through polydimethylsiloxane near pinch-off [5]. The nozzle
diameter is 0.48 cm, the viscosity ratio is λ = 0.95. Reprinted with permission from [5]. Copyright
1999, American Institute of Physics.

a drop of the inner fluid pinches off. This process is driven by surface tension, which tries to
minimize the surface area between the two fluids. At a particular point x0, t0 in space and time,
the local radius h(x, t) of the fluid neck goes to zero; this point is a singularity of the underlying
equation of motion. Since the drop breaks into two pieces, there is no way the problem can
be continued without generalizing the formulation to one that includes topological changes.
However, in this review we adopt a broader view of what constitutes a singularity. We consider
it as such whenever there is a loss of regularity, which implies that there is a length scale which
goes to zero. This is the situation under which one expects self-similar behaviour, which is
our guiding principle.

A fascinating aspect of the study of singularities is that they describe a great variety of
phenomena which appear in the natural sciences and beyond [3]. Some examples of such
singular events occur in free-surface flows [6], turbulence and Euler dynamics (singularities of
vortex tubes [7, 8] and sheets [9]), elasticity [10], Bose–Einstein condensates [11], nonlinear
wave physics [12], bacterial growth [13, 14], black-hole cosmology [15, 16] and financial
markets [17].

In this paper we consider evolution equations

ht = F [h], (1.1)

where F [h] represents some (nonlinear) differential or integral operator. We also discuss cases
where h is a vector, and thus (1.1) is a system of equations. Furthermore, the spatial variable x

may also have several dimensions, and thus potentially different scaling in different coordinate
directions. We will cite some examples below, but few of the higher-dimensional cases have
so far been analysed in detail. For the purpose of the following discussion, let us suppose that
both x and h are scalar quantities, and that the singularity occurs at a single point in space and
time x0, t0. If t ′ = t0 − t and x ′ = x − x0, we are looking for local solutions of (1.1) which
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have the structure

h(x, t) = t ′αH(x ′/t ′β), (1.2)

with appropriately chosen values of the exponents α, β. Note that later the prime is also used
to indicate a derivative. However, this will always be with respect to a spatial variable like x, z

or the similarity variable ξ , hence confusion should not arise.
Giga and Kohn [18, 19] proposed to introduce self-similar variables τ = − ln(t ′) and

ξ = x ′/t ′β to study the asymptotics of blow up. Namely, putting

h(x, t) = t ′αH(ξ, τ ), (1.3)

(1.1) is turned into the ‘dynamical system’

Hτ = G[H ] ≡ αH − βξHξ + F [H ]. (1.4)

By virtue of (1.4), solutions to the original PDE (1.1) for given initial data can be viewed
as orbits in some infinite dimensional phase, for instance, L2. To understand the blow-up
of (1.1), Giga and Kohn proposed to study the long-time behaviour of the dynamical system
(1.4). Thus in particular, one is interested in the attractors of (1.4) (ω-limit sets in the notation
which is customary in the context of PDEs, see [20] and references therein). If (1.2) is indeed
a solution of (1.1), the right-hand side of (1.4) is independent of τ , and self-similar solutions
of the form (1.2) are fixed points of (1.4), which we will denote by H(ξ). By studying the
dynamics close to the fixed point, we find that the dynamical system (1.4) frequently reduces to
very few dimensions. Thus on the one hand one obtains detailed information on the behaviour
of the original problem (1.1) near blowup. On the other hand, one also gains a fruitful means
of classifying or at least characterizing singularities.

The most basic linear stability analysis of this self-similar solution consists of linearizing
around the fixed point according to

H = H(ξ) + εP (ξ, τ ), (1.5)

which gives

Pτ = LP, (1.6)

where L ≡ L(H) depends on the fixed point solution H . To solve (1.6), we write P as a
superposition of eigenfunctions Pj of the operator L:

P(ξ) =
∞∑

j=1

aj (τ )Pj (ξ), (1.7)

where νj is the eigenvalue:

LPj = νjPj . (1.8)

In the cases we know, the spectrum turns out to be discrete. For evolution PDEs involving
second order elliptic differential operators, such as semilinear parabolic equations, mean
curvature or Ricci flows, the discreteness of the spectrum of the linearization about the fixed
point is a direct consequence of Sturm–Liouville theory [21, 22]. This theory establishes that,
under quite general conditions on the coefficients of a second order linear differential operator
and the boundary conditions, its spectrum is discrete and the corresponding eigenfunctions
form a complete set in a suitably weighed L2 space. Some explicit examples are presented in
section 3.1.1. For general linear operators such a theory is not available, and one has to study
the spectrum case by case.

Now the solution of (1.6) corresponding to Pj is

P = eνj τPj , (1.9)
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and all eigenvalues need to be negative for the similarity solution to be stable. In that case,
convergence to the fixed point is exponential or algebraic in the original time variable t ′.
Soon the solution has effectively reached the fixed point, and there is very little change in the
self-similar behaviour. If one or several of the eigenvalues around the fixed point vanish, the
approach to the fixed point is slow, and the dynamics is effectively described by a dynamical
system whose dimension corresponds to the number of vanishing eigenvalues. The same holds
true if the attractor has few dimensions (such as a limit cycle or a low-dimensional chaotic
attractor). Thus although singular behaviour is in principle a problem to be solved in infinite
dimensions, in practice, it typically reduces to a dynamical problem of few dimensions. In
this review we analyse singularities from the point of view of the slow dynamics contained in
(1.4), to obtain an overview and tentative classification of possible scaling behaviour. We also
emphasize the physical significance of these different types of behaviour.

The perspective described above suggests a close relationship to the description of scaling
phenomena by means of the renormalization group, developed in the context of critical
phenomena [23, 24]; we will continue to point out similarities, but we are not aware that a
classification similar to ours has been achieved using the language of the renormalization
group. For a computational perspective on analysing (1.4) in terms of its slow dynamics,
see [25]. Finally, another approach sometimes associated with the classification of singularities
is catastrophe theory [26]. However, as far as we are aware, catastrophe theory only yields
useful results if the problem can be mapped onto a low-dimensional geometrical problem,
which can in turn be rephrased in terms of normal forms of polynomials. This has been shown
to be the case for wave problems such as shock formation and wave breaking [27], as well as
singularities of the eikonal equation [28] and related problems [29].

In this paper we discuss the following cases:

(I) Stable fixed points (section 2)
In this case the fixed point is approached exponentially in the logarithmic variable τ , so
the dynamics is described by the self-similar law (1.2). This pure power-law behaviour is
also known as type-I self-similarity [30].

(II) Centre manifold (section 3)
Here one or more of the eigenvalues around the fixed point are zero. As a result, the
approach to the fixed point is only algebraic, leading to logarithmic corrections to scaling.
This is called type-II self-similarity [30]; it characterizes cases where the blow-up rate is
different from what is expected on the basis of a solution of the type (1.2).

(III) Travelling waves (section 4)
Solutions of (1.1) converge to h = t ′αφ(ξ + cτ), which is a travelling wave solution of
(1.4) with propagation velocity c.

(IV) Limit cycles (section 5)
Solutions have the form h = t ′αψ[ξ, τ ] with ψ being a periodic function of period T in τ .
This is known as ‘discrete self-similarity’ [15, 31], since at times τn = τ0 + nT , n integer,
the solution looks like a self-similar one.

(V) Strange attractors (section 6)
The dynamics on scale τ are described by a nonlinear (low-dimensional) dynamical
system, such as the Lorenz equation.

(VI) Multiple singularities (section 7)
Blow-up may occur at several points (x0, t0) (or indeed in any set of positive measure),
in which case the description (1.4) is not useful. We also describe cases where (1.2) still
applies, and blow-up occurs at a single point, but the underlying dynamics is really one
of two singularities which merge at the singular time.
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Table 1. A summary of PDEs discussed in this paper. The first column gives the PDE in question,
the second the type of dynamics near the fixed point according to the classification enumerated
above. In the case of attracting fixed point dynamics, it is classed as ‘stable’, otherwise the equation
governing the slow dynamics is given.

Equation Type Dynamics Section

Free surface flow
ht + ∇ · (hn∇�h) ± ∇(hp∇h) = 0 I, II Stable? 2.1.1
(h2)t + (h2u)x = 0 I
ρ(ut + uux) = (h2ux)x/h2 − (h−1)x Stable 2.1.1
ht = [hκx/(1 + h2

x)1/2]x , I
κ = 1/(h(1 + h2

x)1/2) − hxx/(1 + h2
x)3/2 Stable 2.1

ht + (hu)x = 0, ut + uux = hxxx I Stable 2.4.2∫
ä(ξ, t) dξ√

(x − ξ)2 + a(x, t)
= ȧ2

2a
II vτ = −v3 3.2.1

u(x) = 1

4

∫
hz(z)√

h2(z) + (x − z)2
dz

(h2)t + (h2u)x = 0 III Stable 4

Geometric evolution equations
ht = hzz/(1 + h2

z) − 1/h II uτ = −u2 3.1.1
ψt = ψss − (n − 1)(1 − ψ2

s )/ψ II uτ = −u2 3.1.1

Reaction–diffusion equations
ut − �u = f (u) II uτ = −u2 3.1.2
ut − ∇ · (|u|m∇u) = up II Unknown 3.1.2
ρt + ∇ · (ρ∇S − ∇ρ) = 0, ρ = −�S II uτ = −u3 3.2.2

Nonlinear dispersive equations
ut + uux = 0 I Stable 2.4
iψt + �ψ + |ψ |pψ = 0 I, II uτ = −u2/v

vτ = −uv 3.3
ut + upux + uxxx = 0 II Unknown 3.3.1
ut − uxxt + 3uux = 2uxuxx + uuxxx I Unknown 3.3.1
ut = 2f v, vt = −2f u,ft = f 2 IV Circle 5

Choptuik equations I, IV Limit cycle 5
utt = uxx + |u|pu I, II Unknown 7.2

Fluid equations
ut + (u · ∇)u = −∇p + �u, ∇ · u = 0 I, IV? Unknown 2.2
ut + (u · ∇)u = −∇p, ∇ · u = 0 I, IV? Unknown 2.2
ut + uux + vuy = −px + uyy , ux + vy = 0 I Stable 2.2

This paper’s aim is to assemble the body of knowledge on singularities of equations of
the type (1.1) that is available in both the mathematical and the applied community, and to
categorize it according to the types given above. In addition to rigorous results we pay particular
attention to various phenomenological aspects of singularities which are often crucial for their
appearance in an experiment or a numerical simulation. For example, what are the observable
implications of the convergence onto the self-similar form (1.2) being slow? In most cases,
we rely on known examples from the literature, but the problem is almost always reformulated
to conform with the formulation advocated above. However, some examples are entirely new,
which we will indicate as appropriate. For each of the above categories, we will present at least
one example in greater detail, so the analysis can be followed explicitly. A concise overview
of the equations presented in this review is given in table 1.
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Figure 2. SEM images illustrating the pinch-off of a row of rectangular troughs in silicon (top) [36].
The bottom picture shows the same sample after 10 min of annealing at 1100 ◦C. The troughs have
pinched off to form a row of almost spherical voids. The dynamics is driven by surface diffusion.
Reprinted with permission from [36]. Copyright 2000, American Institute of Physics.

2. Stable fixed points

A sub-classification into self-similarity of the first and second kinds has been expounded in
[32–35]. Self-similar solutions are of the first kind if (1.2) only solves (1.1) for one set of
exponents α, β; their values are fixed by either dimensional analysis or symmetry and are thus
rational. Solutions are of the second kind if solutions (1.2) exist locally for a continuous set
of exponents α, β; however, in general these solutions are inconsistent with the boundary or
initial conditions. Imposing these conditions leads to a nonlinear eigenvalue problem, whose
solution yields irrational exponents in general.

2.1. Self-similarity of the first kind

Our example, exhibiting self-similarity of the first kind [35], is that of a solid surface evolving
under the action of surface diffusion. Namely, atoms migrate along the surface driven by
gradients of chemical potential, see figure 2. The resulting equations in the axisymmetric
case, where the free surface is described by the local neck radius h(x, t), are [37]

ht = 1

h

[
h

(1 + h2
x)

1/2
κx

]
x

, (2.1)

where

κ = 1

h(1 + h2
x)

1/2
− hxx

(1 + h2
x)

3/2
(2.2)

is the mean curvature. In (2.1) and (2.2), all lengths have been made dimensionless using an
outer length scale R (such as the initial neck radius), and the time scale R4/D4, where D4 is a
fourth-order diffusion constant.
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Table 2. A series of similarity solutions of (2.4) as given in [43]. The higher-order solutions
become successively thinner and flatter.

i Hi(0) ci

0 0.701 595 1.037 14
1 0.636 461 0.298 66
2 0.456 842 0.183 84
3 0.404 477 0.134 89
4 0.355 884 0.107 30
5 0.326 889 0.089 42

Physically, it is important to point out that (2.1) describes the evolution of the free surface
at elevated temperatures, above the so-called roughening transition. This implies that the solid
surface is smooth and does not exhibit facets, coming from the underlying crystal structure.
Above the roughening transition, a continuum description is still possible [38]. The study
of these models has led to a number of interesting similarity solutions describing singular
behaviour of the surface, such as grooves [39] or mounds [40, 41].

At a time t ′ � 1 away from breakup, dimensional analysis implies that  = t ′1/4 is a local
length scale. This suggests the similarity form

h(x, t) = t ′1/4H(x ′/t ′1/4), (2.3)

and thus the exponents α, β of (1.2) are fixed by dimensional analysis, which is typical for
self-similarity of the first kind. Of course, the result (2.3) also follows when directly searching
for a solution of (2.1) in the form of (1.2). In other cases, a unique set of local scaling exponents
is determined by symmetry [42]. The similarity form of the PDE becomes

− 1

4
(H − ξHξ ) = 1

H

[
H

(1 + H 2
ξ )1/2

κξ

]
ξ

, ξ = x ′

t ′1/4
(2.4)

where κ is the mean curvature of H .
Solutions of (2.4) have been studied extensively in [43]. To ensure matching to a time-

independent outer solution, the leading order time dependence must drop out from (2.3),
implying that

H(ξ) ∼ c|ξ |, ξ → ±∞; (2.5)

the general form of this matching condition for self-similar solutions of the form (1.2) is

H(ξ) ∼ c|ξ | α
β , ξ → ±∞. (2.6)

All solutions of the similarity equation (2.1) and which obey the growth condition (2.5) are
symmetric, and form a discretely infinite set [43], similar to a number of other problems
discussed below. The series of similarity solutions is conveniently ordered by descending
values of the minimum, see table 2. Only the lowest order solution H0(ξ) is stable, and is
shown in figure 3; we return to the issue of stability in section 2.5. The fact that permissible
similarity solutions form a discrete set implies a great deal of ‘universality’ in the way pinching
can occur. It means that the local solution is independent of the outer solution, and rather that
the former imposes constraints on the latter; in particular, the prefactor c in (2.5) must be
determined as part of the solution (see table 2).

2.1.1. Thin films and thin jets. A further class of solutions displaying self-similarity of the
first kind is the generalized long-wave thin-film equation

ht + ∇ · (hn∇�h − Bhm∇h) = 0, n > 0. (2.7)
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Figure 3. The approach to the self-similar profile for equation (2.1). The dashed line is the stable
similarity solution H(ξ) as found from (2.4). The full lines are rescaled profiles found from the
original dynamics (2.1) at hm = 10−1, 10−2 and hm = 10−3, respectively. As the singularity is
approached, they converge rapidly onto the similarity solution (2.3).

The mass flux in this equation has two contributions: the first is due to surface tension and the
second is due to an external potential. When n = m = 3, then z = h(x, t) represents the height
of a film or a drop of viscous fluid over a flat surface, located at z = 0; the external potential
is gravity. If B is negative, (2.7) describes a film that is hanging from a ceiling. Regardless of
the sign of B, there is no singularity in this case [44]. The case n = 1 and B = 0 corresponds
to flow between two solid plates, to which we return in section 7.1.

Solutions to (2.7) are said to develop point singularities if h goes to zero in finite time.
This happens if one incorporates van der Waals forces, which at leading order implies n = 3
and m = −1 with B < 0. In [45, 46] (see also the review [47], where further full numerical
simulations and mathematical theory are reported) the existence of radially symmetric self-
similar touchdown solutions of the form

h(r, t) = t ′
1
5 H(ξ), ξ = r/t ′

2
5 (2.8)

is shown numerically in this case. Self-similar solutions that touch down along a line exist
as well, but they are unstable. A proof of formation of singularities in this context has been
provided by Chou and Kwong [48].

A related set of equations is those for thin films and jets, but which are isolated instead of
being in contact with a solid. Problems of this sort furnish many examples of type-I scaling,
as reviewed from a physical perspective in [49]. If the motion is no longer dampened by the
presence of a solid, inertia often has to be taken into account. This means that a separate
equation for the velocity is needed, which is essentially the Navier–Stokes equation below, but
often simplified by a reduction to a single dimension. Thus one has solutions of the form

h(x, t) = t ′αH(ξ), u(x, t) = t ′β−1U(ξ), (2.9)

where ξ = x ′/t ′β . If α > β the profile is slender, and the dynamics is well described in a
shallow-water theory. In this case the equations for an axisymmetric jet with surface tension
become

∂th
2 + ∂x(uh2) = 0 (2.10)

and

ρ(∂tu + u∂xu) = −(γ /ρ)∂x(1/h) + 3ν
∂x(∂xuh2)

h2
. (2.11)
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System (2.10) and (2.11) is interesting because it exhibits different scaling behaviour
depending on the balance between the three different terms in (2.11) [42]. This is an illustration
of the principle of dominant balance, which is of great practical importance in practice, where
it is a priori not known which physical effect will be dominant. In the case of (2.11), these are
the forces of inertia on the left, surface tension (first term on the right) and viscosity (second
term on the right). Pinching is driven by surface tension, so it must always be part of the
balance. Three different possible balances remain [42]:

(i) In the first case [50], all forces in (2.11) are balanced as the singularity is approached. The
exponents α = 1, β = 1/2 in (2.9) follow directly from this condition. As shown in [51],
there is a discretely infinite sequence of self-similar profiles H(ξ), U(ξ) corresponding to this
balance. Numerical evidence strongly suggests that only the first profile, corresponding to the
thickest thread, is stable [6]. All the other profiles are unstable, and thus cannot be observed.
We will revisit this general scenario below, when we study the stability of fixed points more
generally.
(ii) The second possibility corresponds to a balance between surface tension and viscous
forces, thus putting ρ = 0 in (2.11). Physically, this occurs if the fluid is very viscous [52].
In section 2.4.1 we will describe the pinching solution corresponding to this case in more
detail, as an example of self-similarity of the second kind. The exponent α = 1 is fixed by
the balance, but β is fixed only by an integrability condition. This once more results in an
infinite sequence of solutions, ordered by the value of β. Again, only one profile, which has
the largest value of β = 0.174 87, is stable. This time, this corresponds to the smallest value
of the minimum radius R0, or the thinnest thread, as opposed to the thickest thread in the case
of the inertial–surface tension–viscous balance.

If one inserts this viscous solution into the original equation (2.11), one finds that in the
limit t ′ → 0, the inertial term on the left grows faster than the two terms on the right. This
means that regardless of how large the viscosity, eventually all three terms become of the same
order, and one observes a crossover to the inertial–surface tension–viscous similarity solution
described above, which is characterized by another set of scaling exponents and similarity
profiles. In particular, the surface tension–viscous solution is symmetric about the pinch point,
whereas the solution containing inertia is highly asymmetric [53]. We note that crossover
between different similarity solutions may also occur by another mechanism, not directly
related to the dominant balance between different terms in the equation (cf section 7.1).

Equations (2.10) and (2.11) correspond to a viscous liquid, surrounded by a gas, which is
not dynamically active. The case of an external viscous fluid is considered in detail in section 4.
The case of no internal fluid is special, in that the dynamics decouples completely into one for
independent slices [54]. As a result, there is no universal profile associated with the breakup
of a bubble in a viscous environment, but rather it is determined by the initial conditions.
(iii) At very low viscosity (ν ≈ 0 in (2.11)), the relevant balance is one where inertia is
balanced by surface tension, so one might want to set ν = 0 in (2.11), as done originally
in [55]. However, the resulting equations do not lead to a selection of the values of the scaling
exponents α, β; instead, there is a continuum of solutions [56], parametrized by the value of
α, each with a continuum of possible similarity profiles. In fact, for vanishing viscosity (2.10)
and (2.11) do not go towards a pinching solution, but the slope of the interface steepens, and
one finds a shock solution [57], similar to the generic scenario described in section 2.4.

It was however shown numerically in [58, 59], and investigated in more detail in [60],
that pinch-off of an inviscid fluid is well described by a solution of the full three-dimensional,
axisymmetric potential flow equations. This is thus an example of a similarity solution of
higher order in the independent variable, but both coordinate directions scale in the same way.



R10 Invited Article

The scaling exponents in (2.9) are α = β = 2/3 in this case, which violates the assumption
α > β for the validity of the shallow-water equations (2.10) and (2.11). In addition, we note
that the similarity profile can no longer even be written as a graph as assumed in (2.9), but
turn over, as first observed experimentally in [61]. It is not known whether there also exists a
sequence of similarity solutions, as in the case of the other balances. The case of no internal
fluid is again very special, and leads to type-II scaling. It is considered in section 3.2.1.

Finally, variations of (2.10) and (2.11) have been investigated in [62]. Breakup was
considered in arbitrary dimensions d (yet retaining axisymmetry) and with the pressure term
1/h replaced by an arbitrary power law 1/hp. After introducing a new variable 1/hp, there
remains a single parameter r = (d − 1)/p, which can formally be varied continuously. For
all values of r , discrete sequences of type-I solutions are obtained. For r > 1/2, profiles are
asymmetric, while below that value they are symmetric. At the critical value, both types of
solutions coexist. Another interesting feature of the limit r = 1/2 is that the viscous term
becomes subdominant at leading order. However, similar to the case d = 3, p = 1 mentioned
above, no selection takes place in the absence of the viscous term. Nevertheless, the solutions
selected by the presence of the viscous term are very close to an appropriately chosen member
of the family of inviscid solutions.

2.2. Singularities in Euler and Navier–Stokes equations

One of the most important open problems, both in physics and mathematics, is the existence
of singularities in the equations of fluid mechanics: Euler and Navier–Stokes equations in
three space dimensions. The Navier–Stokes equations represent the evolution of a viscous
incompressible fluid and are of the form

ut + u · ∇u = −∇p + Re−1�u, ∇ · u = 0, (2.12)

where u represents the velocity field, p the pressure in the fluid and Re is a dimensionless
parameter called Reynolds number. Formally, by making Re → ∞, the term involving �u
vanishes and we arrive at the Euler system, that models the evolution of the velocity and
pressure fields of an inviscid incompressible fluid:

ut + u · ∇u = −∇p, ∇ · u = 0. (2.13)

We exclude from our discussion certain ‘exact’ blow-up solutions of the Euler equations [63],
which have the defect that the velocity goes to infinity uniformly in space; in other words, they
lack the crucial mechanism of focusing. Formally, they are of course similarity solutions of
(2.13), but with spatial exponent α = 0.

As we mentioned above, the existence of singular solutions is unknown. Nevertheless,
some scenarios have been excluded. For the Navier–Stokes equations, there exists no non-
trivial self-similar solution of the first kind

u(x, t) = t ′−1/2U (ξ) , ξ = x′/t ′1/2 (2.14)

inL2(R3). This was proved by Necas et al [64]. However, this does not exclude the formation of
a singularity in a localized region: the matching condition (2.6) for this case implies |U| ∝ |ξ |−1

as |ξ | → ∞, which is not in L2. Therefore, the theorem [64] does not apply.
A possible self-similar solution consisting of two skewed vortex pairs has been proposed

by Moffatt in [7] in the spirit of the scenario suggested by the numerical simulations of Pelz [65],
of the implosion of six vortex pairs in a configuration with cubic symmetry. A more recent
numerical experiment by Hou and Li [66] seems to indicate that, although the velocity field may
grow to very large values, singularities in the above-mentioned scenarios eventually saturate
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and the solutions remain smooth. It has been argued in [67] that no self-similar solutions for
Euler system should exist and that the ‘limit-cycle’ scenario described in section 5 could apply.

Under certain circumstances, such as special symmetry conditions or appropriate
asymptotic limits, the Navier–Stokes and Euler systems may simplify and give rise to models
for which the question of existence of singular solutions is somewhat simpler to analyse. This
is the case for the Prandtl boundary-layer equations for the 2D evolution of the velocity field
(u, v) in y � 0:

ut + uux + vuy = −px + uyy, ux + vy = 0 (2.15)

with boundary conditions u = v = 0; p is a given pressure field and the behaviour of the
velocity field at infinity is prescribed. Equation (2.15) describes the asymptotic limit of the
Navier–Stokes equation near a solid body in the limit of large Reynolds numbers Re. The
variable x measures the arclength along the body, and Re1/2y is the distance from the body.
Historically, a lot of attention was focused on the stationary version of (2.15), considering it
as an evolution equation in x. At some position xs along the body, the so-called Goldstein
singularity v ∝ (xs − x)−1/2 is encountered [68], which signals separation of the flow from
the body. However, in reality the outer flow changes as a result of the appearance of a
stagnation point, and one has to consider the interaction between the boundary layer and
the outer flow [69].

It is thus conceptually simpler to consider the case of unsteady boundary-layer separation,
which is described by the first singularity of (2.15) at time t0. The formation of singularities of
(2.15) in finite time was proved by E and Engquist [70]. It was first found numerically by van
Dommelen and Shen [71], and its analytical structure was investigated in [72], using Lagrangian
variables, which follow fluid particles as they separate from the surface (see also [73]). In the
original Eulerian variables, the self-similar structure is [74, 75]

u = −u0 + t ′1/2φ
1/2
0 U(ξ, η), ξ = x ′ − u0t

′

t ′3/2φ
1/2
0

, η = yφ
1/4
0

t ′1/4�
, (2.16)

where u0, φ0 and � are constants which depend on the problem, while U is universal and
can be given in terms of elliptic integrals. Note that the exponents for u and x are the
generic exponents for a developing shock (see section 2.4), while the similarity exponent
in the y-direction is different from the scaling for two-dimensional breaking waves [27]. We
stress that the appearance of a singularity in (2.15) does not mean that the full 2D Navier–Stokes
equation has developed a singularity. Instead, lower order terms in the asymptotic expansion
that lead to (2.15) become important close to the singularity.

In relation to singularities in fluid mechanics, we can mention briefly a few important
problems involving models or suitable approximations to the original Euler and Navier–Stokes
systems. One concerns weak solutions to the Euler system for which the vorticity (ω = ∇ ×u)
is concentrated in curves or surfaces. This is the case of the so-called vortex filaments and
sheets in which the vorticity remains concentrated for all times, in the absence of viscosity.
A useful way to represent the vortex sheet, when it evolves in 2D, is by assuming the location
of its points (x(α, t), y(α, t)) as complex numbers z(α, t) = x(α, t) + iy(α, t). Then, the
evolution of z(α, t) is given by the so-called Birkhoff–Rott equation [76]:

z∗
t (α, t) = 1

2π i
PV

∫ ∞

−∞

γ (z(α′, t), t)
z(α, t) − z(α′, t)

zα(α′, t) dα′, (2.17)

where z∗ stands for the complex conjugate of z. The principal value is denoted by PV and
γ is the vortex strength, which is such that d� = γ (z(α, t), t)zα(α, t) dα is constant along
particle paths of the flow. The question then is whether or not these geometrical objects will
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remain smooth at all times or develop singularities in finite time. In the case of vortex sheets,
singularities are known to develop in the form of a divergence of the curvature at some point.
These are called Moore’s singularities after their observation and description by Moore [77].
A mathematical proof of existence of these singularities is provided by Caflisch and Orellana
in [78]. These singularities exhibit self-similarity of the first kind as shown, for instance,
in [79]: if one defines the inclination angle θ(s, t) in terms of the arclength parameter s as such
that zs = eiθ , then the curvature is given by κ = θs and may blow-up in the self-similar form
(up to multiplicative constants):

κ(s, t ′) = 1

t ′δ
g(η), η = s ′/t ′, 0 < δ < 1, (2.18)

where

g(η) = 1

(1 + η2)
δ
2

sin(δ arctan η) . (2.19)

Interestingly, numerical simulations and Moore’s original observations suggest that, although
singular solutions with any δ are possible, the solution with δ = 1

2 is preferred. Thus the

generically observed geometry near the singularity is of the form y = |x| 3
2 , including the case

of 3D simulations. This poses an interesting ‘selection problem’ for the 3
2 power which has

not received a definitive answer so far.
Another type of solution of (2.17) has the form of a double-branched spiral vortex

sheet [80]. The explicit form is

z(β, t) =
{

t ′qβν β > 0,

t ′q |β|ν β < 0,
(2.20)

where the two cases correspond to the two branches of the spiral. The parameter β is related to
integration variable α of (2.17) by dβ = zαdα. The exponents are of the form ν = 1/2+ib and
q = 1/2+iµb, corresponding to a vortex of radius r = t ′1/2 collapsing in finite time. However,
in this case the vortex sheet strength is found to increase exponentially at infinity [80].

Vortex filaments result as the limit of a vortex tube when the thickness tends to zero. The
fluid flow around a vortex filament is frequently approximated by a truncation of the Biot–Savart
integral for the velocity in terms of the vorticity. This leads to a geometric evolution equation for
the filament (see [81, chapter 7], and references therein) that can be transformed, via Hasimoto
transformation, into the cubic nonlinear-Schrödinger in 1D. This fact allowed Gutierrez, Rivas
and Vega to construct exact self-similar solutions for infinite vortex filaments [82]. One can
also consider the vorticity concentrated in a region separating two fluids of different densities
and in the presence of gravitational forces. This is the case of the surface water waves system
for which the existence of singularities is open [83].

A different approach in the study of singularities for Euler and Navier–Stokes equations
in three space dimensions relies on the development of models that share some of the essential
mathematical difficulties of the original systems, but in a lower space dimension. This is the
case of the surface quasi-geostrophic equation popularized by Constantin et al [84]:

θt + v · ∇θ = 0, (2.21a)

v = ∇⊥ψ, θ = −(−�)1/2ψ, (2.21b)

to be solved in d = 2. This system of equations describes the convection of an active scalar θ ,
representing the temperature, with a velocity field which is an integral operator of the scalar
itself. Nevertheless, the mere existence of singular solutions to this equation in the form of
blow-up for the gradient of θ is still an open problem. One-dimensional analogues of this
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problem, representing the convection of a scalar with a velocity field, which is the Hilbert
transform of the scalar itself do have singularities in the form of cusps, as proved in [85, 86].
The structure of such singularities has been described in [87] and they are, in fact, of the type
described in the next section, that is of the second kind.

2.3. Self-similarity of the second kind

In the example of the previous subsection, the exponents can be determined by dimensional
analysis, or from considerations of symmetry, and therefore assume rational values. In many
other problems, however, the scaling behaviour depends on external parameters, set for example
by the initial conditions. In that case, the scaling exponent can assume any value. Often, this
value is fixed by a compatability condition, resulting in an irrational answer. We will call this
situation self-similarity of the second kind [32, 35]. Since it is relatively rare that results are
tractable analytically, we mention two simple examples for which this is possible, although
they do not come from time-dependent problems.

The first example is that of viscous flow near a solid corner of opening angle 2α [88]. For
analogues of this problem in elasticity, see [89, 90] as well as the discussion in [35]. This flow
is described by a Stokes’ equation, whose solution near the corner is expected to be

ψ = rλfλ(θ). (2.22)

If one of the boundaries is moving, scaling is of the first kind, and λ = 2 (the so-called Taylor
scraper [91]). However, if the flow is driven by two-dimensional stirring at a distance from
the corner, λ is determined by the transcendental equation

sin 2(λ − 1)α = −(λ − 1) sin 2α. (2.23)

If 2α < 146◦, (2.23) admits complex solutions, which correspond to an infinite sequence of
progressively smaller corner eddies. Since λ is complex, the strength of the eddies decreases
as one comes closer to the corner.

The second example consists of calculating the electric field between two non-conducting
spheres, where an external electric field is applied in the direction of the symmetry plane [92].
In this case the electric potential between the spheres is proportional to (ρ/(Rh))

√
2−1, where

ρ is the radial distance from the symmetry axis, R the sphere radius and h the distance between
the spheres. Thus in accordance with the general ideas of self-similarity of the second kind,
the singular behaviour is not controlled by the local quantity ρ/h, but the ‘outer’ parameter
R comes into play as well. We now explain two analytically tractable dynamical examples of
self-similarity of the second kind.

2.4. Breaking waves in conservation laws

We only consider the simplest model for the formation of a shock wave in gas dynamics, which
is Burger’s equation

ut + uux = 0. (2.24)

It is generally believed that any system of conservation laws that exhibits blow up will locally
behave like (2.24) [94]. For example, figure 4 shows the steepening of a density wave in a
gas, leading to a jump of the density in the picture on the right. In the words of [93]: ‘We
conclude that an infinite slope in the theoretical solution corresponds to a shock in real life’. As
throughout this review, we only consider the dynamics up to the singularity. Which structure
emerges after the singularity depends on the regularization used, as the continuation to times
after the singularity is not unique [95, 96]. If the regularization is diffusive, a shock wave
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Figure 4. Fringe pattern showing the steepening of a wave in a gas, leading to the formation
of a shock, which is travelling from left to right [93]. The vertical position of a given fringe is
proportional to the density at that point. In the last picture a jump of seven fringes occurs. Reprinted
with permission from [93]. Copyright 1954, American Association of Physics Teachers.

forms [97]; if it is a third derivative, one finds a KDV soliton. Finally, regularization by
higher-order nonlinearities has been considered in [27] as a model of wave breaking.

It is well known [98] that (2.24) can be solved exactly using the method of characteristics.
This method consists of noting that the velocity remains constant along the characteristic curve

z = u0(x)t + x, (2.25)

where u0(x) = u(x, 0) is the initial condition. Thus

u(z, t) = u0(x) (2.26)

is an exact solution to (2.24), given implicitly.
It is geometrically obvious that whenever u0(x) has a negative slope, characteristics will

cross in finite time and produce a discontinuity of the solution. This happens when ∂z/∂x = 0,
which will occur for the first time at the singularity time

t0 = min

{
− 1

∂xu0(x)

}
, (2.27)

at a spatial position x = xm. This means a singularity will first form at

x0 = xm − u0(xm)

∂xu0(xm)
. (2.28)

Since (2.24) is invariant under any shift in velocity, we can assume without loss of generality
that u0(xm) = 0, and thus that x0 = xm. This means the velocity is zero at the singularity.
We now analyse the formation of the singularity using the local coordinates x ′, t ′. In [27],
this was done by expanding the initial condition u0 in x ′, and using (2.26), using ideas from
catastrophe theory [26]. Here instead we use the similarity ideas developed in this paper.

The local behaviour of (2.24) near t0 can be obtained using the scaling

u(x, t) = t ′αU
(
x ′/t ′α+1

)
, (2.29)

which solves (2.24). The similarity equation becomes

− αU + (1 + α)ξUξ + UUξ = 0, (2.30)
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with implicit solution

ξ = −U − CU 1+1/α. (2.31)

The special case α = 0 has the solution U = −ξ , which is inconsistent with the matching
condition (2.6), and thus has to be discarded.

We are thus left with a continuum of possible scaling exponents α > 0, as is typical for
self-similarity of the second kind. A discretely infinite sequence of exponents αn is however
selected by the requirement that (2.31) defines a smooth function for all ξ . Namely, one must
have 1 + 1/α odd, or

αi = 1

2i + 2
, i = 0, 1, 2 . . . , (2.32)

and we denote the corresponding similarity profile by Ui . The constant C in (2.31) must be
positive, but is otherwise arbitrary. It is set by the initial conditions, which is another hallmark
of self-similarity of the second kind. However, C can be normalized to 1 by rescaling x and
U . We will see in section 2.5 that the solution with α0,

u(x, t) = t ′1/2U0
(
x ′/t ′3/2

)
, (2.33)

is the only stable one, all higher-order solutions are unstable.
It is interesting to look at some possible exceptions to the form of blow-up given above,

suggested by [94]:

ut + uux = uσ . (2.34)

This equation is also solved easily using characteristics. For σ � 2 the blow-up is always of
the form (2.33), for σ > 2 two different types of behaviour are possible. For small initial data
u0(x), a singularity still forms like (2.33), but in addition u may also go to infinity. However,
there is a boundary between the two types of behaviour [94], where the slope blows up at the
same time that u goes to infinity. For this case, one expects all terms in (2.34) to be of the
same order, giving

u(x, t) = t ′
1

1−σ U (ξ)) , ξ = x ′/t ′
σ−2
σ−1 , (2.35)

with similarity equation

U

1 − σ
+

σ − 2

σ − 1
ξUξ = Uσ − UUξ . (2.36)

The solution to (2.36) that has the right decay at infinity is

ξ = − 1

(σ − 2)Uσ−2
± C

(
1 − (σ − 1)Uσ−1

) σ−2
σ−1

Uσ−2
, (2.37)

where C > 0 is an arbitrary constant. The + and − signs describe the solution to the right
and left of ξ ∗ = −(σ − 1)

σ−2
σ−1 /(σ − 2), respectively. The special case σ = 4 is shown in

figure 5. The similarity solution (2.37) is not smooth at its maximum; rather, its first derivative
behaves like Uξ ∝ (ξ − ξ∗)1/(σ−2). This can be understood from the exact solution; in order
for blow-up to occur at the same time that a shock is formed, the initial profile must already
have a maximum with the same regularity as (2.37). Thus, the situation leading to (2.35) is a
very special one, requiring very peculiar initial conditions.
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Figure 5. The similarity solution (2.37) for σ = 4.

2.4.1. Viscous pinch-off. As explained in section 2.1.1, the pinch-off of a very viscous fluid
is described by (2.10) and (2.11), with ρ = 0, but only for finite range of scales. The equations
can be simplified considerably by introducing Lagrangian variables, i.e. writing all profiles
as a function of a particle label s. This means the particle is at position z(s, t) at time t , and
zt (s, t) is the velocity at time t . The jet profile can be obtained from zs = 1/h2(s, t), and
(2.11) becomes

ht (s, t) = 1

6

(
1 +

C(t)

h(s, t)

)
. (2.38)

The typical velocity scale is γ /η, where γ is the surface tension and η is the viscosity; (2.38)
has been made dimensionless accordingly. The time-dependent constant of integration C(t)

has to be determined self-consistently. Note that the self-similar form (1.2) is a solution of
(2.38) for α = 1, and any value of β; the exponent β will be determined by the consistency
condition (2.45) below.

Since α = 1, a scaling solution of (2.38) has the form

h−2(s, t) = t ′−2f (ξ) , with ξ = s ′/t ′γ (2.39)

and

C(t) = −C0t
′ . (2.40)

The relationship with the exponent β defined in (2.9) is simply β = γ − 2, as found from
passing from Lagrangian to Eulerian variables. Inserting (2.39) and (2.40) into (2.38) we
obtain

1√
f

+ 3

(
2

f
+

γ ξfξ

f 2

)
= C0, (2.41)

where C0 is a constant. Imposing symmetry and regularity of f , we expand f (ξ) in the form

fi(ξ) = R−2
0 + ξ 2i+2 + O(ξ 2i+4), i = 0, 1, 2, . . . (2.42)

where we have normalized the coefficient of ξ 2i+2 to one. This is consistent, since any solution
of (2.38) is only determined up to a scale factor. Instead, the axial scale is fixed by the initial
conditions. The parameter R0 is the rescaled minimum of the profile: hm = R0t

′. Inserting
(2.42) into (2.41), at order ξ 2i+2 one obtains

R0 = 1

12(γ − 1)
, C0 = 1

24

2γ − 1

(γ − 1)2
, (2.43)

where we have put γ = (i + 1)γ .
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Each choice of i corresponds to one member in an infinite sequence of similarity solutions.
Equation (2.41) can easily be integrated in terms of ln ξ and y = √

f :∫
dy(

(1 + 6R0) y3 − y2 − 6R0y
) = 1

6R0γ
ln ξ + C̃ = 1

6R0γ
ln ξ i+1 + C̃,

with C̃ an arbitrary constant. Computing the integral above we obtain

y−γ ((2γ − 1) y + 1)γ− 1
2 (1 − y)

1
2 = ξ i+1, (2.44)

which is an implicit equation for the ith similarity profile y ≡ yi(ξ) = √
fi(ξ).

The value of the velocity U∞ at infinity must be a constant to be consistent with boundary
conditions. It can be found by integrating zts = (h−2)t = t ′−3(2f +γ ξfξ ) from zero to infinity:

U∞ =
∫ ∞

0
zts ds = t ′γ−3

3

∫ ∞

0

((
1

24

2γ − 1

(γ − 1)2

)
f 2 − f

3
2

)
dξ = 0, (2.45)

where we have used (2.41). The above condition U∞ = 0, which ensures that U∞ does not
diverge as t ′ → 0, is the equation which determines the exponent γ . Taking the derivative of
(2.44), we obtain

(i + 1)ξ i dξ

dy
= d

dy

(
y−γ ((2γ − 1) y + 1)γ− 1

2 (1 − y)
1
2

)
= −y−γ−1 (2yγ − y + 1)γ− 3

2
γ√

(1 − y)
,

which can be used to transform the integral in (2.45) to the variable y:

Ki(γ ) ≡ 3U∞
(12(γ − 1))3

= γ

i + 1

∫ 1

0

((
1

2

2γ − 1

γ − 1

)
y4 − y3

)
·

(
y− i+1+γ

i+1 ((2γ − 1) y + 1)−
1
2

2i−2γ +3
i+1 (1 − y)−

1
2

2i+1
i+1

)
dy = 0. (2.46)

The function Ki(γ ) may be written explicitly as

Ki(γ ) = γ
� (4 − γ ) �

(
1

2i+2

)
�
(
4 − γ + 1

2i+2

) (
1

2

(2i + 2)γ − 1

(i + 1)γ − 1

)
·

F

(
2i + 3

2i + 2
− γ, 4 − γ ; 4 − γ +

1

2i + 2
; 1 − (2i + 2)γ

)
− γ

� (3 − γ ) �
(

1
2i+2

)
�
(
3 − γ + 1

2i+2

) ·

F

(
2i + 3

2i + 2
− γ, 3 − γ ; 3 − γ +

1

2i + 2
; 1 − (2i + 2)γ

)
, (2.47)

where F(a, b; c, z) is the hypergeometric function [100]. Roots of γi are given in table 3.
To summarize, each exponent γi corresponds to a new member fi(ξ) of an infinite

hierarchy of similarity profiles, to be found from (2.44). If one converts the Lagrangian
variables back to the original spatial variables, one obtains

h(x, t) = t ′φ(n)
St

(
x ′/t ′γ−2

)
. (2.48)

Thus for t ′ → 0 the typical radial scale t ′ of the generic i = 0 solution rapidly becomes smaller
than the axial scale t ′0.175 (cf table 3). This explains the long necks seen in figure 6.
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Table 3. A list of exponents, found from Ki(γ ) = 0 using MAPLE, with Ki given by (2.47). The
number 2i + 2 gives the smallest non-vanishing power in a series expansion of the corresponding
similarity solution around the origin. Only the solution with i = 0 is stable. The rescaled minimum
radius is found from (2.43).

i γi R0

0 2.1748 0.0709
1 2.0454 0.0797
2 2.0194 0.0817
3 2.0105 0.0825
4 2.0065 0.0828
5 2.0044 0.0832

Figure 6. A drop of viscous fluid falling from a pipette 1 mm in diameter [99]. Note the long neck.
Reproduced with permission from [99].

2.4.2. More examples. Other recent examples for scaling of the second kind have been
observed for the breakup of a two-dimensional sheet with surface tension. In a shallow-water
approximation, which is justified for a description of breakup, the equations read [101]

ht + (hu)x = 0, ut + uux = hxxx (2.49)

after appropriate rescaling. Local similarity solutions can be found in the form

h(x, t) = t ′4β−2H(η), u(x, t) = t ′β−1U(η), (2.50)

where η = x ′/t ′β . The exponent β is not determined by dimensional analysis. Instead, it must
be found from a solvability condition on the nonlinear system of equations for the similarity
functions H, U .

The result of the numerical calculation is [101] β = 0.6869 ± 0.0003, which is curiously
close to β = 2/3, which is the value that had been conjectured earlier [102], but contains
a small correction. The value β = 2/3 comes out if both length scales in the longitudinal
and transversal directions are assumed to be the same, implying that 4β − 2 = β. This is a
natural expectation for problems governed by Laplace’s equation, such as inviscid, irrotational
flow [59], and indeed is observed for three-dimensional drop breakup [58, 59]. However, in the
present case, even if the full two-dimensional irrotational flow equations are used, β �= 2/3.

Other physical problems which frequently involve anomalous scaling exponents are strong
explosions on the one hand, and collapse of particles or gases into a singular state on the other.
These types of problems have been reviewed in great detail in a number of textbooks and papers
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[32–35], but continue to attract a great deal of attention. As with many other singular problems,
the type of scaling depends on the details of the underlying physics, and scaling of both the
first and second kinds is observed. For example, the radius of a shock wave resulting from a
strong explosion can be calculated from dimensional analysis to be rs ∝ t2/5 [103]. However,
in the seemingly analogous case of a strong implosion, an anomalous exponent is observed,
which moreover depends on the parameters of the problem [98, 104]. Cases where collapse
and shock formation coincide were given by [105] (similar to section 2.4). In a somewhat
different context, anomalous scaling is observed in model calculations for the collapse of self-
gravitating particles [106] and Bose–Einstein condensates [107]. It is important to remember
that these examples come from kinetic equations describing the stochastic collision of waves
or particles, and hence involving non-local collision operators. However, the kinetic equations
appear to be closely related to certain PDE problems [108], which are analogous to other
evolution equations studied in this paper.

2.5. Stability of fixed points

Self-similar solutions correspond to fixed points of the dynamical system (1.4), whose stability
we now investigate by linearizing around the fixed point. We explain the situation for the
example of section 2.1 in more detail, for which the transformation reads

h(x, t) = t ′1/4H(ξ, τ ), (2.51)

where τ = − ln(t ′). The similarity form of (2.1) becomes

Hτ = 1

4
(H − ξHξ ) +

1

H

[
H

(1 + H 2
ξ )1/2

κξ

]
ξ

, (2.52)

which reduces to (2.4) if the left-hand side is set to zero. To assure matching of (2.52) to the
outer solution, we have to require that (2.51) is to leading order time-independent as ξ is large,
which leads to the boundary condition

Hτ − (H − ξHξ )/4 → 0 for |ξ | → ∞. (2.53)

This is the natural extension of (2.5) to the time-dependent case.
Next we linearize around any one of the similarity solutions H(ξ) = Hi(ξ) listed in

table 2, as described in the introduction. The stability is controlled by eigenvalues of the
eigenvalue equation (1.8). Inserting the eigensolution (1.9) into (2.53) one finds that Pj must
grow at infinity like

Pj (ξ) ∝ ξ 1−4νj . (2.54)

Similarly, the growth condition for the general case of a similarity solution of the form (1.2) is

Pj (ξ) ∝ ξ
α−νj

β . (2.55)

If the similarity solution H(ξ) is to be stable, the real part of the eigenvalues of L must
be negative. However, there are always two positive eigenvalues, which are related to the
invariance of the equation of motion (2.1) under translations in space and time, as noted
by [109, 110]. Namely, for any ε, the translated similarity solution

h(ε)(x, t) = t ′1/4H

(
x ′ + ε

t ′1/4

)
(2.56)

is an equally good self-similar solution of (2.1), and thus of (2.52). In particular, we can expand
(2.56) to lowest order in ε, and find that

H(ε)(ξ, τ ) = H(ξ) + εeβτH ξ (ξ) + O(ε2), (2.57)

where the linear term is a solution of (1.6).
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Thus (
eβτH ξ

)
τ

= eβτβHξ = eβτLHξ . (2.58)

But this means that νx = β ≡ 1/4 is an eigenvalue of L with eigenfunction Hξ(ξ). Similarly,
considering the transformation t → t + ε, one finds a second positive eigenvalue νt = 1, with
eigenfunction ξHξ . However, these two positive eigenvalues do not correspond to instability.
Instead, the meaning of these eigenvalues is that upon perturbing the similarity solution, the
singularity time as well as the position of the singularity will change. Thus if the coordinate
system is not adjusted accordingly, it looks as if the solution would flow away from the fixed
point. If, on the other hand, the solution is represented relative to the perturbed values of x0

and t0, the eigenvalues νx and νt will not appear.
The eigenvalue problem (1.8) was studied numerically in [43]. It was found that each

similarity solution Hi has exactly 2i positive real eigenvalues, disregarding νx, νt . The result
is that the linearization around the ‘ground state’ solution H 0 only has negative eigenvalues
while all the other solutions have at least one other positive eigenvalue. This means that H 0

is the only similarity solution that can be observed, all other solutions are unstable. Close to
the fixed point, the approach to H 0 will be dominated by the largest negative eigenvalue ν1:

h(x, t) = t ′1/4
[
H(ξ) + εt ′−ν1P1(ξ)

]
. (2.59)

For large arguments, the point ξcr where the correction becomes comparable to the similarity
solution is ξ ∼ εt ′−ν1ξ 1−4ν1 , and thus ξcr ∼ t ′−1/4. This means that the region of validity of
H(ξ) expands in similarity variables, and is constant in real space. This rapid convergence is
reflected by the numerical results reported in figure 3. More formally, one can say that for any
ε there is a δ such that∣∣h(x, t) − t ′1/4H(ξ)

∣∣ � ε (2.60)

if |x ′| � δ uniformly as t ′ → 0.
We suspect that the situation described above is more general: the ground state is stable,

while each following profile has a number of additional eigenvalues. In the case of the sequence
of profiles Hi of (2.4), two new positive eigenvalues appear for each new profile, corresponding
to a symmetric and an antisymmetric eigenfunction. Below we give two more examples of
the same scenario, for which we are able to give a simple geometrical interpretation for the
appearance of two additional positive eigenvalues at each stage of the hierarchy of similarity
solutions. The simplest case is that of shock wave formation (cf section 2.4), for which
everything can be worked out analytically.

The dynamical system corresponding to the self-similar solution (2.29) is

Uτ − αU + (1 + α) ξUξ + UUξ = 0, (2.61)

and so the eigenvalue equation for perturbations P around the base profile Ui becomes

(αi − ν)P − (1 + αi)ξPξ − P(Ui)ξ − PξUi = 0, i = 0, 1, . . . (2.62)

Here Ui is the ith similarity function defined by (2.31) for the exponents αi as given by (2.32).
The eigenvalue equation (2.62) is easily solved by transforming from the variable ξ to the

variable U , using (2.31):

P
[
(αi − ν)(1 + (2i + 3)U

2i+2
i ) + 1

]
= ∂P

∂U

[
αiUi + (1 + αi)U

2i+3
i

]
, (2.63)

with solution

P = U
3+2i−2ν(i+1)

i

1 + (2i + 3)U
2i+2
i

. (2.64)
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The exponent 3 + 2i − 2ν(i + 1) must be an integer for (2.64) to be regular at the origin, so the
eigenvalues are

νj = 2i + 4 − j

2i + 2
, j = 1, 2, . . . (2.65)

As usual, the eigensolutions are alternating between even and odd. However, we are interested
in the first instance, given by (2.27), at which a shock forms. This implies that the second
derivative of the profile must vanish at the location of the shock, and the amplitude of the j = 3
perturbation must be exactly zero.

Thus for i = 0 the remaining eigenvalues are ν = 3/2, 1, 0, −1/2, . . .; the first two are
the eigenvalues νx = β = 1 + α and νt = 1 found above. The vanishing eigenvalue occurs
because there is a family of solutions parameterized by the coefficient C in (2.31). All the
other eigenvalues are negative, which shows that the similarity solution (2.33) is stable. In
the same vein, for α1 = 1/4 there are two more positive exponents: ν = 5/4, 1, 1/2, 1/4,
so the solution must be unstable. The same is of course true for all higher order solutions.
Thus in conclusion the ground state solution U 0 given by (2.33) is the only observable form
of shock formation. The same conclusion was reached in [27] by a stability analysis based on
catastrophe theory.

The sequence of profiles for viscous pinch-off, found in section 2.3, suggests a simple
mechanism for the fact that two new unstable directions appear with each new similarity profile
of higher order. In fact, the argument is strikingly similar to that given for shock formation.
Differentiating (2.38) with respect to s one finds that a local minimum point smin remains a
minimum. Thus the local time evolution of the profile can be written as

h(s, t) = hm +
∞∑

j=2

Bj(t)s
′j . (2.66)

For generic initial data B2(0) �= 0, so there is no reason why B2 should vanish at the
singular time, which means that the self-similar solution f0 will develop, which has a
quadratic minimum. This situation is structurally stable, so one expects the eigenvalues of the
linearization to be negative. If however the coefficients Bj(0) are zero for j = 2, . . . 2n − 1,
they will remain zero for all times. Namely, if the first k s-derivatives of h vanish, one has

∂j
s ht = −C∂

j
s h

h2
, j = 1, . . . , k, (2.67)

so the first k derivatives will remain zero. Thus to find the similarity profile with i = 1,
one needs B2(0) = B3(0) = 0 as an initial condition. This is a non-generic situation, and
a slight perturbation will make B2 and B3 non-zero. In other words, there are two unstable
directions, which take the solution away from f1(ξ), as defined by (2.42). In the general
case, the linearization around fi(ξ) will have 2i positive eigenvalues (apart from the trivial
ones). Extensive numerical simulations of drop pinch-off in the inertial–surface tension–
viscous regime (cf section 2.1.1) suggests that the hierarchy of similarity solutions again has
similar properties in this case as well, although stability has not been studied theoretically.
The ground state profile is stable, while all the others are unstable [42]. Even when using
a higher-order similarity solution as an initial condition, it is immediately destabilized, and
converges onto the ground state solution [51].

3. Centre manifold

In section 2 we described the generic situation that the behaviour of a similarity solution is
determined by the linearization around it. In the case of a stable fixed point, convergence is
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exponentially fast, and the observed behaviour is essentially that of the fixed point. In this
section, we describe a variety of cases where the dynamics is slow. In all cases we are able to
associate this slow dynamics with a fixed point in the appropriate variable(s), around which the
eigenvalues vanish. Instead, higher-order nonlinear terms have to be taken into account, and
the slow approach to the fixed point is determined by a low-dimensional dynamical system.

We consider essentially two different cases:

(a) The dynamical system (1.4) possesses a fixed point H0(ξ), which has a vanishing
eigenvalue, with corresponding eigenfunction ψ(ξ). The dynamics in the slow direction ψ

is described by a nonlinear equation for the amplitude a(τ), which varies on a logarithmic
time scale:

h = t ′α [H0(ξ) + a(τ)ψ(ξ)] , ξ = x ′/t ′β. (3.1)

(b) The dynamical system does not possess a fixed point, but has a solution of a slightly more
general form

h = h0(τ )H(ξ), ξ = x ′/W(τ), (3.2)

where h0 and W are not necessarily power laws. To expand about a fixed point, we define
the generalized exponents

α = −∂τh0/h0, β = −∂τW/W, (3.3)

which now depend on time. In the case of a type-I similarity solution, this reduces
to the usual definition of the exponent. In the cases considered below, one derives a
finite dimensional dynamical system for the exponents α, β (potentially including other,
similarly defined scale factors). Once more, the exponents vary on a logarithmic time
scale, which can be understood from the fact that the dynamical system possesses a fixed
point with vanishing eigenvalues.

Zero eigenvalues can also be associated with symmetries of the singularity, like rotational
or translational symmetries, which lead to the existence of a continuum of similarity solutions.
Another example, which concerns the dynamics inside the singular object itself, is wave
steepening as described by (2.31). As seen from (2.65), there indeed is a vanishing eigenvalue
associated with this continuum of solutions. Below we will not be concerned with this case,
but only consider approach to the singularity starting from non-singular solutions.

3.1. Quadratic nonlinearity: geometric evolution and reaction–diffusion equations

The appearance of this type of nonlinearity is characteristic for various nonlinear parabolic
equations and systems. The blow-up behaviour is characterized by the presence of logarithmic
corrections in the similarity profiles.

3.1.1. Geometric evolution equations: mean curvature and Ricci flows. Axisymmetric
motion by mean curvature in three spatial dimensions is described by the equation

ht =
(

hxx

1 + h2
x

− 1

h

)
, (3.4)

where h(x, t) is the radius of the moving free surface. A very good physical realization of
(3.4) is the melting and freezing of a 3He crystal, driven by surface tension [111], see figure 7.
As before, the time scale t has been chosen such that the diffusion constant, which sets the
rate of motion, is normalized to one. A possible boundary condition for the problem is that
h(0, t) = h(L, t) = R, where R is some prescribed radius. For certain initial conditions
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Figure 7. Nine images (of width 3.5 mm) showing how a 3He crystal ‘flows’ down from the upper
part of a cryogenic cell into its lower part [112]. The recording takes a few minutes, the temperature
is just above the temperature Tmin = 0.32 K, where the latent heat vanishes. The crystal first ‘drips’
down, so that a crystalline ‘drop’ forms at the bottom ((a)–(c)); then a second drop appears (d) and
comes into contact with the first one (e); coalescence is observed (f ) and subsequently breakup
occurs (h). Reprinted with permission from [112]. Copyright 1999, American Institute of Physics.

h(x, 0) ≡ h0(x) the interface will become singular at some time t0, at which h(x0, t0) = 0 and
the curvature blows up. The moment of blow-up is shown in panel (h) of figure 7, for example.

Inserting the self-similar solution (1.2) into (3.4), one finds a balance for α = β = 1/2.
The corresponding similarity equation is

− φ

2
+ ξ

φξ

2
=

(
φξξ

1 + φ2
ξ

− 1

φ

)
, ξ = x ′

t ′1/2
. (3.5)

One solution of (3.5) is the constant solution φ(ξ) = √
2. Another potential solution is one that

grows linearly at infinity, to ensure matching onto a time-independent outer solution. However,
it can be shown that no solution to (3.5), which also grows linearly at infinity, exists [113, 114].
Our analysis below follows the rigorous work in [30], demonstrating type-II self-similarity.
In addition, we now show how the description of the dynamical system can be carried out to
arbitrary order.

The relevant solution is thus the constant solution, but which of course does not match
onto a time-independent outer solution. We thus write the solution as

h(x, t) = t ′1/2
[√

2 + g(ξ, τ )
]
, (3.6)

with τ = − ln(t ′) as usual. The equation for g is then

gτ = g − ξgξ

2
+

gξξ

1 + g2
ξ

− g2

23/2 + 2g
, (3.7)

which we solve by expanding into eigenfunctions of the linear part of the operator

Lg = g − ξgξ/2 + gξξ . (3.8)
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It is easily confirmed that

LH2i (ξ/2) = νiH2i (ξ/2), i = 0, 1, . . . , (3.9)

where Hn is the nth Hermite polynomial [100]:

Hn(y) = (−1)ney2 dn

dyn
e−y2

, (3.10)

and νi = 1 − i. Thus the first eigenvalue is ν0 = 1, which corresponds to the positive
eigenvalue νt coming from the arbitrary choice of t0. The other positive eigenvalue νx does not
appear, since we have chosen to look at symmetric solutions, breaking translational invariance.
However, the largest non-trivial eigenvalue ν1 is zero, and the linear part of (3.7) becomes

∂ai

∂τ
= (1 − i)ai, i = 0, 1, . . . . (3.11)

Thus all perturbations with i > 1 decay, but to investigate the approach of the cylindrical
solution, one must include nonlinear terms in the equation for a1.

If we write

g(ξ, τ ) =
∞∑
i=1

ai(τ )H2i (ξ/2), (3.12)

the equation for a1 becomes

da1

dτ
= −23/2a2

1 + O(a1aj ), (3.13)

whose solution is

a1 = 1/(23/2τ). (3.14)

Thus instead of the expected exponential convergence onto the fixed point, the approach
is only algebraic. Since all other eigenvalues are negative, the τ -dependence of the ai is slaved
by the dynamics of a1. Namely, as we will see below, aj = O(τ−j ), so corrections to (3.13)
are of higher order. To summarize, the leading order behaviour of (3.4) is given by

h(x, t) = t ′1/2
[√

2 + a1(τ )H2(ξ)
]
, (3.15)

as was proven by [30].
Now we compute the specific form of the higher-order corrections to (3.15), which have

not been worked out explicitly before. If one linearizes around (3.14), putting a1 = a
(0)
1 + ε1,

one finds
dε1

dτ
= −2

τ
ε1 + other terms. (3.16)

This means that the coefficient A of ε1 = A/τ 2 remains undetermined, and a simple expansion
of ai in powers of τ−1 yields an indeterminate system. Instead, at quadratic order, a term of the
form ε1 = A ln τ/τ 2 is needed. Fortunately, this is the only place in the system of nonlinear
equations for ai where such an indeterminacy occurs. Thus all logarithmic dependences can
be traced, leading to the general ansatz

a
(n)
i = δi

τ i
+

n∑
k=i+1

k−i∑
l=0

(ln τ)l

τ k
δlki , (3.17)

where δi and δlki are coefficients to be determined. The index n is the order of the
truncation.
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The coefficients can now be found recursively by considering terms of successively higher
order in τ−1 in the first equation:

da1

dτ
= −23/2a2

1 − 24
√

2a1a2 + 22a3
1 − 272

√
2a4

1 − 191
√

2a2
2 + 192a2

1a2 (3.18a)

da2

dτ
= −a2 −

√
2/4a2

1 + 6a3
1 − 8

√
2a1a2. (3.18b)

The next two orders will involve the next coefficient a3. From (3.18a) and (3.18b), one first
finds δ121 and δ2, by considering O(τ−3) and O(τ−2), respectively. Then, at order O(τ−(n+1))

in the first equation, where n = 3, one finds all remaining coefficients δlki in the expansion
(3.17) up to k = n. At each order in τ−1, there is of course a series expansion in ln τ which
determines all the coefficients.

We constructed a MAPLE program to compute all the coefficients up to arbitrarily high
order (10th, say). Up to third order in τ−1 the result is

a1 = 1/4

√
2

τ
+

17

16

ln (τ )
√

2

τ 2
− 73

16

√
2

τ 3
+

867

128

ln (τ )
√

2

τ 3
− 289

128

(ln (τ ))2
√

2

τ 3
(3.19a)

a2 = −1/32

√
2

τ 2
+

5

16

√
2

τ 3
− 17

64

ln (τ )
√

2

τ 3
, (3.19b)

and thus h(x, t) becomes

h(x, t) = t ′1/2
[√

2 + a1(τ )
(−2 + ξ 2

)
+ a2(τ )

(
12 − 12ξ 2 + ξ 4

)]
, (3.20)

from which one of course immediately finds the minimum. To second order, the result is

hm = (2t ′)1/2

[
1 − 1

2τ
− 3 + 17 ln τ

8τ 2

]
. (3.21)

First, the presence of logarithms implies that there is some dependence on initial conditions
built into the description. The reason is that the argument inside the logarithm needs to be non-
dimensionalized using some ‘external’ time scale. More formally, any change in time scale
t̃ = t/t0 leads to an identical equation if also lengths are rescaled according to h̃ = h/

√
t0.

This leaves the prefactor in (3.21) invariant, but adds an arbitrary constant τ0 to τ . This is
illustrated by comparing with a numerical simulation of the mean curvature equation (3.4)
close to the point of breakup, see figure 8. Namely, we subtract the analytical result (3.21)
from the numerical solution hm/(2

√
t ′) and multiply by τ 2. As seen in figure 8, the remainder

is varying slowly over 12 decades in t ′. If the constant τ0 is adjusted, this small variation is
seen to be consistent with the logarithmic dependence predicted by (3.21).

The second important point is that convergence in space is no longer uniform as implied
by (2.60) for the case of type-I self-similarity. Namely, to leading order the pinching solution
is a cylinder. For this to be a good approximation, one has to require that the correction is
small: ξ 2/τ � 1. Thus corrections become important beyond ξcr ∼ τ , which, in view of the
logarithmic growth of τ , implies convergence in a constant region in similarity variables only.
As shown in [111], the slow convergence towards the self-similar behaviour has important
consequences for a comparison with experimental data.

Mean curvature flow is also an example of a broader class of problems called generically
‘geometric evolution equations’. These are evolution equations intended to gain topological
insight by flowing geometrical objects (such as metric or curvature) towards easily recognizable
objects such as constant or positive curvature manifolds. The most remarkable example is the
so-called Ricci flow, introduced in [115], which is the essential tool in the recent proof of
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Figure 8. A plot of [hm/
√

2t ′ − 1 + 1/(2τ)]τ 2 (dashed line) and τ0/2 − (3 + 17 ln(τ + τ0)/8) (full
line) with τ0 = 4.56.

the geometrization conjecture (including Poincaré’s conjecture as a consequence) by Grigori
Perelman.

Namely, Poincaré’s conjecture states that every simply connected closed 3-manifold is
homeomorphic to the 3-sphere. Being homeomorphic means that both are topologically
equivalent and can be transformed one into the other through continuous mappings. Such
mappings can be obtained from the flow associated with an evolutionary PDE involving
fundamental geometrical properties of the manifold. Thurston’s geometrization conjecture
is a generalization of Poincaré’s conjecture to general 3-manifolds and states that compact
3-manifolds can be decomposed into submanifolds that have basic geometric structures.

Perelman sketched a proof of the full geometrization conjecture in 2003 using Ricci flow
with surgery [116]. Starting with an initial 3-manifold, one deforms it in time according to
the solutions of the Ricci flow PDE (3.22) we consider below. Since the flow is continuous,
the different manifolds obtained during the evolution will be homeomorphic to the initial one.
The problem is in the fact that Ricci flow develops singularities in finite time, one of which
we describe below. One would like to get over this difficulty by devising a mechanism of
continuation of solutions beyond the singularity, making sure that such a mechanism controls
the topological changes leading to a decomposition into submanifolds, whose structure is given
by Thurston’s geometrization conjecture. Perelman obtained essential information on how
singularities are like, essentially three dimensional cylinders made out of spheres stretched out
along a line, so that he could develop the correct continuation (also called ‘surgery’) procedure
and continue the flow up to a final stage consisting of the elementary geometrical objects in
Thurston’s conjecture.

Ricci flow is defined by the equation

∂gij

∂t
= −2Rij (3.22)

for a Riemannian metric gij , where Rij is the Ricci curvature tensor. The Ricci tensor involves
second derivatives of the curvature and terms that are quadratic in the curvature. Hence, there
is the potential for singularity formation and singularities are, in fact, formed. As Perelman
poses it, the most natural way to form a singularity in finite time is by pinching an almost
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round cylindrical neck. The structure of this kind of singularity has been studied in [117]. By
writing the metric of a (n + 1)-dimensional cylinder as

g = ds2 + ψ2gcan, (3.23)

where gcan is the canonical metric of radius one in the n-sphere Sn, ψ(s, t) is the radius of
the hypersurface {s} × Sn at time t and s is the arclength parameter of the generatrix of the
cylinder.

The equation for ψ then becomes

ψt = ψss − (n − 1)(1 − ψ2
s )

ψ
. (3.24)

In [117] it is shown that for n > 1 the solution close to the singularity admits a representation
that resembles the one obtained for mean curvature flow:

ψ(s, t) = 1

2
1
2 (n − 1)

1
2 t ′1/2

u(ξ, τ ), ξ = s/t ′1/2. (3.25)

Namely, (3.24) admits a constant solution u(ξ, τ ) = 1, and the linearization around it gives
the same linear operator (3.8) as for mean curvature flow. Thus a pinching solution behaves as

u(ξ, τ ) = 1 + a(τ)H2(ξ/2) + o(τ−1), (3.26)

where the equation for a is aτ = −8a2, with solution a = 1/(8τ).

3.1.2. Reaction–diffusion equations. The semilinear parabolic equation

ut − �u − |u|p−1 u = 0 (3.27)

is again closely related to the mean curvature flow problem (3.4). Namely, disregarding the
higher-order term in hx , (3.4) becomes

ht = hxx − 1

h
. (3.28)

Putting u = 1/h one finds

ut = uxx + u3 − 2u2
x/u, (3.29)

which is (3.27) in one space dimension and p = 3, once more neglecting higher-order
nonlinearities. As before, (3.27) has the exact blow-up solution

u = (p − 1)
1

1−p t
′− 1

p−1 . (3.30)

If 1 < p < pc = d+2
d−2 , where d is the space dimension, then there are no other self-similar

solutions to (3.27) [18], and blow-up is of the form (3.30) (see [118–120] for a recent review).
As in the case of mean curvature flow, corrections to (3.30) are described by a slowly varying
amplitude a:

u = t ′1/(p−1)(p − 1)
1

1−p

[
1 − aH2(ξ/2) + O(1/τ 2)

]
, ξ = x ′/t ′1/2, (3.31)

where a obeys the equation

aτ = −4pa2. (3.32)

This result holds in 1 space dimension. In higher dimensions, one has to replace x by the
distance to the blow-up set.

This covers all ranges of exponents (larger than one, because otherwise there is no blow-
up) in dimensions 1 and 2. The situation if p > pc is not so clear: if p > 1 + 2

d
then

there are solutions that blow-up and ‘small’ solutions that do not blow-up. Nevertheless, the
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Figure 9. The pinch-off of an air bubble in water [125]. An initially smooth shape develops a
localized pinch point. Reused with permission from [125]. Copyright 2007, American Institute of
Physics.

construction of solutions as perturbations of constant self-similar solutions holds for any d and
any p > 1. A simple generalization of (3.27) results from considering a nonlinear diffusion
operator,

ut − ∇ · (|u|m∇u) = up (3.33)

and now the blow-up character depends on the two parameters m and p, see [121].

3.2. Cubic nonlinearity: cavity breakup and chemotaxis

More complex logarithmic corrections are possible if the linearization around the fixed point
leads to a zero eigenvalue and cubic nonlinearities.

3.2.1. Cavity break-up. As shown in [122], the equation for a slender cavity or bubble is∫ L

−L

ä(ξ, t) dξ√
(x − ξ)2 + a(x, t)

= ȧ2

2a
, (3.34)

where a(x, t) ≡ h2(x, t) and h(x, t) is the radius of the bubble. Dots denote derivatives with
respect to time t . The length L measures the total size of the bubble. If for the moment
one disregards boundary conditions and looks for solutions to (3.34) of cylindrical form,
a(x, t) = a0(t), one can do the integral to find

ä0 ln

(
4L2

a0

)
= ȧ2

0

2a0
. (3.35)

It is easy to show that an asymptotic solution of (3.35) is given by

a0 ∝ t ′

τ 1/2
, (3.36)

corresponding to a power law with a small logarithmic correction. Indeed, initial theories
of bubble pinch-off [123, 124] treated the case of an approximately cylindrical cavity, which
leads to the radial exponent α = 1/2, with logarithmic corrections.

However both experiment [125] and simulation [122] show that the cylindrical solution is
unstable; rather, the pinch region is rather localized, see figure 9. Therefore, it is not enough
to treat the width of the cavity as a constant L; the width W is itself a time-dependent quantity.
In [122] we show that to leading order the time evolution of the integral equation (3.34) can
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be reduced to a set of ordinary differential equations for the minimum a0 of a(x, t), as well as
its curvature a′′

0 .
Namely, the integral in (3.34) is dominated by a local contribution from the pinch region.

To estimate this contribution, it is sufficient to expand the profile around the minimum at z = 0:
a(x, t) = a0 + (a′′

0/2)z2 + O(z4). As in previous theories, the integral depends logarithmically
on a, but the axial length scale is provided by the inverse curvature W ≡ (2a0/a

′′
0 )1/2. Thus

evaluating (3.34) at the minimum, one obtains [122] to leading order

ä0 ln(4W 2/a0) = ȧ2
0/(2a0), (3.37)

which is a coupled equation for a0 and W . Thus, a second equation is needed to close the
system, which is obtained by evaluating the second derivative of (3.34) at the pinch point:

ä′′
0 ln

(
8

e3a′′
0

)
− 2

ä0a
′′
0

a0
= ȧ0ȧ

′′
0

a0
− ȧ2

0a
′′
0

2a2
0

. (3.38)

The two coupled equations (3.37) and (3.38) are most easily recast in terms of the time-
dependent exponents

2α ≡ −∂τ a0/a0, 2δ ≡ −∂τ a
′′
0/a′′

0 , (3.39)

where β = α − δ, so α, β are generalizations of the usual exponents in (1.2). The exponent
δ characterizes the time dependence of the aspect ratio W . Returning to the collapse (3.35)
predicted for a constant solution, one finds that α = 1/2 and δ = 0. In the spirit of the previous
subsection, this is the fixed point corresponding to the cylindrical solution. Now we expand
the values of α and δ around their expected asymptotic values 1/2 and 0:

α = 1/2 + u(τ), δ = v(τ). (3.40)

and put w(τ) = 1/ ln(a′′
0 ).

To leading order, the resulting equations are

uτ = u + w/4, vτ = −v − w/4, wτ = 2vw2. (3.41)

The linearization around the fixed point thus has the eigenvalues 0 and −1, in addition to the
eigenvalue 1 coming from time translation. As before, the vanishing eigenvalue is the origin
of the slow approach to the fixed point observed for the present problem. The derivatives uτ

and vτ are of lower order in the first two equations of (3.41), and thus to leading order u = v

and v = −w/4. Using this, the last equation of (3.41) can be simplified to

wτ = −w3/2. (3.42)

Equation (3.42) is analogous to (3.13), but has a degeneracy of third order, rather than
second order. Equation (3.42) yields, in an expansion for small δ [122],

α = 1/2 +
1

4
√

τ
+ O(τ), δ = 1

4
√

τ
+ O(τ−3/2). (3.43)

Thus the exponents converge towards their asymptotic values α = β = 1/2 only very slowly,
as illustrated in figure 10. This explains why typical experimental values are found in the range
α ≈ 0.54–0.58 [125], and why there is a weak dependence on initial conditions [126].

3.2.2. Keller–Segel model for chemotaxis. This model describes the aggregation of
microorganisms driven by chemotactic stimuli. The problem has biological meaning in two
space dimensions. If we describe the density of individuals by u(x, t) and the concentration
of the chemotactic agent by v(x, t), then the Keller–Segel system reads

ut = �u − χ∇ · (u∇v), (3.44a)

�vt = �v + (u − 1), (3.44b)
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Figure 10. A comparison of the exponent α between full numerical simulations of bubble pinch-off
(solid line) and the leading order asymptotic theory (3.43) (dashed line).

where � and χ are positive constants. In [13, 127] it was shown that for radially symmetric
solutions of (3.44a) and (3.44b) singularities are such that to leading order u blows up in the
form of a delta function. The profile close to the singularity is self-similar and of the form

u(r, t) = 1

R2(t)
U

(
r

R(t)

)
, (3.45)

where

R(t) = Ce− 1
2 τ−

√
2

2 τ
1
2 − 1

4 ln τ+ 1
4

ln τ√
τ (1 + o(1)) (3.46)

and

U(ξ) = 8

χ(1 + ξ 2)
. (3.47)

The result comes from a careful matched asymptotics analysis that, in our notation,
amounts to introducing the time-dependent exponent

γ = −∂τR/R, (3.48)

which has the fixed point γ = 1/2. Corrections are of the form

γ = 1

2
+

α

2

(
α − α2 + 1

)
, (3.49)

where α is controlled by a third-order nonlinearity, as in the bubble problem:

ατ = −α3(1 − α + o(α)). (3.50)

3.3. Beyond all orders: the nonlinear Schrödinger equation

The cubic nonlinear Schrödinger equation

iϕt + �ϕ + |ϕ|2 ϕ = 0 (3.51)

appears in the description of beam focusing in a nonlinear optical medium, for which the
space dimension is d = 2. Equation (3.51) belongs to the more general family of nonlinear
Schrödinger equations of the form

iϕt + �ϕ + |ϕ|p ϕ = 0, (3.52)
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and in any dimension d . Of particular interest, from the point of view of singularities, is the
critical case p = 4/d . In this case, singularities with slowly converging similarity exponents
appear due to the presence of zero eigenvalues. We will describe this situation below, based on
the formal construction of Zakharov [128], later proved rigorously by Galina Perelman [129].
At the moment, the explicit construction has only been given for d = 1, that is, for the quintic
Schrödinger equation. The same blow-up estimates have been shown to hold for any space
dimension d < 6 by Merle and Raphaël [130, 131], without making use of Zakharov’s [128]
formal construction. Merle and Raphaël also show that the stable solutions to be described
below are in fact global attractors.

In the critical case (3.52) becomes in d = 1:

iϕt + ϕxx + |ϕ|4 ϕ = 0. (3.53)

This equation has explicit self-similar solutions (in the sense that rescaling x → λx, t → λ2t ,
ϕ → λ

1
2 ϕ leaves the solutions unchanged except for the trivial phase factor e−2iµ0 ln λ) of the

form

ϕ(x, t) = eiµ0τ e− ξ2

8 i 1

t ′
1
4

ϕ0(ξ), ξ = x ′/t ′1/2. (3.54)

The function ϕ0(ξ) solves

− ϕ0,ξξ + ϕ0 − |ϕ0|4 ϕ0 = 0, (3.55)

and is given explicitly by

ϕ0(ξ) = (3µ0)
1
4

cosh
1
2 (2

√
µ0ξ)

. (3.56)

We seek solutions of (3.53) using a generalization of (3.54), which allow for a variation
of the phase factors, and the amplitude to be different from a power law:

ϕ(x, t) = eiµ(t)−iβ(t)z2/4λ
1
2 (t)ϕa(z), (3.57)

where z = λ(t)x and ϕa satisfies

− ϕa,ξξ + ϕa − 1
4az2ϕa − |ϕa|4 ϕa = 0. (3.58)

When h (= √
a) is constant, (3.57) is a solution of (3.53) if (µ, λ, β) satisfy

µt = λ2, (3.59a)

λ−3λt = β, (3.59b)

βt + λ2β2 = λ2h2. (3.59c)

Note that the equation for µ is uncoupled, so we only need to solve the equations for
(λ, β) simultaneously and then integrate the equation for µ. It is interesting for the following
that, in addition to the solutions for constant a, one can let a vary slowly in time. The resulting
system for (λ, β, h) is

λ−3λt = β, (3.60a)

βt + λ2β2 = λ2h2, (3.60b)

ht = −cλ2e−S0/h/h. (3.60c)

Note the appearance of the factor e−S0/h in the last equation, which comes from a semiclassical
limit of a linear Schrödinger equation with appropriate potential (see [129]), and

S0 =
∫ 2

0

√
1 − s2/4 ds = π

2
. (3.61)
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It follows from the presence of this factor that the nonlinearity is beyond all orders, smaller
than any given power, in contrast to the examples given above.

As in section 3.2.1, we rewrite the equations in terms of similarity exponents,

α = −λτ

λ
, γ = −βτ

β
, δ = −hτ

h
(3.62)

to obtain the system:

ατ = − (1 + 2α + γ )α, (3.63a)

γτ = (1 + 2α + γ )α − (γ + α)(1 + 2α + 2δ − γ ), (3.63b)

δτ = (−1 − 2α + 2δ)δ − δ2 S0

h
, (3.63c)

hτ = − δh. (3.63d)

The advantage of this formulation is that the exponents have fixed points. There are two
families of equilibrium points for (3.63a)–(3.63d):

(1) α = − 1
2 , γ = 0 , δ = 0, h arbitrary positive or zero.

(2) α = −1, γ = 1 , δ = 0, h arbitrary positive or zero.

We first investigate case (1) by writing

α = − 1
2 + α1, γ = γ1, δ = δ1, h = h1. (3.64)

The final fixed point corresponding to the singularity is going to be α1 = γ1 = δ1 = h1 = 0.
However, there are also equilibrium points for any h > 0, in which case the linearization reads

α1,τ = α1 + 1
2γ1, (3.65a)

γ1,τ = − γ1 + δ1, (3.65b)

δ1,τ = 2δ2
1 − 2α1δ1 − δ2

1
S0

h
. (3.65c)

This system has the matrix

A =

1 1
2 0

0 −1 1

0 0 0

 ,

whose eigenvalues are 1, 0 and −1. The vanishing eigenvalue corresponds to the line of
equilibrium points for h > 0, the positive eigenvalue to the direction of instability generated
by a change in blow-up time. The eigenvector corresponding to the negative eigenvalue gives
the direction of the stable manifold.

At the point h = 0, there is an additional vanishing eigenvalue, and the equations become

α1,τ ′ = (α1 + 1
2γ1)h1, (3.66a)

γ1,τ ′ = (−γ1 + δ1)h1, (3.66b)

δ1,τ ′ = (2δ2
1 − 2α1δ1)h1 − δ2

1S0, (3.66c)

h1,τ ′ = − δ1h
2
1, (3.66d)

where dτ ′ = dτ/h1. The first two equations reduce to leading order to γ1 = δ1h1 and
α1 = −δ1h

2
1/2, while the last two equations reduce to the nonlinear system:

δ1,τ ′ = −δ2
1S0, h1,τ ′ = −δ1h

2
1, ττ ′ = h1. (3.67)

In the original τ -variable, the dynamical system is

δ1,τ = −δ2
1S0/h1 h1,τ ′ = −δ1h1, (3.68)
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which controls the approach to the fixed point. System (3.68) is two-dimensional,
corresponding to the two vanishing eigenvalues.

Integrating the first equation of (3.67) one gets δ1 ∼ 1/(S0τ
′), and thus form the second

equation h1 ∼ S0/ ln τ ′. From the last equation one obtains to leading order τ ′ ∼ τ ln τ/S0,
so that

h1 ∼ S0

ln τ
, δ1 ∼ 1

τ ln τ
. (3.69)

Thus we can conclude that

α(τ) � 1

2
− 1

2τ ln τ
, γ (τ ) � 1

τ ln τ
, δ(τ ) � 1

τ ln τ
. (3.70)

In this fashion, one can construct a singular solution such that

ϕ(x, t) = e−iτ ln τ−i 1
t ′ x

2/4 (ln τ)
1
4

t ′
1
4

ϕh2τ

(
(ln τ)

1
2

t ′
1
2

x

)

∼ e−iτ ln τ (ln τ)
1
4

t ′
1
4

ϕ0

(
(ln τ)

1
2

t ′
1
2

x

)
. (3.71)

Note the remarkable smallness of this correction to the ‘natural’ scaling exponent of t ′1/4,
which enters only as the logarithm of logarithmic time τ .

The fixed points (2) can be analysed in a similar fashion. The linearization leads to

α1,τ = 2α1 + γ1, (3.72a)

γ1,τ = γ1, (3.72b)

δ1,τ = δ1. (3.72c)

All eigenvalues are positive, so one cannot expect these equilibrium points to be stable.
One may also consider the blow-up of vortex solutions to both critical and supercritical

solutions to nonlinear Schrödinger equation in 2D. These are a subset of the general solutions
to NLSE that present a phase singularity at a given point. The singularities appear in the form
of collapse of rings at that point. Both the existence of such solutions and their stability have
been considered recently in [132, 133].

3.3.1. Other nonlinear dispersive equations. The nonlinear Schrödinger equation belongs
to the broader class of nonlinear dispersive equations, for which many questions concerning
existence and qualitative properties of singular solutions are still open. Nevertheless, there
have been recent developments that we describe next.

The Korteweg–de Vries (KdV) equation

ut + (uxx + u2)x = 0 (3.73)

describes the propagation of waves with large wavelength in a dispersive medium. For example,
this is the case of water waves in the shallow-water approximation, where u represents the
height of the wave. In the case of an arbitrary exponent of the nonlinearity, (3.73) becomes
the generalized Korteweg–de Vries equation:

ut + (uxx + up)x = 0, p > 1. (3.74)

Based on numerical simulations, [134] conjectured the existence of singular solutions of
(3.74) with type-I self-similarity if p � 5. In [135, 136] it was shown that in the critical case
p = 5 solutions may blow-up both in finite and in infinite time. Lower bounds on the blow-up
rate were obtained, but they exclude blow-up in the self-similar manner proposed by [134].
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The Camassa–Holm equation

ut − uxxt + 3uxu = 2uxuxx + uxxxu (3.75)

also represents unidirectional propagation of surface waves on a shallow layer of water. Its
main advantage with respect to KdV is the existence of singularities representing breaking
waves [137]. The structure of these singularities in terms of similarity variables has not been
addressed to our knowledge.

4. Travelling wave

The pinching of a liquid thread in the presence of an external fluid is described by the Stokes
equation [138]. For simplicity, we consider the case that the viscosity η of the fluid in the drop
and that of the external fluid are the same. An experimental photograph of this situation is
shown in figure 1. To further simplify the problem, we make the assumption (the full problem
is completely analogous) that the fluid thread is slender. Then the equations given in [5]
simplify to

ht = −vxh/2 − vhx, (4.1)

where

v = 1

4

∫ x+

x−

(
h2(y)√

h2(y) + (x − y)2

)
y

κ dy, (4.2)

and the mean curvature is given by (2.2). Here we have written the velocity in units of the
capillary speed vη = γ /η. The limits of integration x− and x+ are, for example, the positions
of the plates which hold a liquid bridge [139].

Dimensionally, one would once more expect a local solution of the form

h(x, t) = t ′H
(

x ′

t ′

)
, (4.3)

and H(ξ) has to be a linear function at infinity to match to a time-independent outer solution.
In similarity variables, (4.2) has the form

V (ξ) = 1

4

∫ xb/t ′

−xb/t ′

(
H 2(η)√

H 2(η) + (ξ − η)2
)

)
η

κ dη. (4.4)

We have chosen xb as a real-space variable close to the pinch point, such that the similarity
description is valid in [−xb, xb]. But if H is linear, the integral in (4.4) diverges like b ln t ′,
where

b = −1

4

[
H+

1 + H 2
+

+
H−

1 + H 2−

]
. (4.5)

Here H+ and H− are the slopes of the similarity profile at ±∞. But this means that a simple
‘fixed point’ solution (4.3) is impossible.

However by subtracting the singularity as t ′ → 0, one can define a self-similar velocity
profile according to

V (fin)(ξ) = lim
�→∞

1

4

∫ �

−�

(
H 2(η)√

H 2(η) + (ξ − η)2

)
η

κ dη + b ln �, (4.6)

where now

V (ξ) = V (fin)(ξ) − bτ, (4.7)
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and an arbitrary constant has been absorbed into V (fin). In terms of V (fin), and putting

h(x, t) = t ′H (ξ, τ ) , (4.8)

the dynamical system for H becomes

Hτ = H − (
ξ + V (fin)

)
Hξ − HV

(fin)
ξ /2 + bτHξ . (4.9)

This equation has a solution in the form of a travelling wave:

H(ξ, τ ) = H(ζ), V (fin)(ξ, τ ) = V (ζ ), where ζ = ξ − bτ. (4.10)

The profiles H, V of the travelling wave obey the equation

H − (ζ + V )Hζ = H V ζ/2. (4.11)

The numerical solution of the integro-differential equation (4.11) gives

hmin = aoutvηt
′, where aout = 0.033. (4.12)

The slopes of the solution away from the pinch point are given by

H+ = 6.6 and H− = −0.074, (4.13)

which means the solution is very asymmetric, as confirmed directly from figure 1. These results
are reasonably close to the exact result, based on a full solution of the Stokes equation [5]; in
particular, the normalized minimum radius is aout = 0.0335 for the full problem.

5. Limit cycles

An example for this kind of blow-up was introduced into the literature in [15] in the context of
cosmology. There is considerable numerical evidence [140] that discrete self-similarity occurs
at the mass threshold for the formation of a black hole. The same type of self-similarity has also
been proposed for singularities of the Euler equation [67, 141], the porous medium equation
driven by buoyancy [141], and for a variety of other phenomena [142]. A reformulation of the
original cosmological problem leads to the following system:

fx = (a2 − 1)f

x
, (5.1a)

(a−2)x = 1 − (1 + U 2 + V 2)/a2

x
, (5.1b)

(a−2)t =
[
(f + x)U 2 − (f − x)V 2

x
+ 1

]
/a2 − 1, (5.1c)

Ux = f [(1 − a2)U + V ] − xUt

x(f + x)
, (5.1d)

Vx = f [(1 − a2)U + V ] + xVt

x(f − x)
. (5.1e)

In [16], the self-similar description corresponding to system (5.1a)–(5.1e) was solved using
formal asymptotics and numerical shooting procedures. This leads to the solutions observed
in [15]. We now propose another system, which shares some of the structure of (5.1a)–(5.1e),
but which we are able to solve analytically:

ut (x, t) = 2f (x, t)v(x, t), (5.2a)

vt (x, t) = −2f (x, t)u(x, t), (5.2b)

ft (x, t) = f 2(x, t). (5.2c)



R36 Invited Article

System (5.2a)–(5.2c) is driven by the simplest type of blow-up equation (5.2c), and can be
solved using characteristics. However, in the spirit of this review, we transform to similarity
variables according to

u = U(ξ, τ ), (5.3a)

v = V (ξ, τ ), (5.3b)

f = t ′−1F(ξ, τ ). (5.3c)

It is seen directly from (5.2c) that f first blows up at a local maximum fmax > 0. Near a
maximum, the horizontal scale is the square root of the vertical scale t ′, and thus we must have
ξ = x ′/t ′1/2. With that, the similarity equations become

Uτ = −ξUξ/2 + FV, (5.4a)

Vτ = −ξVξ/2 − FU, (5.4b)

Fτ = −F − ξFξ/2 + F 2. (5.4c)

The fixed point solution of the last equation is

F = 1

1 + cξ 2
, (5.5)

where c > 0 is a constant. The equations for U, V are solved by the ansatz

U = U0 sin (C(ξ) + τ) , V = U0 cos (C(ξ) + τ) , (5.6)

and for the function C(ξ) one finds

ξC ′(ξ)/2 = F − 1, (5.7)

with solution C(ξ) = − ln(1 + cξ 2). Thus (a single component of) the singular solution is
indeed of the general form

U = ψ(φ(ξ) + τ), (5.8)

where ψ is periodic in τ . This is a particularly simple version of discretely self-similar
behaviour, i.e. when T is the period of ψ , the same self-similar picture is obtained for
τ = τ0 + nT .

6. Strange attractors and exotic behaviour

In connection with limit cycles and in the context of singularities in relativity, a few interesting
situations have been found numerically quite recently. One of them is the existence of Hopf
bifurcations where a self-similar solution (a stable fixed point) is transformed into a discrete
self-similar solution (limit cycle) as a certain parameter varies (see [143]). Other kinds of
bifurcations, for example of the Shilnikov type, are found as well [144]. Before coming to
simple explicit examples, we mention that possible complex dynamics in τ has long been
suggested for simplified versions of the inviscid Euler equations [141, 145, 146]. For a critical
discussion of this work, see [81, 147].

The problems considered in these papers were the 2D axisymmetric Euler equations with
swirl, which produces a centripetal force. In the limit that the rotation is confined to a small
annulus, the direction of acceleration is locally uniform, and the equation reduces to that of 2D
Boussinesq convection, where the centripetal force is replaced by a ‘gravity’ force. Another
related model is 2D porous medium convection, for which the equation reads

∂T

∂t
+
(
T ey − ∇φ

) · ∇T = 0, (6.1)
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where v = T ey −∇φ plays the role of the velocity field and T is the temperature. The potential
φ follows from the constraint of incompressibility, which gives �φ = Ty . Simulations provide
evidence of a self-similar dynamics of the form [141]

T = t ′ηM(x′/t ′1+η, τ ), (6.2)

where η is approximately 0.1 and M is a function that is slowly varying with τ .
Depending on the model, both periodic behaviour as well as more complicated, chaotic

motion has been observed in numerical simulations. Oscillations of temperature in τ are
motivated by the observation that a sharp, curved interface (i.e. the transition region between
a rising ‘bubble’ of hot fluid and its surroundings) becomes unstable and rolls up. However,
owing to incompressibility, the sheet is also stretched, which stabilizes the interface, leading
to an eventual decrease in gradients. Locality suggests that this process could repeat itself
periodically on smaller and smaller scales [141]. However, simulations of the Euler equation
have also shown examples of a more complicated dependence on τ , which might be chaotic
behaviour [145]. We also mention that corresponding chaotic behaviour has been proposed
for the description of spin glasses in the theory of critical phenomena [148]. We now give
some explicit examples of chaos in the description of a singularity.

In section 3.1.1 we treated a system of an infinite number of ordinary differential
equations for the coefficients of the expansion of an arbitrary perturbation to an explicit
solution. Such high-dimensional systems in principle allow for a rich variety of dynamical
behaviour, including that found in classical finite dimensional dynamical systems, such as
chaos. Consider, for instance, an equation for the perturbation g (the analogue of (3.7)) of the
form

gτ = Lg + F(g, g), (6.3)

where Lg is a linear operator. Assuming an appropriate nonlinear structure for the function
F , an arbitrary nonlinear (chaotic) dynamics can be added.

To give an explicit example of a system of PDEs exhibiting chaotic dynamics, consider
the structure of the example given in section 5. It can be generalized to produce any low-
dimensional dynamics near the singularity, as follows by considering system (5.2a)–(5.2c)

u
(i)
t (x, t) = 2f Fi({u(i)}), i = 1, . . . , n, (6.4a)

ft (x, t) = f 2(x, t). (6.4b)

Using the ansatz analogous to (5.6):

u(i) = U(i) (C(ξ) + τ, ξ) , (6.5)

and choosing C(ξ) = − ln(1 + cξ 2), one obtains the system

U(i)
τ = Fi

{
U(i)

}
. (6.6)

To be specific, we consider n = 3 and

F1 = σ(u(2) − u(1)), F2 = ρu(1) − u(2) − u(1)u(3), F3 = u(1)u(2) − βu(3), (6.7)

so that (6.6) becomes the Lorenz system [149]. As before, for t ′ → 0, the variable τ goes
to infinity, and near the singularity one is exploring the long-time behaviour of the dynamical
system (6.5). In the case of (6.7), and for sufficiently large ρ, the resulting dynamics will be
chaotic. Specifically, taking σ = 10, ρ = 28 and β = 8/3, as done by Lorenz [150], the
maximal Lyapunov exponent is 0.906. The initial conditions with which (6.5) is to be solved
depend on ξ . Thus the chaotic dynamics will follow a completely different trajectory for each
space point. As a result, it will be very difficult to detect self-similar behaviour of this type as
such, even if data arbitrarily close to the singularity time are taken. If, for example, a rescaled
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spatial picture is observed at constant intervals of logarithmic time τ , the spatial structure of
the singularity will appear to be very different. However, as pointed out in [145], chaotic
motion is characterized by unstable periodic orbits, for which one could search numerically.

7. Multiple singularities

The singularities described so far occur at a single point x0 at a given time t0. This need not be
the case, but blow-up may instead occur on sets of varying complexity, including sets of finite
measure. We begin with a case where singularity formation involves two different points in
space.

7.1. Hele–Shaw equation

A particularly rich singularity structure is found for a special case of (2.7) in one space
dimension with n = 1. Dropping the second term on the right, which will typically be
small, one arrives at

ht + (hhxxx)x = 0. (7.1)

This is a simplified model for a neck of liquid of width h confined between two parallel plates,
a so-called Hele–Shaw cell. which is a simplified model for the free surface in a so-called
Hele–Shaw cell [151]. Breakup of a fluid neck inside the cell corresponds to h going to zero
in finite time.

Singular solutions displaying type-I self-similarity would be of the form

h(x, t) = t ′αH(x ′/t ′(α+1)/4), (7.2)

but are never observed. Instead, several types of pinch solutions different from (7.2) have been
found for (7.1) using a combination of numerics and asymptotic arguments [102, 152, 153].
On the one hand, singularities exhibit type-II self-similarity. On the other hand, the simple
structure (7.2) is broken by the fact that the location of the pinch point is moving in space. The
root for this behaviour lies in the fact that two singularities are interacting over a distance much
larger than their own spatial extent. Below we report on three different kinds of singularities
whose existence has been confirmed by numerical simulation of (7.1).

The first kind of singularity was called the imploding singularity in [153], since it consists
of two self-similar solutions which form mirror images, and which collide at the singular time.
Locally, the solution can be written

h(x, t) = t ′6H((x ′ + at ′)/t ′3), (7.3)

where −a is the constant speed of the singular point. Note that the scaling exponents do not
agree with (7.2). The reason is that the singularity is moving, so h is the solution of

hhxxx = J (t ′) ≡ t ′3, (7.4)

where J is determined by matching to an outer region. The similarity profile H is a solution
of the equation HH ′′′ = 1, with boundary conditions

H(η) ∝ η2/2, η → −∞; H(η) ∝
√

8/3(A − η)3/2, η → ∞. (7.5)

One might wonder whether this behaviour is generic, in the sense that it might depend
on the initial conditions being exactly symmetric around the eventual point of blow up. The
simulation of (7.1) shown in figure 11 shows that this is not the case. The initial condition is

h(x, 0) = 1 − (1 − w)
[

3
2 cos πx − 6

10 cos 2πx + 1
10 cos 3πx(1 + δ sin 2πx)

]
, (7.6)
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Figure 11. A simulation of (7.1) with spatially periodic boundary conditions and initial condition
(7.6), with w = 0.02 and δ = 0.1.
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Figure 12. Same as figure 11, but parameters w = 0.07 and δ = 0.01.

which for δ = 0 reduces to the symmetric initial condition considered by [153]. The type
of singularity that is observed (or no singularity at all) depends on the parameter w. The
simulation shown in figure 11 shows that even at finite δ (non-symmetric initial conditions)
the final collapse is described by a symmetric solution.

The second kind is the exploding singularity [153], since now the two self-similar solutions
are moving apart, cf figure 12. This time even a very small asymmetry (δ = 1/100) makes one
pinching event ‘win’ over the other. However, this does not affect the asymptotics described
briefly below. Locally, the solution can be written

h(x, t) = δ2(t ′)H((x ′ − at ′)/δ(t ′)), (7.7)

with δ = t ′/ ln(t ′), which is similar to examples considered in section 3. However, an additional
complication consists of the fact that the singularity is moving, so there is a coupling to the
parabolic region between the two pinch points. This matching is unaffected by the fact that
in the simulation shown in figure 12 one side of the solution touches down first. In [153], a
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possible generalization is also conjectured, which has the form

h(x, t) = δ2(t ′)H((x ′ − at ′
r−1

2 )/δ(t ′)), (7.8)

and δ = t ′
r−1

2 / ln t ′. In principle, any value of r is possible, but numerical evidence has been
found for r ≈ 3 (above) and r ≈ 5/2 only.

Finally, a third type is the symmetric singularity of [153], which does not move. In that
case, the structure of the solution is

h(x, t) = h0(t
′)H((x ′/δ(t ′)), (7.9)

with h0 = δ2P(ln δ), where P is a polynomial. The time dependence of δ is not reported.
Evidently, many aspects of the exploding and of the symmetric singularity remain to be
confirmed and/or to be worked out in more detail.

The most intriguing feature of the Hele–Shaw equation (7.1) is that several types of stable
singularities have been observed for the same equation. Within a one-parameter family of
smooth initial conditions, all three types of singularities can be realized as h → 0. Each type
is observed over an interval of the parameter w. Near the boundary of the intervals, a very
interesting crossover phenomenon occurs: the solution is seen to follow one type of singularity
at first (the exploding singularity, say), and then crosses over to a solution of another singularity
(the imploding singularity). The dynamics of each singularity can be followed numerically
over many decades in t ′. By tuning w, the crossover can be made to occur at arbitrarily small
values of h.

The switch in behaviour is driven by the slow dynamics of scaling regions exterior to (7.3)
or (7.7). It is a signature of the very long-ranged interactions (both in real space as well as in
scale), which exist in (7.1). Thus an outside development can trigger a change of behaviour
that is taking place on the local scale of the singularity. To mention another example, applying
different boundary conditions for the pressure at the outside of the cell can change the singular
behaviour completely [154]. This makes the crossover behaviour of (7.1) very different from
that observed for drop pinch-off (cf (2.10) and (2.11)), which is driven by a change in the
dominant balance between different terms in (2.11).

7.2. Semilinear wave equation

It appears that the Hele–Shaw equation is not an isolated example, but rather is representative
of a more general phenomenon. Namely, another example of a potentially complex singularity
structure is the semilinear wave equation

utt − �u = |u|p−1u, p > 1. (7.10)

It has trivial singular solutions of the form

u(x, t) = b0(T − t)
− 2

p−1 , (7.11)

with b0 = [ 2(p+1)

(p−1)2 ]
1

p−1 . Nevertheless, the existence of different self-similar solutions is known
in a few particular cases, such as the case p � 7, where p is an odd integer (see [155]) or in
space dimension d = 1 (see [156]).

The character of the blow-up is controlled by the blow-up curve T (x), which is the locus
where the equation first blows up at a given point in space. It has been shown for d = 1 [157]
that there exists a set of characteristic points, where the blow-up curve locally coincides with
the characteristics of (7.10). The set of non-characteristic points I0 is open, and T is C1 on
I0. Recently, it has been shown [158] that the blow-up at characteristic points is of type II.
Even more intriguingly, it appears [158] that the structure of blow-up at these points is such
that the singularity results from the collision of two peaks at the blow-up point, very similar
to the observation shown in figure 11.
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7.3. More complicated sets

In the Hele–Shaw equation of the previous subsection, different parts of the solution,
characterized by different scaling laws, interacted with each other. In the generic case, however,
finally blow-up only occurred at a single point in space. An example where singularities may
even occur on sets of finite measure is given by reaction–diffusion equations of the family

ut − �u = up − b |∇u|q for x ∈ �. (7.12)

where � is any bounded, open set in dimension d. Depending on the values of p > 1 and
q > 1 singularities of (7.12) may be regional (u blows up in subsets of � of finite measure) or
even global (the solution blows up in the whole domain); see for instance [159] and references
therein.

Singularities may even happen in sets of fractional Hausdorff dimension, i.e. fractals. This
is the case of the inviscid one-dimensional system for jet breakup (cf [160]) and might be case
of the Navier–Stokes system in three dimensions, where the dimension of the singular set at
the time of first blow-up is at most 1 (cf [161]). This connects to the second issue we did
not address here. It is the nature of the singular sets both in space and time, i.e. including
possible continuation of solutions after the singularity. In some instances, existence of global
in time (for all 0 � t < ∞) solutions to nonlinear problems can be established in a weak sense.
For example, this has been achieved for systems such as the Navier–Stokes equations [162],
reaction–diffusion equations [163], and hyperbolic systems of conservation laws [96]. Weak
solutions allow for singularities to develop both in space and time. In the case of the three-
dimensional Navier–Stokes system, the impossibility of singularities ‘moving’ in time, that
is of curves x = ϕ(t) within the singular set is well known [161]. Hence, provided certain
kinds of singularities do not persist in time, the question is how to continue the solutions after
a singularity has developed.
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