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We consider a general class of stochastic models of a turbulent cascade. They are based solely
on the classical conceptions of local interactions and energy conservation. We show that such a
model must necessarily exhibit strongly non-Gaussian fluctuations on small scales. This intermittent
behavior is characterized by multifractal scaling. We develop analytical methods to calculate the
anomalous scaling exponents without adjustable parameters and give numerical values for a specific

model studied previously.
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I. INTRODUCTION

Perhaps the most famous example of self-similarity and
scaling in a physical system is the velocity field of fully
developed turbulent flow [1-3]. Its scaling properties are
described by the structure functions

D™ (r) = (Ju(z + r,t) — u(=,t)|™) ~ ™. (1.1)
The angular brackets refer to an average over different
realizations of the turbulent flow field. It is believed that
at sufficiently high Reynolds numbers the ensemble of
u fields is translationally invariant and locally isotropic
[4]. This means the ensemble of velocity differences
u(® + r,t) — u(e,t) is invariant under translations and
rotations for scales |r| < L, where L is the length scale
of energy input.

The structure functions are found to scale with a spec-
trum of exponents {(m), which is independent of bound-
ary conditions [5], i.e., of the mechanism of energy input.
Thus one of the main tasks of turbulence theory is to un-
derstand this spectrum and its universality on the basis
of the Navier-Stokes equation.

The first step towards a physical understanding of
the scaling exponents was taken by Kolmogorov and
Obukhov [4,6]. Their argument rests on the assump-
tion that energy is fed into the flow at a finite rate on
large scales L, which is transported locally (in scale) to-
wards smaller scales. Eventually this cascade is termi-
nated by viscous dissipation. Since the coupling is local,
it is tempting to assume that the flow statistics eventu-
ally become independent of large scale flow features on
scales r <« L. Moreover, time and velocity scales are
related by

T =1/U, (1.2)
due to the scale invariance of the Euler equation [7]. This
is equivalent to the assumption that the motion of tur-
bulent eddies is unaffected by viscosity for high Reynolds
numbers. Hence, in the absence of any other scale, the
moments of the velocity on scale r, say
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Au(r) = |u(z + r) — u(z)|,

would be determined by the mean energy flux through
scale r alone. By energy conservation the flux is indepen-
dent of scale and equal to the mean energy dissipation
rate €. This means

D™ (r) = ([Au(r)]™) = 6™ (er)™?, (1.3)
where the (™) are universal constants. The exponent
spectrum in this classical theory therefore is {i(m) =
m/3. With this understanding one can identify a length
scale where inertial and viscous forces are balanced. This
is the Kolmogorov scale

n=(v/e)".

Hence (1.3) should be observed for n < r < L.

However, it was pointed out by Landau and Lifshitz [8]
that (1.3) cannot be correct as it stands. Their argument
may be stated as follows. Assume that the average en-
ergy input €(t) is changing very slowly over a total time
interval T, e.g., there is a slow change of weather con-
ditions in atmospheric turbulence. Then the structure
functions

(1.4)

D™ (7, 1) = ™) [¢(t)r]™/3 (1.5)
are also slowly time dependent. The average in D(™)(r,t)
is computed over time intervals At <« T, where €(t) is
almost constant, yet At is assumed large enough for the
averages to converge.

On the other hand, one could compute D(™)(r)
over the total time interval T, giving D;.m) (r) =
b(m)gm/3;m/3 The overbar denotes a time average over
the time interval 7. But this must coincide with the time
average of the time dependent structure function (1.5):
D™ (r) = D{™ (7). By virtue of (1.5) this would mean
that €™/3 = ¢m/3, which for general ¢(t) cannot be true
of course. Hence b(™) cannot be universal.

Indeed, experiments have given results in disagreement
with (1.3) [5,9]. Especially for high moments, the expo-
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nents show deviations 6¢{(m) = {(m)—m/3 from classical
scaling. By dimensional arguments, this is only possible
if (1.3) is generalized to

D™ (r) = b(™) (er)™/3(r /L)%™, (1.6)
Note the singularity for L — oo, which is the trademark
of multifractals [2,10,3]. This means that universality, or
independence from large scale features, is a very subtle
issue indeed: while §¢(m) is universal, there is a very
strong dependence of local statistics on the input scale.

Hence there are the following issues.

(1) What is the dynamical basis of Landau’s argument
and do corrections to classical scaling indeed take the
form (1.6)7?

(2) Supposing one has demonstrated the scaling form
(1.6), how does one calculate the correction exponents
4¢(m) from the dynamical equations?

Answering these questions on the basis of the Navier-
Stokes equation alone seems to be a problem far out
of reach at present. Therefore, we construct a general
class of stochastic models, which include the most impor-
tant features of Navier-Stokes dynamics, yet are simple
enough to be analytically tractable.

Large scale flow features of size L are represented by
their energy E;. They decay into eddies of size L/2,
which have the energy F,, and so on. Hence the tur-
bulent flow field is described by a sequence of energies
E;,i =1,...,N. The features incorporated into the dy-
namics are energy conservation and local scale invariance.
For simplicity, we restrict ourselves to the framework of
Langevin equations with white noise.

Within the model, we are able to prove that inter-
mittency corrections must have the multifractal form
(1.6). Moreover, for the model we calculate the expo-
nents §((m) without adjustable parameters. It turns out
that the d¢(m) are necessarily different from zero, i.e.,
there necessarily are intermittency corrections. That
means Kolmogorov’s classical theory [4] is inconsistent
with the assumptions it is originally based on.

Our method relies on two ideas. First, we formulate
a perturbation theory which expands around a state of
constant energy flux in the inertial range. Higher orders
take fluctuations in the energy flux into account and in-
duce corrections to classical scaling.

Second, we formulate the problem in terms of ratios
of energies E;,;/E; in adjacent steps of the turbulent
cascade. From the solution of the model it turns out
that the distribution of E;.;/E; is independent of large
scale flow features. This ensures the scaling form (1.6) as
well as universality of the exponent corrections §{(m).

The paper is organized as follows. In Sec. II we in-
troduce the present class of models, which are general-
izations of a turbulence model proposed recently in Ref.
[11], referred to as I hereafter. Section III prepares our
analytical treatment. First, we derive a set of nonlinear
equations for static (equal time) correlations between dif-
ferent levels of the cascade. Then we show how this non-
linear system can be treated by setting up a perturbation
expansion in the noise strength.

Sections IV and V contain the main results. In the

former, we introduce a description in terms of energy
ratios. By establishing that the distribution of energy
ratios is scale independent, we show that moments of the
energy have the multifractal scaling form (1.6). We also
verify the Kolmogorov structure equation [4]. In Sec.
V we give an analytical expression for the intermittency
exponents d¢(m) by solving the perturbation equations
to lowest nontrivial order. This is done by using the
scaling form established in Sec. IV.

The Discussion relates our work to Kolmogorov’s clas-
sical paper on intermittency [1]. In the framework of our
model we are able to give detailed microscopic interpre-
tations of the famous Kolmogorov similarity hypotheses.
Next we test the quality of our results obtained from
perturbation theory by comparing with numerical sim-
ulations. Even to lowest order in the noise strength we
obtain excellent agreement. Finally, we discuss related
work.

II. MODEL

The physical assumptions incorporated into our model
are [11] (i) local scale invariance, (ii) energy conserva-
tion, and (iii) equipartition of energy in equilibrium. A
few comments on these assumptions are in order. By
local scale invariance we mean that at a given scale r,
L > r > 27NL, there is just a single length and time
scale. Hence local quantities are related by dimensional
analysis, analogous to (1.2). This scale invariance is of
course broken at the largest scale L and at the cutoff
scale 2~V L. The exchange of energy between turbulence
elements is only possible for eddies of comparable size;
hence we allow only local energy transfer.

The physical reasoning behind the third assumption is
explained in detail in [13]. If the system is not driven,
it tends to distribute energy equally among its modes.
If energy is fed into the largest scale, this tendency be-
comes the driving force behind the cascading of energy:
In order to equilibrate, energy has to flow into the next
smaller scale, where it again produces a nonequilibrium
situation. Hence energy flows to even smaller scales and
so on down to dissipation scales. At the same time this
will tend to bound fluctuations, since energy gradients
between neighboring levels cannot get too large. Hence
the size of fluctuations at a given distance from the high-
est level will be finite.

We will now try to develop the most general Langevin
description consistent with the above assumptions. To
incorporate energy conservation and local coupling, we
write

OE; = Ti—151 — Tisi41, (2.1)
where E is the energy of the {th mode in a chain of tur-
bulence elements. The rate of change of E; is determined
by the influx from above (which may be positive and neg-
ative) minus the outflux to the lower mode. The highest
mode, labeled 1, represents an eddy of size L; at each
step the size is cut in half.

In reality, the spatial structure of the flow field should
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be represented too, allowing a given eddy to decay into
several smaller eddies instead of just one. In I we demon-
strate how such a tree structure of eddies can be rep-
resented by a simple chain with renormalized chain ele-
ments. Hence, while spatial structure is extremely impor-
tant to account for intermittency effects quantitatively
[12], the linear chain is sufficiently general as an ansatz.

Ti—1+1 is split into a deterministic and a stochastic
part:

E
Tisia(t) = 2B (%)

E
o1 25/ ( %11) Gaalt),  (22)

<f((t)£k(tl)) = 261k5(t - t'). (23)
The It6 definition of (2.2) is assumed [14]. This can be
done without loss of generality, since Stratonovich’s case
would only result in a redefinition of the arbitrary scal-
ing function . This is the most general form consistent
with the local scaling (1.2): T;—,141 has dimensions of (en-
ergy)/(time) and &4, has dimensions of 1/(time)*/2. To
ensure stability, some conditions on 3 and x are needed.
In accordance with (iii) we demand that

$(1) =0,

P (V) <0, 0<V <oo. (2.4)

Hence the system is always driven towards the equilib-
rium state E;.;/E; = 1. We further demand that x(V)
decays sufficiently fast for V. — 0 and V — oco. This
ensures that the energy stays finite.

This completes the description of the model. It is iden-
tical to the Langevin equation derived in I, but with a
specific form of 1 and x. We remark that the derivation
in I is only valid to lowest order in the expansion param-
eter g, but even the higher order terms must conform
with (2.2), since it is the most general case.

In I, extensive simulations of the turbulent state of
this model are reported. To reach a turbulent state, the
highest level is driven with a constant energy input e:

BtEl = € — T1_>2. (25)

At a level N energy was extracted by an eddy viscos-
ity [15]. This was merely a device of simulational con-
venience; the exact dissipative mechanisms are inconse-
quential to the inertial range properties to be investigated
here. In these simulations, a stable turbulent state was
reached consistent with the phenomenology of Sec. I. The
energy scales as in (1.6), where D(™)(r) has to be identi-
fied with (E,m/z), r = 27!L. The exponents are close to
the classical values, but significant corrections §¢(m) # 0
are observed. In the following sections we will outline
how §¢{(m) may be computed from the scaling functions

¥ and x.

III. STATIONARY MOMENTS

We will now derive a set of equations for the stationary,
static correlation functions generated by the equations of
motion (2.1)—(2.3). To solve this nonlinear set of equa-
tions, a perturbation theory is set up.

We write the equations of motion (2.1) and (2.2) as

hi(Ei—1, By, Er41) + gie(Ei—-1, Et, E141)&k(t),

(3.1)
e[

| - & ] B } (32)

E,
_2/2{6lkE5/‘;X[ l
1

OE =

hy =2

— Ot 1\/—E5/4 [E'+1]}.

Ei_ E
(3.3)
For [ = 1 we have
hy = e — 2B/ % [%] , (3.4)
1
E
g1k = —260. B *x [E—j] : (3.5)

Since we are looking for correlations in the station-
ary state, the time derivative of all expectation values
should be zero. Hence, for any collection of n levels
l;,i=1,...,n, we obtain

3, <ﬁ E[{> =0
i=1

Using the equations of motion (3.1) this means

0=2, <13E,> Z<(6tE,) H E,, (t)>

1=1
m;tu

=> <hti ® 11 B (t)>

=1 m=1
m#i

+Z <gl k(te)ér(t

(3.6)

H B t)>

mi

Here we have set t. = t — € and take the limit € — 0+.
Furthermore, we use the notation hi(t) = hi(Ei—1(t),
Ey(t), E141(t)); gix(t) is defined analogously. It remains
to calculate the second bracket involving the random
force. To this end we observe that in the limit ¢ — 0+
(14]

t

Ey, (t) = B, (te) + gi.(te) &(t)dt'.

t—e

Hence
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<91.-k(te)€k(t) 11 B (t)>

m#i

= <gl.-k(tc) H El,,, (te)> <£k(t)>

m#i
+ Z <91 k(te)gui(t H E, (t >
J#l 'n#' 3

« [ (&()ex(t))dt' + O(e).

t—e

Here we used the fact that terms with double integra-
tions are of higher order in € and that E;(t.) and £(t')
are statistically independent for ¢ > t.. Noticing that
(€x(t)) = 0 and ftt_e(&(t')ﬁk(t))dt’ = b1k, (3.6) takes the

form

2": <h1.- ®) fI E,, (t)>

i=1 m=1
m#i

+ 3 <D,,.,,.(t) f[ E,m(t)> =0, (3.7)

i,j=1 m=1
iAj m#i,j

Dij = girgjk- (3-8)
Thus for every n-tuple of levels (ly,...,{,) we have gener-
ated a nonlinear equation for static correlation functions
involving the energies Ej, _1, Ej,, and Ej, 1, where i runs
from 1 to n.

This is the set of equations fundamental for the rest
of this paper. It completely determines the static (mul-
tivariate) distributions of energies in our model. We will
solve it perturbatively in a low noise expansion [16]. This
means we expand around the deterministic part of the
stationary solution E,(O), obtained by switching off the
noise term in the equation of motion (3.1); hence

h(E, B, EQ) = (3.9)

By energy conservation € = (Tj—141), so the form of the
energy transfer (2.2) leads to
= 2 (2/3)

E (3.10)

with

. 2/3
o= [ut]” o
Note that the zeroth order solution (3.10) carries a finite
but time independent energy transfer rate € in the inertial
range.

Since corrections to classical scaling are known to be
small [5], one can hope to be able to expand in the noise
strength. This is done most conveniently by multiplying
the noise term in the equation of motion (3.1) with a
parameter A, expanding the solution in A, and setting
A =1 at the end of the calculation. Higher orders in A

thus contain fluctuations of the energy flux around e.
It is convenient to scale the energies by their zeroth

order values El(o):

E,
eg=—— , l=1,...,N, 3.12
and to write h; and Dy,;, as functions of e;:
Ru({ex}) = (E(”) " hu({Ex}),
Dy, ({e}) = (B ED) Dy, ({Ex}).  (3.13)

Deviations of e; from 1 must be of higher order in J;
hence we write fluctuations z; in e; as

e; =1+ Ax;. (3.14)

Higher orders in ) are also contained in the variable z;.
By induction one shows that the fundamental equation
(3.7) may now be written in the form

i<—hl'ﬁA >+)\ZZ<D111 H/\$1m>——0
ot e

=1
m#i,j

(3.15)

Now everything has to be written as an expansion in

A

= i AT AImigm

jm|=1
D;; = Z B,-r;-'/\l'"laz"'

|m|=0

where m is a multiple index of order |m/|. Both @ and m
are vectors whose components run over all levels of the

cascade: ¢ = (z1,...,zn§) and m = (m4,...,mn). By
Taylor’s theorem
1 o™ MmN
A= |m[! 8z, ™ dzx™N Pilier=1) (3.16)
and
1 o™ om~N
5= Im[!8z,™ " dzyTN Dijler=1) (3.17)

Due to the definition of E,(O) , the expansion of h; starts
with |m| = 1. Finally, the moments of @ are expanded
into a power series in A:

(&™) = (@ -

TRy =) XM,
=0

To write the perturbative equations, it is convenient to
O] (1)) be
15--

7 = T b
Accordingly the components of m(%7) are defined as

mg’J) z k=1 51,1,.

k#i,j

introduce some notation: Let m(®) = (m
the multiple index with components m,(: )
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Then, inserting the expressions for h;, D;;, and (™)
into (3.15), we find the fundamental system of perturba-
tive equations to be

n  k+1

> 5 armiin

i=1 |m|=1

+ Z Z B M&IRD 0. (3.18)
51 Imi=o
The system (3.18) is the perturbative version of the fun-
damental equation (3.7). For given k, it contains all mo-
ments (™) up to kth order.
Each of the linear equations in (3.18) can be inverted

to solve for the M.(,'.). Hence we have shown that the
fundamental system (3.7) can indeed be solved and ex-
pressions for (™) can be found.

On the other hand, the equations in (3.18) rapidly be-
come very cumbersome at higher orders. Therefore, in
the next section we will use quite different methods to
show that the solutions thus found have a very simple
scaling structure to all orders in A. This greatly sim-
plifies the calculation of solutions of (3.18), as will be
demonstrated in Sec. V to lowest order in A.

IV. SCALING SOLUTIONS

We now want to demonstrate that solutions of the fun-
damental equations (3.7) form a multifractal. In terms
of a single cascade level ! this means that the moments
of E; have the scaling form

(El"‘/z) — b(m) (ez—l)m/3(2—l)6((m)

(4.1)
for ! in the inertial range 1 <« | « N. This scaling is
the complete analog of the scaling of structure functions
D™ (r),r = 27'L, as in (1.6). In the normalized energies
e; the classical scaling behavior has been divided out, so
J

-3
n+1/2 n+1/2 Aly,...,Al, =
<e1 ( I I a; ) H(Ah )(011—2,411—1,---,aln—1)> =0,

=1

with

H({A“})(all—mall—l’ 7al,.—1)— {22—211/3,11 H ., + Z 2= 211/3Dl " H U, }
m;é-

Al; =1; - 11, i = 1,...,n. Without loss of generality
we will henceforth assume that [; < l; < --- < [,. Note
that the only explicit dependence of H on level num-
ber is through differences Al; between two levels, as the
combinations 2-2"/3h;, and 272:/3Dy,;; only depend on
Al;.

If it were not for correlations between different levels,
it would be straightforward to demonstrate multifractal

that we are left with

(") = b, (4)
The key to the scale invariance of solutions (4.1) and (4.2)
lies in the local scale invariance of the model equations in
the inertial range. This is expressed by the homogeneity
properties of h; and Dy,y,:

hi({cer}) = S *hi{er})
Du,1,({cer}) = 2Dy, ({er})-

This means the fundamental equation (3.7) is invariant
under the transformation E; — cEj if [; > 2 for all
i =1,...,n. But scale invariance is of course broken by
the energy input on level 1. If € were zero, and thus our
equations were describing a system in thermal equilib-
rium, h; would be a homogeneous function also. The
model would then be globally scale invariant and the
power law structure of solutions a trivial matter. To still
demonstrate scaling in a noneguilibrium situation with
€ # 0 is the fundamental problem.

To make use of local scale invariance, we write the
normalized energy (3.12) as a multiplicative process [17]

1>2

(4.3)

€l+1 = aqie; (4.4)

where a; is a stochastic variable. This ansatz is standard

in the theory of multifractals [18,19], but the point here is

to show that it actually solves the fundamental equation

(3.7). Note that (4.4) should not be read as e;41(t) =

ai(t)e;(t), but is a statement about the ensemble of e;’s.
Using (4.4) we can write e; as

-1
e =e; H aj.

j=1

(4.5)

Now, for any collection of levels (l4,...,l,) with {; >
2 we can rewrite the fundamental equation (3.7) in the
homogeneous form

(4.6)

i,j=1 m=1
i#j m#i,j

{w-—H,—,l 2 “1}

scaling (4.1) and (4.2). For if the a; were uncorrelated,
it follows from (4.5) that

( m/2 m/2> H( m/2

If moreover the averages are independent of j, (a;-"/ 2) =
(a™/?) , we have
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("% = (e %) (a™/2)171,

which is equivalent to (4.2) if one identifies §((m) =
—In((@™/?))/In2 .
J

To show that the average (a;-"/ 2) is independent of j we
use the fundamental equation in its homogeneous form
(4.6): For uncorrelated a; we have

-3
<e111+1/2> (H (a'?+1/2>> <H({Ali})(al1—2v ap, —1y---,a1,-1)) = 0,
=1

and hence

(H({Ali})(all_z,all_l, cee ,aln_1)> = 0, Alz = l,‘ - ll.

(4.7)

This is a set of equations for the multipliers a; alone,
each of which is local in level indices. This means that
the equation for a set of levels (l4,...,l,) in the vari-
ables ai, _3,...,a;,—1 is identical to the equation for lev-
els (I1+1,...,l,+1) in the variables a;, 4;—32,..., a1, y1—1.
From this “translational invariance” it immediately fol-
lows that the distribution of each a; must be the same
since the set of equations (4.7) completely determines
this distribution.

At this point it should be noted that even if the q;
are uncorrelated, the correlation in the energies e; is long
ranged and in fact does not decay at all. Namely,

(erer) — (ex)(er) _ (€}) — (ex)”
(e1){er) (e1)?

even for [ — oco. Hence only in a variables the local or
scaling structure of solutions becomes apparent.

But we now hasten to add that the a variables are
in fact correlated, as to be expected from the structure
of the fundamental equation, which couples neighboring
levels. Still the above very simple analysis essentially
goes through, as correlations between a variables decay
exponentially with the level separation between them.
Accordingly, we will generalize from the case of uncorre-
lated a variables to the case of multivariate distributions
which factor for widely separated levels.

More formally, we will show that

#1

P(ail+,-,...,a1~p+,-):P(ail,...,aip) (48)

(translational invariance) and

Pai,,. 1 Qiyy @iy e Gi,)

:P(ail,...,a,-q)P(a,-qH,..

"aip),
i1 <o Sdp, Ggp1 — i 2 ng (4.9)

(correlation decay) for some decorrelation distance ng.
We will proceed in two steps. First we show that a dis-
tributions with (4.8) and (4.9) imply multifractal scaling
(4.1) and (4.2). Then we show that distributions with
(4.8) and (4.9) actually solve the fundamental equation.
This means we have shown that solutions of our model

f
are multifractals. Moreover, the validity of (4.8) and
(4.9) will be checked explicitly in perturbation theory
in Sec. V.

As usual, distributions that factor are best treated in
a cumulant expansion. To this end we define stochastic
variables b; via

ajze)‘bf , j=1,...,N. (4.10)

We now expand moments in A and remember that to
zeroth order in A we have a; = 1, consistent with (3.14).

To simplify notation we disregard fluctuations in e;
and set e; = 1, giving, with (4.5),

1-1
(e;n/z) = <exp [/\% ;b,] > .

Writing this as

() =exp |3 %}cp(m)} , (4.11)
we obtain
or m 2
Cp(m) = 535 1n {<exp [,\? > bi] > } (4.12)
=1 A=0

Repeated application of the chain rule shows that C,(m)
can be written as

-1

cp(m):(%)p S Clbiys--- by,

i1yeip=1

(4.13)

where C(b;,,...,b;,) is the pth order cumulant of
bil, ey bip . By deﬁnition,

3Pln¢()\i ,..‘,/\1' )
; ce. ; = (—2)P 1 L2 1
Olbiysosby) = (P =g Po e, (4.14)
where ¢(Xi,,...,A;,) is the generating functional
P
P Niyy - Ni,) = <exp iy Aijby; > . (4.15)
j=1

To analyze (4.13) we use the fact that cumulants
C(biyy-- -, b,-p) vanish if the variables b;,,...,b;, fall into
two classes b;,,...,b;, and b;,,...,b;, for which the
generating functional factorizes. This follows directly
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from the definition (4.14). But (4.9) implies that this
must always be the case for i, —i; > png and 3; <
ia < -+ < i,. Hence all terms in the sum (4.13)
vanish except in a band of width png around the di-
agonal i, i = -+ = ip. Also, (4.8) implies that
C(biy4iy- -« bi,4i) = C(bi;,...,b;,); hence in the limit
Il = oo each of the Cp(m) is proportional to . This
means we can write Cp(m) =

Cp(m)l, where Cp(m) is a
constant. Inserting this into (4.11) gives
}l

(€)= {exp L}: )

But this is precisely the multifractal scaling law (4.2).
The value of the correction exponent can be read off to

be

8¢(m) = — (4.16)

This completes the first step of our program to demon-
strate multifractality. Now we show that distributions
with translational invariance and finite correlation dis-

L-3

=1 =1

oo 11—'3
=H{;texp{z (n+1/2)? Z C(b;,, -
p=1 T1,eenip=1

Here we have broken up the expression into terms with
cumulants including only b variables and those with the
new variables h¥:

C—Y;;t (b‘il . 1q ) h:t)
94 oP—1  _
— (—;\P TS VO
(=) OAi, ... 0N, ONP—1 I ¢= iy digy A)
(4.20)
with the generating functional
1,3 B
Hy exp Z Z(n+ 1/2)4 Z C:(b,-l,...,
p=1 ' q=0 i1,..ig=l1i—qna—1
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tance solve the fundamental equation.
To this end we decompose H({A“'})(ah_z,ah_l, ceny
aj,—1) into its positive and negative parts:
H({A"'})(azl_g,ah-l,... =HY—-H"-

1a'l,,—1)

with H,H™ > 0.

The indices on H* have been dropped for notational con-
venience. Then positive and negative parts can be rep-
resented in the form
H* = HX " (4.17)
where h* are again stochastic variables and HF are con-
stants. Repeating the above procedure, the fundamental
equation (4.6) can be expressed through a variables:

(i) )= (i) ) oo

Both sides of this equation are now expanded in cumu-
lants:

<(11:13a?+1/2) Hi> = HF <exp [A(n+ 1/2) 2_: b; + Ah{l >

1,—3

q=0 T1,.-0y8g=1

by, h*)] } (4.19)
[

J,i(/\iu s i A) = <exp[ (Z A b + ,\hi)] >
j=1

(4.21)

The cumulants C(b;,,...,b;,) appear on both sides of
(4.18) and therefore drop out Since h* only depends
on aj, 2 through a;, 1, C_':(b,l,...,b,q,h ) will vanish
if all indices 4;,...,%q are smaller than /; —n4—1 because
of finite correlation length (4.9). But since none of the
indices ¢; through i, should be separated by more than
the decorrelation distance ng, C’i (biyy---sbigs h*) in fact
vanishes if any of the 2, ..., are smaller than ly—gqng—
1. This means for large I; the fundamental equation can
be written as

bi,, h")
;-3
Z(n+1/2)q > Cy (biy,---ybig, h7) 3. (4.22)
. q=0 t1,..0ig=l1 —qna—1
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In this form the fundamental equation is again both
local in the a variables a; = e*® and does not depend
explicitly on level numbers I;, but only on differences l; —
l; between level numbers. Hence solutions automatically
will be translationally invariant and correlations between
distant levels will decay. This completes the proof of
multifractality for the present class of stochastic models.

We close this section by also showing that

(@) =1,

consistent with the Kolmogorov structure equation [4].
Indeed, for the special case of only one level | we have

(4.23)

HO(q;_3,a;_1)

= ¥ {p(2" ) - a5 (2 ar) |,

so that the fundamental equation for a single level be-
comes

1-3
< (H a?/z) 1/}’(2_2/3<11—2)>
1-2
= <(H a?/z) 1ﬁ(2-2/‘"’611—1)> . (4.24)

Bringing both sides of this equation into a form analo-
gous to (4.19), one immediately finds that the right hand
side contains one additional factor of 27%(3)  implying
27%B) = 1 or 6¢(3) = 0. Since 8¢(3) = ¢(3) — 1 this
implies (4.23).

V. FIRST ORDER SOLUTION

In this section we compute the exponent spectrum of
turbulent energies without adjustable parameters to low-
est nontrivial order in A\. We proceed in two steps.

First, we show that to lowest order the spectrum of
exponent corrections §¢(m) = {(m) —m/3 is a quadratic
polynomial in m. Using 6¢(3) = 0 the whole spectrum
can be written in terms of a single parameter u. Here
u is the famous dissipation exponent introduced by Kol-
mogorov [1].

Second, we compute p for our model by solving the
perturbative equations (3.18) for the correlation matrices
of energies. This is fairly straightforward because the
structure of correlations is known from the results of the
preceding section.

We derive the form of §{(m) by expanding in powers
of A:

5¢(m) = }oi,\zigjﬁ"‘). (5.1)
ji=1

Since the fundamental equation for turbulent fluctuations
z;, (3.15), is invariant under a change of sign in A, (5.1)
contains only even powers.

Using the scaling structure of e; derived in Sec. IV, we
find

(&%) =1 - 1Ix2(In2)¢{™ + 0(2Y). (5.2)

Here and for the rest of this section we disregard fluctu-
ations in e; and set e; = 1. On the other hand, e; can
be written as ¢; = 1 + Az;; hence

m/2 m/2
m/2 1/,
=3 (") xa.
1=0
But the lowest order expansion of the moments (z;) and
() is (z1) = Ma))™ + O(X) and (2F) = (zmz))® +
O(A?%). Hence, comparing coefficients of order A2 we have

—I(In2)¢{™ = (m/2)(z) ) + [m(m — 2)/8)(ziz1)).

This equation says that (z;)(1) and (z;z;)(®) must be
linear functions of ! for large [ :

()M = o4l

(z121)(© = o3l (5.3)
and hence
m m m 1
§ ):"‘m |:0'1+(X'~5> 0'2], (5.4)

Moreover, using 6¢{(3) = 0, and hence ({3) = 0, one of
the linear coefficients 01,02 can be eliminated:

1

01:—20'2. (55)

This means we can write 6¢(m) to lowest order as

m
5¢(m) = e (m — 3), (5.6)
where the dissipation exponent p can be expressed
through model parameters:

9 0o 2
= 4me (5.7)
Here we have set A = 1. Equation (5.6) is the famous
lognormal approximation to the exponent spectrum [1].
It comes out of the lowest order of our perturbation the-
ory. Of course, this is only a satisfactory approximation
for small m. To higher orders in A, higher powers in m
will appear.

It now remains to calculate the exponent p. To this
end one only needs to analyze the matrix (z;, x;,). It
is determined by a special case (k = 0,n = 2) of the
perturbative system (3.18):

Al (zixj,) O + A (zizj, )0 = 2B, 5, (5.8)
with
i_ 0
A = g‘ahjl{e,zq,
Bj, iz = Dj g, l{e=1}- (5.9)

All indices run from 1 to N and summation over like
indices is assumed. In Appendix A we show that the
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following sum rules can be derived from the homogeneity

properties of h; and Dj, ;, and from energy conservation:

N .
Y 4i=o0 (5.10)
=1
and
N
S 27%3B; =o. (5.11)
=1

Since all couplings are local, A;- and B;; must be tridi-

agonal, and in view of the above constraints

AL = A0 5y — m2bina},  (5.12)
where 7; and 7y, are related by
1-—2"13y, — 2134, = 0. (5.13)
The matrix B;; is symmetric; hence
B;; = B2t+)/3 {5:" - m(&'j—l + 51--11)} :
(5.14)

The dependence of (z;, z;,}(®) on i; and i, is completely
determined by translational invariance of the moments
(b, bk, ), which was demonstrated in Sec. IV. One just
has to remember that e, = 1 + Az; and a; = 1 4+ Ab; +

O(M?); cf. (4.10). Hence z; = 3/_} b; + O(}) and

i1—1,i3—1

S (bkbr)@,

ky1,k2=1

(@i, 2,) @ = (5.15)

where (b, by, )(?) is the zeroth order term in an expansion
in A. Since (bg,bx,)®) depends only on k = |k; — k2| we
introduce

B = (1 _ 5%) (b bay) @ (5.16)
Then for asymptotic 7; and i, a straightforward calcula-
tion shows that

oo
(i, 2:,) @ = Zl_)k[min(il —1,5—1—1)
k=0
+ min(é; —7— 1,4 — 1)]. (5.17)
Here we assumed that b, — 0 for £k — o0, so that the
sum converges.
First, we notice that this expression explicitly solves
the lowest order fundamental equation (5.8). Namely,
the left hand side can be written as

)
A 2(jl +3)/3 Z C|j1 —Jjz2 |IEI'
=0

(5.18)

Here and henceforth we let the total number of levels go
to infinity. The exact form of the matrix C will be given

in Appendix B. Comparing with the right hand side of
(5.8) and using the special form of the matrix B, we find

_ B, ., 1
be = —22 {(C ko — 21/3

_W(C—l)“}‘ (5.19)

Second, it is apparent from (5.17) that the total am-
plitude o3 of (:1:,:1:1)(0) is given by 05 = 23 27, br . In
Appendix B it will be shown that b; decays exponentially
with the level distance k, so this sum converges. Using
(5.7) we finally find for the dissipation exponent u:

re®(a) {1 — ST TS /239;(5_)1 s } . (5.20)

The only parameters appearing in these expressions are
the ratios A = y/71/v2 and ' = B/A. Both can be
computed from model parameters ;/1(2_2/3), P (272/3),
and x2(2%/3):

9
2ln2

n=—

A= 21/3\/1 — 3 x 2-1/3¢) /4,

_2(1+2%/3)y?

I'= 21/3,¢,: _ 31/,/2'

(5.21)

The functions c¢(®)(A) and g,(A) are calculated in Ap-
pendix B. Equations (5.6) and (5.20) constitute the cen-
tral result of this section: They allow the analytical cal-
culation of the exponent spectrum, starting from the dy-
namical equations.

The stability constraints ¥ > 0 and ¢’ < 0 [cf. (2.4)]
imply that I’ < 0 and A > 2!/3. Analysis of c¢(®)(A) and
g1(A) shows that this implies p > 0. Hence the dissipa-
tion exponent y is always nonzero: In the present system
with local scale invariance and energy conservation mul-
tifractal exponent corrections §{(m) # 0 are inevitable.
Here we have to exclude the trivial case x* = 0, which
would mean that there are no fluctuations, which is ab-
surd for a turbulent flow.

Moreover, since by behaves like (21/3/A)%* (see Ap-
pendix B), b; will decay for large level separations. Ap-
plying this to correlations between a variables, we find

(a1ax) — (a1){(ax)

(a1){ax)

= A2B_; + O(X%) 5 0

for £ — oo. Hence a variables decorrelate for large level
separations as opposed to the original energy variables;
cf. our discussion in Sec. IV.

The physical reason for the decorrelation of a variables
lies in the separation of time scales between distant levels.
The large scale motion of low levels acts on the higher lev-
els like a slowly varying energy input €(t). As seen from
the scaling law (4.1) and (4.2), this €(t) enters the statis-
tics of two neighboring levels e; and e;; in exactly the
same way, and therefore drops out of ratios a; = ej41/e;.
Hence the statistics of a; is independent of large scale mo-
tion, whereas e; depends very strongly on it. This is the
essence of Landau’s argument about the nonuniversality
of small scale statistics.
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VI. DISCUSSION

We have seen that the presence of fluctuations auto-
matically leads to intermittency and exponent correc-
tions 8¢(m) # 0. Our assumptions about the dynamics of
the model were as innocuous as possible: Interactions are
local, and the noise term has no memory and a Gaussian
distribution. Hence the buildup of large, non-Gaussian
fluctuations is a necessary consequence of local cascad-
ing and scale invariance. In a sense, classical theory is
disqualified by precisely the assumptions it is built upon.

The conceptual difference of our work to the usual mul-
tiplicative models of turbulence [3,18,19] should be noted:
Starting from the microscopic dynamics (2.1) we show
that solutions have multiplicative form. This is what is
assumed by tenet in the usual models. The distribution
of multipliers, which are the a variables in our work, just
appear as fit parameters, whereas we compute them from
dynamical quantities. Besides offering insight into the
dynamical origins of intermittency growth, this allows
the conclusion, independent of model parameters, that
intermittency must always be present as soon as there
are fluctuations. In multiplicative models 6{(m) = 0 for
all m always appears as a special case and is completely
consistent with the presence of fluctuations.

As mentioned earlier, this inconsistency was already
noticed by Landau and prompted Kolmogorov to put for-
ward a refined theory [1]. In his paper he formulates his
assumptions in terms of three “similarity hypotheses” for
turbulent flow. It is extremely revealing to discuss our
results in terms of three hypotheses for turbulent flow
which are just slight modifications of the ones originally
proposed by Kolmogorov. They correspond precisely to
the main statements of the present paper, which we are
now able to demonstrate in the framework of our model.

Consider a set of points @(®) in a turbulent flow,
u(=,t), whose distances to a reference point @ scale as

|e® — |~ 27L, (6.1)
and k > 1 is assumed. Now consider the distribution of
the values of

[u(z*D) - u(2)|
[u(@®) — u(z)|

This is the analog of our variable a;. Two points should
be noted: Kolmogorov’s original variables are somewhat
different in that he looks at ratios of velocity variables at
a level k and a fixed reference level 0. With this defini-
tion, there are correlations remaining in the lower lying
levels, so we do not expect those variables to decorrelate.
Second, in our model we use energies to define a;, instead
of velocity differences. We think energies are preferable
since as conserved quantities they are “slow” variables of
the system and have less local fluctuations. In particular,
they do not have the problem of zeros in the denominator
of (6.2).

We now formulate our hypotheses.

First similarity hypothesis. The distribution of val-
ues of (6.2) only depends on the Reynolds number.
In the context of our model, the Reynolds number is

(6.2)

Re = 2%N/3 where N is the total number of levels and
hence 7 = 2~V L a cutoff scale. This is precisely what
we demonstrated in Sec. IV: The distribution of large
scale energies drops out of the fundamental equation; cf.
(4.22).

Second similarity hypothesis. For large Re > 1 the
distribution given in the first hypothesis does not depend
on Re. (This is also supposed to mean that it does not
depend on level number k.) The independence of Re,
or of N for N — oo in the case of our model, is again
a consequence of the local structure of the fundamental
equation (4.22). As a corollary, the distribution of a is
independent of k, which is what we called “translational
invariance”; cf. (4.8).

Third similarity hypothesis. If k; and k; are widely
separated, k; < k3, the corresponding distributions of
(6.2) are statistically independent. This is what we called
“finite correlation length”; cf. (4.9). In Sec. V we com-
puted the correlation between ax, and ai, and showed
that ({ax,ak,) — (ax,){(ax,))/((ak,)(ar,)) indeed decays
exponentially with |k; — k.

In the same paper [1], Kolmogorov also suggests
that the correction exponents §¢((m) of the mth order
structure functions have the parabolic form §{(m) =
—pm(m—3)/18. This is precisely our equation (5.6), ob-
tained from lowest order perturbation theory. Although
it is clear from our model that higher order corrections
in m must also appear in §¢{(m), it is nevertheless a very
good approximation for most practical purposes.

But still, since numerical values of exponents have only
been computed to lowest order in perturbation theory, it
is natural to ask how well they compare with simulations
of the full nonlinear equations. In I, simulations of our
model have already been performed for a specific choice
of scaling functions (V') and x(V). We show that for
finite energy input € > 0 a turbulent state is reached.
It is well described by multifractal scaling of the form
(4.1) and numerical values of the exponent corrections
0¢(m) are determined. The model parameters reported
in I give ¢(2"2/3) = 5x107%, ¢'(27%/3) = —1.08 x
1073, and x?(272/3) = 2.02 x 10~°. With our expression
(5.20) the dissipation exponent u can easily be computed
to be p = 0.0163. Using the parabolic form of §¢(m),
we find 6((18) = —0.245, while the value obtained from

simulation in I was 6¢(18) = —0.25 £+ 0.002. Given a
moment of such high order the agreement is extremely
good.

This strongly suggests that our perturbation theory
correctly approximates intermittent fluctuations of the
energy transfer. We reiterate that this is because the
zeroth order problem we expand about is already a “tur-
bulent” state with finite energy flux. This sets it aside
from the usual perturbation theories (see, for example,
[21,22]), which expand about a diffusive problem with-
out inertial range. It seems highly unlikely that pertur-
bation theory, even if taken to arbitrarily high order, can
“cross over” between two such extremely different states
of motion.

However, even for the present perturbation theory the
quality of agreement with numerical simulation will de-
pend on the noise level chosen in the model. It seems



50 MULTIFRACTAL SCALING FROM NONLINEAR TURBULENCE... 295

desirable to choose the noise level so as to resemble the
size of fluctuations in the large scale motion of real tur-
bulence and then compare the values of the exponent
corrections. Unfortunately, this is difficult to do in the
case of the linear chain discussed in this paper. More
likely, real turbulence corresponds to a situation where
interactions are allowed to “branch out” and one eddy
can decay into several smaller eddies. This different type
of interaction leads to much larger exponent corrections
at the same noise level, as shown in I.

To account for this effect, we recently introduced the
concept of “eddy competition” [12]. In this physical
picture, an eddy decays into eight smaller eddies. The
subeddies compete for energy, so one can grow very
strongly at the expense of its siblings. In a simple chain,
only moderate growth is possible, since it is at the ex-
pense of only a single eddy “mother.” This is seen explic-
itly in the expression (5.20). The two terms in the curly
brackets almost cancel, where the second comes from the
depletion of energy in the mother eddy. It would be in-
teresting to perform the same calculation in the branched
system, to see eddy competition at work.

Another interesting point would be to study temporal
correlations within our model. Besides the predictions of
classical scaling theories, nothing is known about those
quantities. In particular, considering the scale depen-
dence of correlations times, it seems natural to ask if
they conform with classical predictions or if they carry
intermittency corrections themselves.

Finally, we would eventually like to introduce a “real”
viscosity v into our model. It would correspond to an
additional dissipative term —v22! E; in the energy balance
(2.1) and therefore results in a natural realization of a
cutoff scale 7. All possible questions of dissipation range
statistics could then be treated consistently.

Many of the conclusions drawn in the present paper
are somewhat parallel to Kraichnan’s [23]. He concludes
that classical theory can only be consistent if there is
significant spatial mixing, which counteracts the buildup
of fluctuations. His cascade model is not formulated in
terms of microscopic variables, but is a phenomenologi-
cal equation of motion for the probability distributions.
Another way to get around the conclusions drawn here is
to allow interactions which are not local in k space, but
which contain significant direct coupling between small
and large scales.

Benzi et al. [17] consider the chaotic dynamics of a
cascade where every step is represented by a complex ve-
locity amplitude ;. The nonlinear coupling is quadratic
like the Navier-Stokes case, so naive perturbation the-
ory would lead to classical scaling. Decomposing u; into
the modulus p; (which corresponds to /e; in the present

model) and phases ©;, they end up with equations re- .

markably similar to ours. Solutions are obtained numer-
ically.

In conclusion, multifractals are the natural framework
in which to describe a scale invariant, local cascade.
There are methods at hand to calculate their scaling
properties from microscopic dynamics. To put them to
use in turbulence, details of the flow field have to be con-
sidered.
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APPENDIX A: SUM RULES

Here we derive the sum rules (5.10) and (5.11) for the
matrices A} and B;;. We will do that in a slightly more
general framework, obtaining sum rules which relate dif-
ferent orders of perturbation theory. The essential in-
gredients are the homogeneity properties (4.3) of k; and
Dy,1,, combined with the constraints of energy conserva-
tion. These sum rules ensure that perturbation theory
conforms with the scaling (4.1) at every order.

Let us introduce expansion coefficients through

1 9 9 - A
4l'llu~~-;l-‘m —_ P — _
t Vm! a-’l?m 6a:u.,. h'l{el—l} ( 1)
and
1 9 a =
M1y Bm ..
Bij — o e ?D;J“ex:l} (A2)

Note that this is just an alternative notation of (3.16) and
(3.17), which is more convenient for the present purposes.
Differentiating Eqs. (4.3) with respect to ¢ and using the
chain rule we find

N

ZAI"I,W’“"”“ - 3/2 - mAI.hw-,I‘m
= * m+1 ’
N
y»raFEmy 5/2 - m »rIaAm
D Bi et = S Bl (43)
p=1

This connects the coefficients appearing at a given or-
der of perturbation theory with the previous order. Since
7L,~|{e,=1} = 0, which expresses conservation of energy at
mean field level, and using (A3) recursively down to ze-
roth order it follows that

N
S s g,

B1sespm =1

(A4)

It will immediately be noticed that (5.10) is just a special
case of (A4) for m = 1.

To obtain (5.11), we use energy conservation in the
fluctuating part of the Langevin equation (3.1). Namely,
by inspection of g, (3.3), it follows that

N
Zglk(El—l, E,E1)=0

=1

for all values of the energies. In terms of the normalized
function D;; this means that
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N

Z 2—21‘/3Dij -

=1

(A5)

and a corresponding expression exists for the sum over
J. The relation (A5) can be expressed through a class of
sum rules for the expansion coefficients Bﬁ‘j"""“ ™

N
E 2-—21'/331{;1,---,#"‘ =0

i=1

(A6)

for all py,..., um. Equation (5.11) is just the zeroth or-
der case m = 0 of (A6).

APPENDIX B: CALCULATION OF EXPONENTS

In this appendix we supply the explicit calculation of
the dissipation exponent . To this end we have to eval-
uate the amplitude

= zil‘)k
=0

where by is defined by (5.16). Using (5.17) as an ansatz
for (z;,x:,)(®), the left hand side of (5.8) can be written
as

N
A2+ b

=0

where the matrix C,,; is

(2n/3 N 2_,,/3)[2—1/3,),1 _ 21/372], I>n+1
c - 2‘"./3[2_1/3’71(1 + (SnO)]
n +277/3[22/%y; — 213,(1 — bp0)], L=
2x 2732713y — 21 3y,], I<n-1

For the moment we keep the total number of levels NV
finite.
In view of (5.19) we need to calculate the quantities

N
™ = (14 dom) > (Cim (B1)
=0
in the limit of large N. Then o, is given by
B o 2¢()

To find the inverse of C, we write C as

C=F+uQ®u

with E being a triangular matrix

0, I>n+1
Enl= dn’ l=n (BS)
€n, 1<n-1,

dn - (21:/321/3,12 + 2—n/32—1/371)(1 + 5710)7
= (273 —277/3) (21 3y, — 2713y,

U, = 211/3 + 2—n/3,

v =273y, — 213y,

According to the Sherman-Morrison formula [20] we
have

(E~'u)® (VE™Y)
1+«

Cl=E'-

, a=vE 'u.

This formula greatly simplifies for the sum

1+ dom _
c(m 2 7T %m E(‘E 1)lm

1+a + a (B4)

Since F is triangular, it is easy to find E~1

ﬁ g; | ¢,
j=1

, giving

om) =

2-1/3A (2—-1/3A)—1
2-13A 4 (2-1/3A)-1

N
e = {dN I+
ot
x |1+ 2(21/3 +279/3) H 9k

—1
} b
Jj=1

X3 /A + (23/8)7! A [ (gs
2(k—1)/3A+(2(k—1)/3A)—1’ - ;; (B5)

gk =

In special cases (B5) can be evaluated explicitly, giving,
for example, ¢(®) = 1/2 for A = 22/3) N - co. Setting
I' = B/A and using c!!) = g;¢(%, one finds (5.20). It will
be noticed that for N — oo, ¢(0) depends on the ratio A
alone. For numerical values of ¢c(%) at general A the sum
in (B5) must be evaluated numerically.

Finally, we want to find the behavior of by for large k.
Since by essentially behaves like (C~!),, at constant m,
in view of (B1) we just have to take differences between
two c(™)’s at different N. Analysis of the N dependence
of c(™) [cf. (B5)] then reveals that by is proportional to
(21 /3 / A)zk
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