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The purpose of this paper is to gain insight into the dynamical origins of intermittent fluctuations in
turbulent flow. To this end stochastic models of turbulence are developed, which borrow their interac-
tion structure from fractal geometry. The dynamics conserve energy and ensure equipartition of energy
in equilibrium. The resulting stochastic process models the chaotic motion of Navier-Stokes-generated
cascades [J. Eggers and S. Grossmann, Phys. Lett. 156, 444 (1991)]. In all cases we find small-scale in-
termittency, but the strength of the fluctuations depends crucially on the geometry of the cascade. We
calculate the variance of the energy fluctuations in a low-noise expansion and evaluate its anomalous
scaling exponent to lowest order in the noise strength. The result agrees well with numerical simula-

tions.
PACS number(s): 05.40.+j, 47.25.Cg

I. INTRODUCTION

It is believed that fluid flow u;(x,¢) at very high Rey-
nolds numbers is characterized in part by a series of scal-
ing laws for the velocity structure functions

D)= |u(x~+r,1)—u(x,1)|™)) «p&m (1.1)

Here, (( )) denotes the ensemble average which at
sufficiently small scales » << L becomes translationally in-
variant and isotropic, independent of boundary or initial
conditions. L is the length scale of energy input. Impli-
citly, we have also assumed that the scaling exponents
£(m) themselves turn out to be universal.

Kolmogorov and others [1] have assumed that the en-
ergy dissipation per unit mass € is the only relevant quan-
tity in the scaling regime of (1.1). From this one deduces
the classical scaling exponents §,(m)=m /3 and an esti-
mate for the width of the inertial subrange, n<r <L,
n=(+*/¢)!”* being the Kolmogorov viscous scale. In
work pioneered by Kraichnan [2-4] it was possible to
derive the classical scaling law for D?)(r) from a pertur-
bative treatment of the Navier-Stokes equation. Those
theories also give values for the amplitude b of the struc-
ture function D(r)=D?(r)=be?"*r?/3 and refined esti-
mates for the width of the inertial subrange [3]. Howev-
er, the possibility of corrections to classical scaling was
recognized early [5,6]. Subsequently, while confirming
the idea of universal scaling behavior, experiments re-
vealed small deviations from the classical scaling ex-
ponents [7,8]. Alternatively, one can look at the proba-
bility distribution of longitudinal velocity differences
Au(r)=[u(x+r)—u(x)]-r/r. At large scales, r<L,
P(Au) is Gaussian, while it develops increasingly
stretched tails on smaller scales [8]. This means large de-
viations from the mean become increasingly probable at
smaller scales. Those so-called intermittent fluctuations
are most impressively seen in the violent bursts of the en-
ergy dissipation [9], which is sensitive to the smallest-
scale movement. The entire realm of intermittency has
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escaped all analytical treatment of the Navier-Stokes
equation, either by renormalization-group methods
[10,11] or study of higher-order perturbation theory [4].

In particular, after the original description of Kolmo-
gorov and Oboukhov was given a geometrical interpreta-
tion by Mandelbrot [12], many authors [13-17] tried to
work their way backwards by starting with a phenomeno-
logical description of a turbulent field, disregarding the
dynamical origins. Those models are organized in trees.
The physical picture is that of a large scale eddy occupy-
ing a box of size L3. It decays into eight smaller eddies,
located in subboxes of size (L /2)°. This process is re-
peated until the cutoff scale 7 is reached. Each decay
process is described by a stochastic variable, which multi-
plies the velocity of the top eddy to give the velocity at
the next step. Self-similarity is ensured by choosing the
multipliers independently and with the same distribution
at each step. If the distribution has a finite width, this
will naturally lead to increasing fluctuations at smaller
scales. There are a variety of models which describe ex-
periments quite well [9], once the multiplier distribution
is fitted to experiment. Yet, leaving experimental evi-
dence aside,they are all consistent with no intermittency
at all, and therefore cannot give any insight whatsoever
into the dynamical origins of intermittency.

Reconsidering the original question of dynamics on the
basis of fractal turbulence models, there are two issues.

(1) Can the geometrical (tree) structure of turbulence
models be motivated on the basis of the Navier-Stokes
equation?

(2) If locality of interactions is assumed, are there
genuinely dynamical consequences of the hierarchical
structure of the velocity field?

In a very recent paper [18] we focused on (2) by analyz-
ing the Navier-Stokes equation in a mode decomposition
of both Fourier and real space, which exactly corre-
sponds to the structure described above. The resulting
system of nonlinear ordinary differential equations shows
intermittency, i.e., deviations of {(m) from m /3 and
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stretched exponential tails in the probability distribu-
tions. There are no adjustable parameters, so intermitten-
cy appears here as a natural consequence of Navier-
Stokes dynamics on a fractal structure.

In the following, we will disregard (1) entirely but rath-
er study the dynamical mechanisms which lead to inter-
mittency given a fractal structure. Specifically, we ask
what aspects of the nonlinear dynamics are essential for
the phenomenon to occur. To this end, we introduce a
Langevin description of a turbulent cascade, which only
incorporates three features of Navier-Stokes dynamics: (i)
energy conservation, (ii) local scaling of energy transfer
with energy, and (iii) return to absolute equilibrium [19].
The turbulent eddies, which in this description are
represented only by their energy, will be connected into
three different structures. (a) The full multifractal tree,
which in Fig. 1 is shown in one dimension, thus with only
two subeddies instead of eight. (b) The linear,
“monofractal” chain, shown in Fig. 2. It comes out of
the multifractal tree by imposing periodic boundary con-
ditions on each level, thus forcing all amplitudes on one
level to be the same. (c) The renormalized linear chain,
represented in Fig. 3. It was argued in [18] that the dy-
namics of the full tree can be replaced by the dynamics of
a linear chain with renormalized chain elements. This
means that because the interactions are local in space, the
eddies influence themselves only over finite distances
in space. On the level of approximation of
Fig. 3 all spatial interactions up to twice the eddy size are
represented correctly, more distant interactions are
represented by an eddy viscosity (wiggly lines in Fig. 3).

The main results and outline of the paper are as fol-
lows. In Sec. II, we present the stochastic process which
gives the energy transfer between two eddies. Together
with the connectivity of the eddies, this completely
specifies the dynamics of the entire system. The next sec-
tion contains the main body of our analytical work. We
derive a Langevin description for the cascades and set up
an expansion in the noise strength. Even in linear ap-
proximation there appear logarithmic corrections to the
classical power laws.

In Sec. IV, simulations of the three different cascades
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FIG. 1. The coupling structure of the multifractal tree. Each
“eddy” (represented by a bubble) has eight subeddies, two of
which are indicated here for simplicity. In the equations of
motion, each bubble is represented by the value of its energy.
The wavy lines on the lowest level indicate draining of energy
by eddy viscosity.
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FIG. 2. The bubbles of Fig. 1 are connected into a linear
chain, drained at the last cascade step. One can think of this
structure as stemming from the tree by forcing all modes in the
horizontal to be the same.

are described. We confirm our previous conjecture that
the small-scale dynamics of the multifractal tree is well
described by the corresponding dynamics of the renor-
malized chain. Hence, in the case of local coupling, it is
always sufficient to study linear chains with appropriate
chain elements. All those chains exhibit intermittent
fluctuations well described by power-law corrections to
the classical scaling laws, remnants of which appeared as
logarithmic singularities in the preceding section. Yet
the different chain elements differ vastly in their
effectiveness to amplify fluctuations. In the case of the
simple chain of Fig. 1 the effect is so small that it was
previously hidden by numerical uncertainty [20]. On the
other hand, for the renormalized chain intermittency
effects are of similar magnitude to those found in experi-
ment [7].

In the concluding discussion we compare the results
with our earlier cascade simulations, based on the
Navier-Stokes equation [18,20]. At least in the energy
variables considered here our stochastic process describes
the chaotic motion of a much higher-dimensional system
very well. Next we discuss the significance of the energy
description for the appearance of logarithmic singulari-
ties. Finally, we indicate directions of future research.
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FIG. 3. The renormalized linear chain. It is derived from the
multifractal tree by a pruning procedure which preserves the lo-
cal coupling structure. At each stage, the right half of the tree
is represented by an eddy viscosity with a renormalized cou-
pling constant D(/).
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II. THE MODEL EQUATIONS

In the following, the only dynamical variable will be
the energy of the different eddies. To simplify the subse-
quent considerations, let us consider a linear chain of N ,,
eddies with energies E;. .. ,ENq,which are coupled by

nearest-neighbor interactions. The dynamical equations
are then the energy-balance equations

El(tn+l)—El(tn)=AEI—1—>I(tn)—AE1—>I+l(tn) . (21)

To close this set of equations, the AE;_;_,,(z,) will be
prescribed stochastic processes, which depend only on
the energies E; _, and E, of the eddies between which en-
ergy is transferred. We further demand the rate of energy
transfer to be a homogeneous function of E; _, and E,.
Each of the transfers between levels has its own time
stepping. Since time has dimensions of (length)/
(energy)!/?, the time steps are

I—1-51l_41—1-1 I—1-1_—_5—(I—1 I—1-11—1/2
Atn Sthv1 Tl =2 )[El—l(tn )] /
E,(t}=1—h
E,_((t}7=h)

] . (2.2)

The chain is updated asynchronously at times ¢,
N
NP S
{tn}—lL:JI{tn } s Liy1>t, -
The energy transfer at time ¢, therefore is
E(t,)
E,_(t,)

0 if 1,7t] 1.

g ift,=tl71!

(2.3)

E;_(t,)p

AE1—1—>I=

In our computations we will choose ¢ and 7 such that
AE;_,_,, and At!"'~!are symmetric in E; _, and E;:

(P( V)=Q?0V1/2
and
(V)y=1¥V 1%,

(2.4)

(2.5)

The direction of the transfer is given by the random vari-
able &;, which takes the value {=+1 (forward transfer)
with probability p and {=—1 (backward transfer) with
probability 1—p. If p > 1 this will lead to an average en-
ergy transfer down to smaller scales. On the other hand,
it is easy to see that constant p will lead to an unstable
system: There are no restoring forces and diffusion will
eventually make the energy arbitrarily large or negative.
To find the right dependence of p on E;_; and E; we in-
voke the concept of absolute equilibrium [19]. Without
viscosity and forcing one would assume all the energies to
exhibit equipartition, i.e., to be the same on the average.
This property can actually be confirmed for our
simplified Navier-Stokes cascades [20,18]. This means
the interaction is such that energies always relax towards
equilibrium. This is ensured by

p=r

, p(0)=1, ple)=0, p(1)=1. (2.6

1
El—l
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The most natural choice seems tobe (1—p)/p=V*or

p(V)= (2.7

1+vs
The exponent s controls how effectively the system tends
to equilibrium. If s equals O, there is no restoring ““force”’;
for increasing s this force becomes larger.

This completes the description of the dynamics of the
chain. A nonequilibrium state is maintained by feeding
energy at rate € into the chain. This is done by injecting
an energy amount € into E, in time steps of one. Those
time steps also serve as a clock relative to which all other
time steps are determined.

Usually viscous dissipation serves as an energy sink,
which ensures that a stationary state is maintained. In
the present model this is difficult to implement, since the
energies for the dissipation region would come close to
the singular point E;=0. Instead we terminate the cas-
cade by introducing an eddy viscosity into level N,
which simulates the action of lower-lying eddies [21,18].

The equation for E Nn(t" ) is therefore

EN"(tn+l)_ENn(tn ):AENnﬂqun(tn )—AEI?"U,.) .

(2.8)
. D N —1-N
The time steps for AE N, are taken to be At, 7 ", and
the energy transported in one time step is
AE£J=DENW, 2.9

which is a positive-definite quantity.

The equations for a linear chain are easily generalized
to the case of a multifractal tree. Let E,“), 1<i<8' 've
the energy of the ith eddy on the /th level. Then the
energy-balance equation reads

E{t, , )—Et,)=AE",_(t,)=SAE",;(1,) .

1

(2.10)

Here i~ are the indices of the eight eddies below i.
AE(" |, is chosen to be exactly the same as AE,_,__, be-
fore, with the top eddy energy E," ) and E|” replacing
E,_, and E, in the case of the linear chain.

The equation for the renormalized linear chain should
be obvious from Fig. 3. For all but one eddy at each level
the downward coupling is replaced by an eddy viscosity,
as given by (2.9). The constant D is allowed to be scale
dependent: D=D(I).

III. LANGEVIN EQUATION
AND LOW-NOISE EXPANSION

For simplicity, in this section we will consider only the
linear chain, as described by (2.1). In deriving the corre-
sponding Langevin equation, we will always assume that
the individual energies E; are much larger than the
jumps: E;>>AE,_,_,;. The parameters €, ¢, 7o, and s
have to be chosen to ensure this. Ideally, let us consider
a time interval Ar with Az >>A¢t!7'~! and assume that

n
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E,_, and E, can be regarded as constant over the time in-
terval At. Then the total energy transferred from / —1 to
lin At is

INYZN
(i) —
2 ! _A141—>1 >

i=1

E,
E

E 9 (3.1)

where &i are the realizations of §, in At. Since
At /At;_,_,, is large, A;_,_,;/At is a Gaussian random
variable with mean

-1

E, E,
2(1*1)E3£2¢) r <§ >
= E, E _, !
and variance
-1
1 - E, E,
2 U=1g5/2 2
At = E T ES,

X =& .

E,

((§1_<§1>)2):4p E
1—1

1—p

E,
E,
For E; >>AE;_,_,; we can pass to the Langevin equation

which is the continuum limit of the process (2.1):

O,E =h(E _,EL,E )Vtgr(E _EL,E 1)§(1),
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CEL(DEL (")) =28(t—1") . (3.3)
Here, {£,] are independent Gaussian random variables
[22].

We find for I =2,. .. ,N,,—l

1 E, E
h :21 _E3,{2 _E3/2 X
i PaiAd o P E, (3.4)
and
E,
glkzzl/z S EM X
E,_,

= E
=8y V2E} 'y | ——

where we have set

YV)=P(V)[2p(V)—1]/7(V)
and

XV =@M {p(M[1—p(M]/m(V)}'2.

For I =1 we have

h,=e—2E3"*¢ , (3.6)

-2
E,
E,

g1 =28, E{"*x E,

) (3.7

(3.2) and the eddy viscosity in level N, leads to
J
E E E -
N 1 N N N
h =" |= 3/2‘_ n —D 1 )
N 5 BN, -1 Y Ey Ev T En ) (3.8)
E E E —1/2
N_/2 N, N, N,
g k=2 7 SN kE — X —D T . (3.9)
N Yok Ny 1 Ey Ey ENT,-I
M
We have not been able to compute the stationary ener- 2 ME (1) —9R(F B
. 1 1)) =28(t-1"), (3.12)
gy distribution of the nonlinear system of Langevin equa- (&)
tions (3.2) exactly. Instead, we will set up a perturbation with
theory in the strength of the noise [23] and calculate the
results to first order. -
The idea is to write the solution E,(¢) as a series 8=@o"", 5.13)
E()=E"(t)+8EV(t)+ -+ , (3.10) E=ero@p -

where we have introduced an expansion parameter 8.
Rescaling time and energy according to 7=t /7, and
E,=E,@} we obtain

&E =h(E,_,E B, )+, (E,_,E,E; )&, (3.1D)

Here h ; and g}, are the previous functions k; and g, with
£ instead of € and 7p=¢@,=1. For the rest of this section
we will omit the carets and assume that all quantities
have already been properly scaled.
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The lowest order is obtained by formally setting §=0,

which gives the deterministic motion
9,E\¥=h,(E® ,E®E9)) . (3.14)

Let us consider only the stationary behavior, 3,E{®=0.
Seeking solutions of the form E(®'=C27?/3! we find

2/3
= ;(z—fzq (3.15)
The equation for the first order in 8 is [23]
3, E{"=—vuE" +gu(E[2, E[, E[S))E; (3.16)
with
Yie™ _thl —gO - (3.17)
0E, ' ETE

The covariance matrix o ;= (E{"E{"") for the stationary

state is then given by [22]
(3.18)
(3.19)

Yiu0Oij +7j101i :2Dij >

Dij=gik{E1(0)}gjk{E1(0)} .
Here, ¥y and D are tridiagonal matrices, D being sym-

metric.
Fori,j>1, y and D scale like

vy =22 (j—i) (3.20)
and
D;=2"2"UD(j—i) . (3.21)
We solve (3.18) by diagonalizing the matrix y T:
(P Ny iPyp=A"N8,, . (3.22)
By inserting (3.22) into (3.18) we find
2Pn k Pn k
_(p-1 1 1517 "k
O mym, (P )k:'"n(P )k2m2——A‘k1’+A(kz’ nyny -
(3.23)

Now o ; is easily computed by numerically finding the ei-
genvalues and eigenvectors of T and applying (3.23).
Naive power counting would predict o;; to behave like
27 4/3iF(j—i), but even for i,j large we find corrections
to this behavior. Concentrating on the diagonal elements
we specifically find &, =0,/ E,)? to be a linear function
of the level number /. For the second moment of the en-

ergy E;, normalized by (E, ), this means

(E})/{E))*=1+8%, . (3.24)

Since we expect anomalous scaling of the form
(E}) /(E,;)*>=const2%, we exponentiate (3.24) to give

2
825, /In2

(E?)/{E/)*=2 (3.25)

To make contact with the scaling exponents £(m) defined
in the Introduction, we observe that

(EM/2) ~p~16tm) (3.26)
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since the energy is quadratic in the velocities. Defining
the asymptotic slope of &, as o, we find

£(4)—2£(2)=8% /In2 . (3.27)

To lowest order, we therefore find corrections to classical
scaling §,(m)=m /3, which are quadratic in the noise
strength 8.

IV. CASCADE SIMULATIONS

We now explore the scaling behavior of our model tur-
bulence by numerical simulation. As before, we begin
with the simple linear chain.

The constants to be fixed are the amplitude of the ener-
gy transfer ¢,, the corresponding time scale 7, and the
exponent s which determines the approach to equilibri-
um. Finally, the eddy viscosity constant D has to be ad-
justed. The energy input rate € is normalized to one. We
choose the parameters to ensure that the energies
transferred in one step are much smaller than the mean
values of the energy in the corresponding level. If we fix
(E,) to be approximately 100, the ratio will always be
on the order of 19%. We will use the result of Sec. III,
(E;)=C27 %3 50 we choose

[9(27%7)]72=(100)2*" .

We also expect the time scales of the eddies to scale ap-
proximately like 272”3’ as in the Kolmogorov theory.
Therefore we fix 7, such that

At’}—»ZzToc—l/Zz-l/2=2—2/3 .

The central parameter is the exponent s, which fixes the
size of the fluctuations as measured by &,,=0,,/(E, )%
To fix it, one needs actual turbulence data or Navier-
Stokes derived values. We choose s to make &,; equal to
the corresponding value in our cascade simulations,
based on the Navier-Stokes equation [20]. The value for
the truncation we call “small cascade” is &;,=0.022.
From the linearized theory of Sec. III we find this value
by choosing s =0. 85.

By reasoning very much along the same lines, and as-
suming £ scaling we can also fix the value of D. All ad-
justed constants are compiled in the second row of Table
I. The simulations were conducted with chains of 10 to
15 elements, thus covering a range of three to four de-
cades in scale. Even allowing for end effects one can ex-
pect an inertial range of more than two decades. The
quantities of main interest are the moments of E}/2.
Their scaling behavior (if scaling is found) corresponds to
the exponents {(m) as given in (3.26). The time averages
are typically taken over 10° time units. If we take
T=(E,)/e=100 to be the turnover time of the highest
eddy, this corresponds to the enormous averaging time of
10*T. This is easily achieved due to the small number of
modes used to model turbulence. It is obviously numeri-
cally far more demanding to integrate a large set of non-
linear equations at each cascade step, as done in [20].

The scaling of the first and fourth moments of E, is il-
lustrated in Fig. 4. Apart from end effects, the moments
are well described by a power-law fit. The exponents, as
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TABLE 1. The parameters specifying the dynamics of the four different cascades simulated. The
definition of the parameters can be found in Sec. II. D * is the fixed point of the renormalized coupling
constant as explained in Sec. IV. The linear chain is simulated with two different values of s, giving
different values for &,,=0,/{E, )2, the normalized variance of the energy.

Parameter @0 To N D* D

Linear chain 0.0409324 11.2246 0.85 0.01
& 1n= 0.022

Linear chain 0.069 11.2246 0.5 0.01
¢,,=0.063

Multifractal 0.0421 11.2246 0.15 9.5X1073
tree

Renormalized 0.0421 11.2246 0.15 9.49X1073 9.5%x107?
chain

given in Table II, are found to be very close to the classi-
cal values, yet there are small deviations. For £(18), the
deviation is just 4% of {;=6. We have also listed the re-
sults of experiments [7] so one can appreciate the small-
ness of the effect. We now enhance fluctuations by lower-
ing s to the value 0.5. For larger deviations from the
mean values, nonlinear effects should become more im-
portant, hence enhancing intermittency. As is apparent
from Table II, the exponent deviations from classical
scaling have indeed increased significantly.

From earlier work [18] it is to be expected that inter-
mittency is much stronger for the multifractal tree, or its
linear analog, the renormalized chain. We first check the
conjecture of Ref. [18], that the renormalized chain gives
indeed a good description of the statistics of the full tree.
It is difficult to observe scaling on the multifractal tree

directly, since the number of modes grows as (8N’7— 1)/7
with the number of cascade steps N,. So even for a
moderately long cascade with six steps, the number of ed-
dies is approximately 4 X 10*. We therefore only simulate
a multifractal tree of length N, =4, but compare the mo-
ments directly with a renormalized chain with the same
parameter values. We again set e=1 and adjust the pa-
rameters such that ( E, ) =100. However, there is an im-
portant difference in the stationary states which will de-
velop.

On the multifractal tree, the turbulent states are driven
much farther away from equilibrium than in the linear
case. This results from the increase in phase space

volume towards smaller scales, which is correctly de-
scribed by the multifractal tree. The energy density
(1/273E of a turbulent eddy still scales like 2~ 2/3,
but absolute equilibrium requires equal excitation of all
energies. The ratio of energies V=E ,(i_+1’ /E}" is therefore
enhanced by a factor of 8(22/?) from the equilibrium situ-
ation ¥ =1 instead of just 22/ in the linear case. As a re-
sult, the “force” restoring equilibrium is much stronger
for the same s values. Hence s has to be adjusted to a
much lower value to give fluctuations of the same size as
for the linear chain.

This different value of s is the only thing reflecting the
difference in dynamics between the linear chain and the
multifractal tree. For s=0.15 &, still has the lower
value of ¢,,=0.013, but intermittency corrections will
turn out to be larger by orders of magnitude. The value
of D is again to be found in Table 1.

In the case of the renormalized chain, the renormalized
coupling constants D(/), 1 </ <N,, appear as additional
parameters. They represent the effect of the parts of the
tree which have been pruned [18]. However, they will not
be adjustable parameters: At every cascade step they are
fixed by the symmetry requirement that the mean value
of the energy transfer into each of the eight subeddies be
equal. It turns out that D(/) is to very good accuracy
determined by a fixed point: D(I/)=D* for all levels .
The numerical value for D*, which certainly depends on
the other parameters, will also be given in Table I.

Comparison between the multifractal tree and the

TABLE II. The exponent deviations (or intermittency corrections) from classical scaling {(m)=m /3 for the experiments of An-
selmet et al. [7] and the model cascades of the second, third, and fifth lines of Table I. The scaling of the moments 2, 4, 6, 8, and 18
of Au(r) corresponds to moments 1, 2, 3, 4, and 9 of E;, which is the quantity we actually computed. The last line quotes the results
of simulations of the Navier-Stokes equation on the renormalized chain of Fig. 3. Here the moments of Au(r) are computed directly.

The error bounds are statistical y? errors.

Moment 2 4 6 8 18
Exponent deviation 5§(2)=§(2)~§ 5§(4)=§(4)—% 84(6)=¢4(6)—2 8§(8)=§(8)—§ 85(18)=¢4(18)—6
Experiment 0.04 0.00 —0.20 —0.45 —2.29
Linear chain s =0,85 0.0020+0.0001 —0.0035+0.0001 —0.0168+0.0002 —0.038x0.0004 —0.25+0.002
Linear chain s =0,5 0.0089+0.0007 —0.0061+0.002 —0.044+0.004 —0.1031+0.006 —0.66+0.03
Multifractal tree, s =0,15 0.033+0.002 —0.0063+0.006 —0.28+0.01 —0.61+0.02 —3.21+0.3
Multifractal dynamics, Ref. [18] 0.032+0.0003 —0.0065+0.001 —0.30+£0.01 —0.68+0.04
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pruned version is made in Figs. 5(a) and 5(b), where the
first and fourth moments of E;, are shown. From the
close agreement one can conclude that the renormaliza-
tion procedure gives indeed a good representation of the
complete tree. We can therefore move on to look at scal-
ing in a somewhat longer pruned tree, from here on as-
suming that the scaling of the multifractal tree will not
differ much from these results.

With this in mind, we simulate six levels of the renor-
malized chain, with the same parameters as before. We
again average over 10* turnover times and omit the first
and last levels in our power-law fit to the moments of E;.
Appreciable exponent deviations are now found. They
are of the same order as the experimentally observed in-
termittency corrections. This confirms the idea that
branching very significantly enhances intermittency.

V. DISCUSSION

One of the very convenient features of the present
model is that it can be compared directly with the
Navier-Stokes-generated dynamics on the same struc-
tures. As an example, we compare the energy distribu-
tion of the linear chain in the present model with the
same quantity in the linear chain with Navier-Stokes-
generated dynamics. In Fig. 6 the results for levels 1 and
2 are given, the present model (solid line) superimposed
with the Navier-Stokes case (dotted line). The energy
scale was adjusted to give the same mean value at level 1.
It will be noted how well our simple model describes the
higher-dimensional chaotic dynamics of the Navier-
Stokes chain, at least when the latter is projected on the
energy variable. Observe that the width of the distribu-
tion increases much faster towards higher levels than it
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FIG. 4. Scaling of first (O ) and fourth (M) moments of E; for
the linear chain, s =0, 85 (see Table I). For velocity differences
Au(r) this corresponds to moments 2 and 8. The power law
27!62m) according to Table II has been subtracted, so only the
scatter is visible. The straight line is a least-squares fit to levels
3-12 and is horizontal by construction.
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should be expected from the tiny increases of the mo-
ments of E;. The reason is that the variance
o, ={E})—(E,;)?is the difference of two large numbers
which almost cancel each other. So the slightly different
scaling of ( E;)? and ( E?) is magnified greatly. Eventual-
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FIG. 5. (a) Comparison between the full multifractal tree
(Fig. 1) and the renormalized chain (Fig. 3). Drawn is the aver-
age of the energy E, for the tree () and for the chain (y¢). In
the inset (E;) is multiplied with 2/~1¢2m) g5 that only the
scatter is seen. The scale has been expanded to make some of
the very small deviations visible. (b) Same as in (a), but for the
fourth moment of the energy, corresponding to the exponent
£(8). Due to the shortness of the cascade there are considerable
end effects visible on the expanded scale of the inset. Yet the
agreement between the tree and its renormalized version is very
good.
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FIG. 6. The probability distribution of E,/{E, )2~ 2/3=D
for I =1 (largest scales) and 2 (next smaller scales). The full line
is the result of the present simulations of the linear chain, cf.
second row of Table I. The dashed line is the same distribution
calculated in the Navier-Stokes-generated model of Ref. [20].
Due to much shorter averaging times, the convergence in the
tails is not as good as in the stochastic model.

ly, for very large [, o, will be determined solely by ( E})
and will grow much more slowly.

Another comparison, this time for the renormalized
chain, is made in Table II. Again, by comparing the scal-
ing exponents of the model (sixth) and the dynamics
(seventh) one notes an impressive agreement.

This suggests that in the energy picture the statistics of
small-scale flow is determined by only a few structural
elements, as already discussed in the Introduction.
Namely, (i) energy conservation (with correct local scal-
ing of the transfers), (ii) return to absolute equilibrium,
and (iii) fractal geometry. In our model, the implementa-
tion of (ii) was most ad hoc. The following simple dynam-
ical justification can be given. Imagine a network of
modes exchanging energy in the same fashion as in the
present model, but with p(¥)=1, independent of the ra-
tios of the energies. In this case the fluctuations will be
unbounded, as observed before. But if we introduce
memory, for example, by saying that the direction of
transfer be the same for two successive events, the pro-
cess will tend to maximize the transfer. This is because
transfer towards the maximum will be enhanced in the
second step, while transfer away from it will be depleted.
Therefore the system will tend to equipartition, where the
transfers are maximized. This elaborates on the well-
known fact that memory is essential for energy transfer
[24].

We now turn to the perturbation theory of Sec. III in
some more detail. So far all perturbative treatment of the
turbulence problem [2-4] has given no indication of in-
termittency. The point demonstrated in those theories
essentially is that the limit L — o0, 7—0 can be per-
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formed at every finite order of the perturbation expan-
sion. From this it follows directly on dimensional
grounds that the classical scaling exponents are
recovered. In the presence of an intermittent exponent
correction the structure functions D ™)(r) take the form

8¢(m)
’

D(m) =p m/3
(r)=b,,(er) I3

An exponent correction 8§(m)=0 therefore implies a
“divergence” for L —oo. In our linearized approxima-
tion, this shows up as a logarithmic divergence, since via
I=log,(L /r) a linear dependence on the level number
implies a logarithmic dependence on r/L. It is not clear
why these terms do not seem to appear in the usual mo-
ment closures of the Navier-Stokes equation. One simpli-
fying feature of the present model is its formulation in en-
ergy variables. In the velocity of our model [20], fluctua-
tions in the individual amplitudes are very large, and all
fixed points are highly unstable. Yet, the total energy of
a shell is a “slow” variable of the system, being well de-
scribed by fluctuations around a mean value as shown in
Fig. 6. This corresponds to the emergence of the small-
ness parameter @}’/? for the noise strength. Hence even in
the linear approximation one can make meaningful state-
ments about the size of fluctuations.

We now make some quantitative comparisons between
the prediction of the linear approximation and our nu-
merical simulations of the linear chain. In Fig. 7, the
comparison is made for the normalized variance & for a
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FIG. 7. Normalized variance &, =0,/{E;)* of the energy
vs level number / for the chain of 15 elements. The stars (3¢)
correspond to the simulations of the linear chain with s =0.85,
the squares ((J) to the low-noise expansion of Sec. III up to first
order. The full and the dashed line, respectively, are drawn to
guide the eye. The inset shows again the result of the low-noise
expansion, but for 50 levels. The variance continues to grow
linearly with level number.
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chain of 15 elements. The slope of &, determined from
(3.23) for N, =50 and 5 =0.85 is 5.066 X 1073 (see inset),
hence by (3.27) £(4)—2£(2)=7.31X 1073+ (higher or-
ders). The simulation gives 7.5X1073+3X 10™* for the
same  S. For s=0.5 we have to compare
£(4)—2£(2)=0.020 (perturbation theory) and £&(4)
—2£(2)=0.024+0.003 (simulation). We expect that
higher and higher orders in 8 will be necessary for an ac-
curate calculation of higher-order moments. The conver-
gence of the power series in & still needs to be investigat-
ed.

Finally, to get more realistic values for the exponents,
one needs to consider the multifractal tree instead of the
chain. By pruning the tree as described in the Introduc-
tion, one ends up with a chain with renormalized chain
elements. The corresponding matrices of the linearized
problem are now banded matrices with eight upper and
lower diagonal elements, instead of being tridiagonal. By
comparing with our simulations we expect them to lead
to exponent corrections which are larger by an order of
magnitude.

In conclusion, we have constructed a dynamical model
of turbulence which focuses on the geometrical aspects of
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the flow field. Details of the hydrodynamic interactions
are only summarily described by a Langevin process and
topological features are disregarded. While this puts
severe restrictions on the range of phenomena which can
be described within the model, it is shown to be sufficient
to describe one of the most fundamental facts: the
growth of intermittent fluctuations.
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