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Crossover behavior in turbulent velocity fluctuations
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We develop a simple model of the evolution of turbulence velocity differences from inertial scales to
dissipative scales by taking into account the effect of the viscosity. Our model suggests that the fluctuations of
the viscous scales in turbulence result in a nontrivial crossover region in the velocity structure functions. We
also discuss the importance of recognizing this crossover region when interpreting the experimental results.
Assuming a finite and fixed spatial resolution, the model predicts a transition in the flatness at finite Reynolds
number. We relate this observation with the reported transition by Tabetiad} [Phys. Rev. E53, 1613
(1996], which is analyzed in detail and compared with our mof®L063-651X98)12204-3

PACS numbd(s): 47.27—i, 47.80+v

[. INTRODUCTION of the flatness as a function of Reynolds numktiRe) de-
pends on the particular scale in the crossover range. We

In this paper we use the old idea of modeling turbulenceshow that at a fixed scale smaller thanthe flatness in-
velocity difference fluctuations by a multiplicative process,creases with Re as expected, but at a fixed scale in the cross-
which is meant to capture the basic picture of energy cascadaver range the flatness decreases with Re. We emphasize the
in turbulence. Recent studies along this line include Refsimportant difference between the scalg and 10y, which is
[1-3]. However, the existing models only deal with either often indistinguishable in order of magnitude arguments such
the inertial range or the purely dissipative range statisticsas those made in Ref7].
Our model fills the gap by giving a continuous evolution of  In the next section we briefly describe the multifractal
velocity probability distribution function$PDF9 from large  model of turbulence, and in Sec. Il we generalize this idea
to small scales. to include viscous effects. The resulting model for PDFs is

The main motivation for studying the crossover behaviorthe central starting point of the paper. In Sec. IV we deter-
from the inertial range to the fully dissipative range is thatmine the adjustable parameters of the model using the ex-
we believe it is relevant to the flatness measurements of theerimental data by Tabeling’s group. In Sec. V we discuss
recent experiments in shear-flow driven helium turbulencéhe evolution of the PDFs as a function of the separation and
inside a closed geometf,5]. An important difference be- compute the flatness at a fixed resolution. In the final discus-
tween the closed-geometry experiments and the open-flowion in Sec. VI we review points of agreement and the dis-
experiments is that in the former case the Reynolds numbeirepancies between the experimental data and the multifrac-
can only be increased by decreasing the Kolmogorov scaléal model and relate our observation to the recently reported
This imposes severe constraints on the spatial resolution netransition in the flatness.
essary to measure velocity gradients in the closed-geometry
experiments. Given the current experimental results, study-
ing the scaling behavior in the crossover range quantitatively
is worthwhile. To this end we carry out a systematic study of
a multifractal model that predicts the evolution of the veloc-  For the completeness of the paper, we briefly review the
ity difference PDFs from large scale to the dissipative scal§asic idea of multiplicative processes in turbulence. Experi-
and apply this model to the aforementioned experiment. Almental studies have shown that the turbulence velocity field

though the multifractal model is not a fundamental theory ofin the inertial range can be described reasonably by power-
turbulencd 6], we hope some of the observed gross featuregayw scaling

provide us insight into the understanding of the transition in
fr:itr?]ng 750?2]. in the experiment around Taylor-Reynolds Dq(r)=Cq(r/L)q’3+55q. o
Within our model, we find that the predicted flatness rap-
idly varies over a spatial scale betweew 2nd 2Q;. This  This power-law range is typically short, so the exponents are
means that measurements of the flatness are extremely sdretter defined by the method of extended self-similarity
sitive to the experimental resolution, which lies in this range(ESS [8]. Information on two-point correlations of the ve-
of scales. More interestingly, the ordering of the magnituddocity field is contained in the spectrum of exponefid9—
12]. The scaling(1) can also be naively interpreted as a
consequence of an underlying multiplicative process, by
*Present address: Courant Institute of Mathematical Sciencesyhich the energy is cascaded progressively from eddies of
New York University, 251 Mercer Street, New York, NY 10012. sizer into eddies of size/\. The ratio of the velocities in
Electronic address: jwang@cims.nyu.edu successive steps is a stochastic variablewhose statistics

Il. BASIC IDEA OF MULTIPLICATIVE PROCESSES
IN TURBULENCE
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are determined by its probability distributign(s;). The in- TABLE . Inertial range scaling exponentg, of the velocity
dexi denotes theth step in the cascade from a given |argefield. Compared are the experimental measurements and our fit
scaleL tor: [Egs.(5) and(6)].
n q Expt. Model
Ur= “Liﬂl Si- @) 2 0.70 0.70
3 1.00 1.00
Assuming that thes; are identically distributed and uncorre- 4 1.26 1.26
lated, we then have for the velocity moments 5 1.50 1.50
6 1.71 1.71
q N/ a r 7 1.90 1.89
(uf)y=(sHul), n=—log 8 2.08 2.05
9 2.19 2.19
and by comparison with Eq1), 10 2.30 2.31
Lq=35 + 8Lq=—10g,(s). 3 RUTTYRYRNR VN
Pw=2 | I 5] Polgm=| @
| | o lells) 5] Ol g
Since;=1 by the Kolmogorov structure equation, we have
the constraint An expression equivalent to E(¥), but using the randorg
3 model, was already given ifil]. Sincer is a continuous
(%) =1\. (4 variable, it is useful to generalize E(f) to continuous val-

) ) _ ) ~ues ofj. This can be done using the Euler-McLaurin sum
In the following we will be making the conventional choice formula, which gives to lowest order

A=2. In the context of our phenomenological description,
this is of a little consequence. Using the known exponent TG u
spectrum{,, information on the distributiopg(s) can be Pj(u)=f (K)<S—l) (5—2) (sj"s )dx
K 1 2
I (u
S
S2

extracted through its moments. Technically it is convenient
to approximatepg by a bimodal distribution
Recently, it was proposed based on the infinitely divisibleThis proved to be an adequate approximation of &y for
processes that the multiplier distribution is log-PoisEb8].  integer values of and smoothly interpolates in between. In
One might construct the multiplier distribution by studying the next section we follow the above basic idea to model the
the ratio of the locally averaged energy dissipation similar tanertial range scaling and in addition we introduce a fluctu-
the method used in Refl14]; however, we believe that the ating cutoff to model the viscous effects.
detailed shape of multiplier distribution does not alter the
key qualitative results we will obtain in the crossover range.
Therefore, to avoid the unnecessary complication, we use
Eq. (5) as a model distribution. Imposing E() as a con-
straint, the two remaining parameters can be used to repro- Our model of PDFs of velocity differences includes three
duce the first ten moments to within experimental efdds. basic elements(i) the experimentally measured PDF of ve-
Here we base our fit on the experimental exponents byjocities at a large scalB, (ii) the multiplier distributionps,
Tabeling’s group[16], which were obtained by using the and(iii) the viscous cutoff mechanism. Once they are deter-

u
=+
$1

P2
7

Ps(S)=pd(s—s1)+(1—p)d(s—s,). (5) 2

Ill. MODEL FOR THE PROBABILITY DISTRIBUTIONS
OF VELOCITY DIFFERENCES

method of extended self-similarity. We find mined, we can compute the PDF of velocities for any given
scale. Among the three elemeni, is experimentally given
p=0.688, s;=0.699, s,=0.947. (6)  andpg(s) is assumed to be of the form of E), with three

parameters given by E¢6). We then follow an idea that was
The predicted scaling exponents using the above parametgpsoposed in Refi19] and later worked out in the context of
are compared with the experiments in Table I. The exponentgelocity gradients by Nelkif20] and introduce a viscous
agree with the established values obtained in various turbweutoff scale, at which the local Reynolds number is equal

lence experimentgl7,1§ to within the error. to a fixed value. The physical idea of this cutoff is that when-

Given this simple model of a multiplier distribution, the ever thelocal Reynolds number of an eddy reaches a critical

PDF P;(u) of velocity differences on level value Rg,, it is smoothed out by viscosity and the cascade
stops. Since one expects the structure of small-scale velocity

j=—logy(r/L) fluctuations to be universal, the details of the cutoff mecha-

nism will not depend on the specific flows and thus;Re
can be readily calculated: It is the distributi®g(u) on the  should be universal. Furthermore, because the local Rey-
outer scale, convoluted withg j times, giving nolds number{u,|r/v is a fluctuating quantity, so is.
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These fluctuations further modify the scaling in the dissiparameterA [cf. Eq. (Al)], which is the number of levels over
tion range in addition to the inertial range fluctuations. Wewhich the cascade is gradually cut off. Thus the description
remark that in previous work on the scalings of the high-of the viscous range introduces two parameters; Re&hich
order velocity derivative§21] it was found that the strength measures the relative importance of the viscous termAgnd

of the largest singularity increases with the order of derivawhich measures the effectiveness of the viscous smoothing.
tives. The viscous cutoff fluctuations studied assumed in thign a small-scale regime of universal isotropic fluctuations,
paper can be viewed as a special example of the multifractalte expect both to be independent of the large-scale flow.

behavior of the velocity gradients. Thus once they are adjusted, they can be applied to all other
More specifically, we can construct the following en- flows at different Reynolds numbers.
semble for velocity differencesi,. For convenience, all To compute the probability distributioR, of u,, we ex-

guantities are assumed to be nondimensionalized by the larggess the total probability of finding, betweenu,(j.) and
scaleL and the root-mean-squared velocity fluctuations oru,(j.+ 6) through the densitieB;, namely,
that scale

Jur(kmp( )d FP (u)d fw P . sud
—r/12\11/2 u)du= i (wdu— i u)du,
Urms_[<uL>] ' ur(jc) ' Yje e Uj+o et

In computing the PDFs we treat the positive and negative (10)

velocities mdependt_antly. Here we only look at positive Va"whereuj is the velocity on levej., which contributed to
ues ofu, ; the negative values are treated separately, replac- ¢

=y, 2" e izati iti
ing u, by its modulus. Setting=2"", each ensemble mem- Ur. Henceu; =u,2""le. The normalization conditiorf10)

ber is then constructed by the following procedure. simply expresses the fact that contributions from levels be-
(i) Choose a realization of the large-scale velocity fieldtweenjc andj.+ & correspond to the probability of cascad-
Up=Uy . ing down at least to levedl., minus the probability of even

(i) Multiply u, by random multiplierss to obtain a real- Making it to levelj.+ é. Letting 6 go to zero, we obtain
ization on steg until either(a) level n is reached ofb) the

conditionu; X 27!=R is no longer satisfied. The constdRt Ie I j“’ P

j =% _Cp (u)—| = _
is simply R=Re,, /Re. This cutoff level in a particular real- Pr(up) aur[ dj ¢ Picluic) u 9] j=ilwdur,
ization will be denoted by . ‘ (11)

(iii) In case(a) u,=u, is the desired value df, . If the
cascade has stopped due to the action of viscosity on lev@herej. on the right-hand side of E¢11) can be expressed
jc<n, the velocity difference over the distance’2 is uj_. throughu, . If r tends to zero, Eq11) gives the distribution
Therefore, on scale we haveu,=u; x2/c™". of velocity gradients, for which the distribution was also de-
¢ rived in [1]. However, the approximation dfL] just corre-
To derive probability distributions from this procedure, it is sponds to the first term in the curly brackets, while the sec-
more convenient to treat the level number as a continuousnd term was neglected. Note that H40) automatically
variable. Accordingly, we will assume that the velocity dis- ensures thaP, is normalized since
tributionsP; on levelj have been continued to all real values . .
Jrasweddin Bq(®). — f Pr(U)du:f Po(u)du,
To find an explicit expression for the probability distribu- 0 0
tion of u, , we need to find the relation betwegnandu, . If ) ] o o
Up is already smaller tham, j. is equal to zero and the Which means thaP, inherits its normalization from the top
correspondingy, is ugx 2~ ". Thusj.=0 foru,<Rx2" If  level distributionP,. Thus Eq.(11), together withP;(u) [cf.
the cascade reaches stepu, must have been larger than EQ: (8)] and jc(u;), gives an explicit formula foiP,(u,),
Rx 2" and thusj,=n for u,=Rx2". In between, the cas- Which we implemented numerically. This is the central result
cade is terminated by viscosity. This means that the cutofpf the paper, which will be explored in the sections below.
condition u; X2 Je=R must be satisfied and thug =R We note that the well-established Obukhov scaling relation
N u=2—((6) [17,13 is a direct consequence of the present
model with fluctuating cutoff22]. Moreover, it has been
u, noted[23] that a possible explanation of ESS would be that
0 Iogzﬁs—n higher moments have smaller effective cutoffs. This is con-
sistent with the assumption about the fluctuations in cutoff
. U, scales in our model by noting that high moments are domi-
je=q N logz m=n 9 nated by large events.

X 22lc™" To summarize, we have

otherwise. IV. COMPARISON WITH EXPERIMENT

1 Uy
\ 2( n+log, R
We apply this model to a set of experimental data mea-
Physically, we expect the relation betwejgrandu, to be  sured by Tabelinget al. [4,5,16. The experiment measures
smooth, so we will be using a smoothed version of &),  the longitudinal component of the turbulent velocity field
given in the Appendix, which is one to one betwggrand inside a closed cylinder filled with helium. The viscosity is
u, and has the property.(u,)—0 for u,—0 and j.(u,) varied by a technique similar to that used in the Rayleigh-
—n for u,—o. The smoothing introduces an additional pa- Bernard systenj24,25 to achieve a variation over three de-
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FIG. 1. PDF of the velocity difference at the outer schle FIG. 2. PDF of the velocity difference at the scal&l (still in

plotted on a log-linear scale for all experimental runs under considthe inertial ranggfor the same experimental runs as shown in Fig.
eration. The velocity differences are normalized by its variance, and.. Again, the velocity difference is normalized by its variance and
the PDF is normalized to unity. the PDF is normalized to unity.

cades in Reynolds number. The measurements of variof&ed scale will be shown later. We emphasize that the col-
scaling laws are described in the above series of papetapse of the PDFs holds for Taylor-Reynolds number,)Re
[4,5,16. The Reynolds number dependence of the flatness i&nging from 300 to 2000, which includes the flows both
reported to have a change in character at the Taylorbelow and above the reported transition at R&00. The
Reynolds number approximately equal to 700: The flatnesgollapse of the outer scale P (u) implies the collapse of
increases with the Reynolds number up to,R€00 and PDF in the inertial range at a fixed separation. To check this,
then it decreases with the Reynolds number before increagve calculate the experimental PDF at a separation scale of
ing again. However, the origin of this transition has beenl/4 and again we observe the collapse of the PDFs as shown
subjected to much debaf26,27,7. in Fig. 2.

Because our model offers a comparison for the PDF, or We recall that Tabelingt al. observed the collapse of the
equivalently for all structure functions, rather than just thePDF in the inertial range only for sufficiently large Reynolds
scaling exponents, we can do a careful study to compare tH&umberg5]. However, as we show here, the collapse works
model with the experiments and obtain a better understandequally well for small Reynolds number (Re700 and, cor-
ing of the viscous scaling where the transition is seen. Théespondingly, R& 10%) flows in the inertial range. We sus-
PDF at the beginning of the cascade can be determined egect the reason that the previous authors did not observe the
perimentally once we choose a sensible outer scale. Since tis@me collapse for small Reynolds number flows is because
experiments were carried out in a fixed geometry, we expedhey fixed a scale too small to be in the inertial range of the
that at a fixed outer scale, where the energy is fed in, thémall Reynolds number flows.

PDF of velocity differences is independent of the Reynolds Because the shape of the normalized outer scale PDF is
number. We confirm this by analyzing the experimental datagonstant at the energy-input scale, the corresponding velocity
By inspecting the scaling of the second-order structure funcscale is uniquely determined by its variaridg,s(L). It al-
tions, we choose the outer scale to be0.73 cm for all lows us to define a Reynolds number
flows. The scale is roughly 1/5 of the integral scale quoted in

Ref.[4]. The reason we chode to be somewhat smaller is U, mo(L)L
that belowL the scaling follows a power law and boundary —_—.
effects seem to be negligible. We then examine the PDFs of
the normalized velocity differences over the separati@nd

find that they collapse for all the flows as shown in Fig. 1.We remark that this definition is different from the one used
The velocities are normalized by their variaridg, <. In the  previously[4]:

same plot, a Gaussian distribution is shown as a dot-dashed

line for comparison. The PDF at the outer scale is already OR2

non-Gaussian because we have chdsen be smaller than Re= , (13

the integral scale of4], for the reasons given above. Thus v

some growth of intermittent fluctuations has already taken

place. Also the dynamics of the boundary layer may have awhere(} is the rotation frequency arfd is the radius of the
important effect because the experiment is in a closed geonapparatus. Equatiofl3) assumes that the velocity at the
etry. The small asymmetry of the PDF is consistent with theenergy-input scale is proportional @R. We tabulate the
Kolmogorov structure equation, which gives a nonvanishingatio of U, and QR for different Reynolds numbers in
skewness of the velocity. By the construction of the model,Table Il and find that they vary considerably. Many factors
the asymmetry will propagate down to smaller scales. Thean contribute to these differences. Apart from the system-
large-scale velocity variances, which differ because of differ-atic errors in the measurements, the shear velocity profile
ent driving, set the velocity scales at each cascade level. Thdepends on the Reynolds number. A better understanding of
ratio of the velocity variance and the rotational velocity at athe instabilities of the driving flow and the dependence of the

(12

14
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TABLE Il. Comparison of our definition(12) of the Reynolds 0.5 T T T T T T
number and the definitiofiLl3) of the experimental group for the ©
. . . 0 theory — @ -
different flows under consideration. experiment ¢
0.5 | .
Re QR/U, (L) —
& -1 .
1.36x 10° 2.31 s; L i
1.86x 10° 0.71 RO
1.07x 104 0.89 2k .
1.17x10* 0.46 25l ]
2.88x10% 1.26
3 1 1 { 1 1 1
- - o - 3 25 2 -1.?08; (T)—I 0.5 0 0.5
large-scale quantitf2R/U, (L) on viscosity is desirable.
For our purposes, the Reynolds number defined in(E2).is FIG. 3. logD,(r) plotted against log} on a log-log scale. The
adequate. . . o separatiorr is normalized by the outer scale
Another frequently used dimensionless quantity is the
Taylor-Reynolds number resulting D,(r) agrees best with experiment. Because our
algorithm allows for continuous evolution steps, we can
R — Urmsh _ Ums 150 (14) compute a sufficient number of points along ig(r) curve
\ =

v ' A /—(du/dx)2 =Urms e necessary for a good comparison. We find
wheree is the average energy dissipation. The last identity
assumes local isotropy of the flows. Herean be estimated
by the large-scale flow

Re,=85+3, A=0.4+0.1. (16)

Figure 3 shows the comparison of the predicEg(r) and
the experimental measurement. Because the crossover in
4 ([U(x+L)—U(x)13), D,(r) !s a sensitivg function of _I%g,. this comparison gives
5 3 . (15 a relative small fitting error, which is about 3%, as opposed
to inspecting the overlap of the PDFs, which gives errors of
out 15%.
We find that the predicted PDFs are insensitive to the
values ofA, which is fixed to be 0.4 for all flows. To check
whether Rg, is indeed independent of Reynolds number, we
repeat the above procedure for all the flows. The value of
Bec, is shown in the fourth column of Table IlIl. It is evident
that there are considerable fluctuations in,Revhich cor-

In the subsequent discussions we shall use the Re definedfﬁl?
Eg. (12) and the corresponding Rean be found in Table
.

The remaining two parameters are.RandA defined in
Sec. lll. The critical Reynolds number Redefines the
threshold to be compared with the local Reynolds numbe

Re . If Re,<Re,,, viscous diffusion dominates and the cas-

cade stops. In real turbulence, the termination of the cascacfgsﬁ’ogdtfz abqut at_fallcto; Of 2 in the valu;a of;hffclrlossover
is a gradual process. The gradual crossover is parametrizegg""e etween inertial and viscous range. in what 1otiows we

by A in our model. One expects ReandA to characterize will use Re, as quoted in Table Il for the individual runs
the viscous cutoff mechanism, independently of Iarge—scalémce otherwise the fits of the PDFs in the viscous range

flow. Ideally, one would like to choose one particular flow to WO.UId be poor. Unfortunately, this means that th'er.e IS an
fix Re,, and A and use the same values for the rest of theadjustable parameter for each run. We will bear this in mind

flows studied. We remark that the constancy of,Re an when W€ compare the_ theory and the experiments. Fr_om t_he
assumption of the multifractal theory of turbulence, Whichexperlmental data avalpat.)Ie to us, we are not able to pinpoint
has not been checked explicitly before. the reason for the dewaﬂons of Rdrom a congtant valge.
We now determine the values of Reand A using the However, these ﬂL_Jctuanons are a_t Ie_ast_ c0n3|sFent_W|th the
flow with Re=1.36x 10®. Starting from the PDFP, of the ggg/tu[itl%ns seen in the energy dissipation, which is about
ol4,/].

velocity at the outer scale, we compute the evolution of the Havina determined all the adiustable parameters in the
PDFs and consequently the structure functions at smaller 9 ) P

scales. The values of Reand A are adjusted such that the mpdel, we can proceed to'make predictions for various guan-
tities of interest. Table Ill is a summary of the experimental

TABLE lll. Experimental parameters and fitted values of.Re and model parameters for the flows studied in this paper.

for the experimental runs studied in this paper.
V. EVOLUTION OF PDFs AND THEIR ASYMPTOTICS

R L . Re, R -
e UmdL) em/s v (cmfs) Re, R 7 (km) We start from the PDF of velocity differences at the outer

1.360x 10° 34.93 1.8%10 %2 85.7 344 490 scale and compute the subsequent PDFs as the scale de-
1.863x 10° 10.18 401072 41.0 600 20.0 creases. We show the evolution of the PDFs for two typical
1.170x 10¢ 18.54 1.16¢10°3 585 1626 5.9 flows: one below and one above the transition at the Rey-
1.073x 10¢ 20.52 14103 64.4 1802 6.0 nolds number Re=700. Figure 4 shows the evolution of the
2.881x 104 44.08 1.1X10°3 115.2 2394 4.1 PDFs for Re=1.36x 10°, which corresponds to the Taylor-

Reynolds number Re= 344, and Fig. 5 for Re 1.17x 10* at
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100 f——————T—— ———
s Re=14x10 ¢
-1 Re=19x10° +
| Roiieih g
' =12x
~ ~ aaaaagg Re=2§x10* &
5 S 5858583384,
& P = 10k i -
‘ Y [ &
l "]
1| -5 &g L.
-8
10 -10
v U P SN L )
r
le-05  0.0001  0.001 0.01 0.1 1
0 0 33&
l - f FIG. 6. Theoretical prediction for the scale-dependent flatness
) ) F(r) for different experimental runs. Note the sharp rise in the
- crossover regime and the crossing of different curves in the same
,g 3 H -3 regime.
P oy =32 - . .
Similar pictures are obtained for all the flows we study.
-5 ; -5 As expected, the shape of the PDF evolves toward stretched-
5 | 5 exponential curves. The stretched tails describe the increas-
-5 0 50 -5 0 s 0 ingly frequent occurrences of large intermittent events. The
Ur U distribution of the large events make significant contributions

to higher moments. A typical measure of intermittency is the
flatness, which will be discussed below.

In the case of the smaller Re flow, theory and experiment
%gree down to the smallest scale resolved by the experiment.
Both the experimental and the theoretical PDFs show no sign
of reaching their asymptotics even at the smallest scales. In
Re =1626. The solid line represents the experimental meathe case of the large Re flow, theory and experiment agree
surement, while the pluses show the theoretical predictiorfor a number of cascade steps, but eventually deviate as the
Each series covers scales ranging from the outer scale to tkeale decreases toward the limit of experimental resolution.
smallest scale measured by the experiments. While the theoretical PDF continues to evolve, the experi-
mental PDF saturates. This saturation corresponds to a satu-
ration in the flatness, as shown below.

We find that the theoretical PDF reaches its asymptotics
only close to the Kolmogorov scale, typically iat- 5. This
then suggests that in order to understand the scaling of the
velocity derivatives, the experiments need to resolve a
smaller scale than they currently do, which is ®.®r this
particular flow. To see this more clearly we look at the flat-
ness, which can be defined as the limit:0 of the ratio

FIG. 4. Evolution of the logarithm of PDFs of velocity differ-
ences over different separations atRe36x 106°. The velocity dif-
ference is normalized by its variance and the PDF is normalized t
unity.

P (ur)
P (ux)

_ Dy(r)
[Da(r)]?

Figure 6 shows the theoretical prediction Fefr), wherer is
rescaled byL, for the Reynolds numbers studied, which is
seen to saturate at a constant vafye This asymptotic value
is consistent with a power law

F(r) 17

P (ur)
P (ur)

Fo~Re, (18)

Thus the prediction of the model agrees with that of the
multifractal model and it is consistent with the recent com-
pilation of experimental results if27]. The most important
feature we observe in Fig. 6 is the pronounced crossover
FIG. 5. Evolution of the logarithm of PDFs of velocity differ- behavior, which depends on the Reynolds number. In par-
ences over different separations atRe17x 10*. The velocity dif-  ticular, although in the true asymptotic limit the flatness in-
ference is normalized by its variance and the PDF is normalized tereases with the Reynolds number, at a fixed scale in the
unity. crossover region the flatness may decrease with Reynolds
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number. Therefore, if experiments are limited to the resoludependent confirmation of the plateau at RF00 within a

tion in the crossover regiofwhich is typically 3y—107), it closed geometry is clearly needed. In addition, comparisons

is conceivable that the experiments can yield a result thapetween this model and other experiments such as large

shows a decrease of flatness with Reynolds number. closed-geometry experiments or open-flow experiments will
One can further understand the width of the crossoveglso be useful.

range as a function of Reynolds number. The higher the vis-

cosity, the earlier does rise &f(r) set in. At the same time, ACKNOWLEDGMENTS
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We have studied in detail a model of PDFs of turbulent
velocity differences with the aim of understanding the cross- APPENDIX: SMOOTHING
over below the inertial range for two reasoit9:the cross- ] . .
over range is far more complex and less understood than Here we briefly describe how a smooth functipufu,)
both the inertial range and the far dissipation range @nd Was obtained from Eq(9). Setting/”=log, (u;/R), we first
we hope to gain some quantitative understanding of the behake sure thaf.=3(n+/) smoothly merges intp=n for
havior of the flatness in the crossover range, which may shed ~n. A convenient parametrization is
some light on the recent controversy about the transition seen 11/—n (/ —n)2| V2
in the flatnes$5]. T=n+= ”__<A+ _) }

In particular, we compare our model with the recent series 2| 2 4
of experiments by Tabeling’s group. We find that in the_Here we introduced a parametdr. which measures the

small-Reynolds-number flows, the model and the experi dith of th . . In Sec. Il hi
ments agree on the shape of PDFs down to the smallest scafddth of the transition region. In Sec. lll we compare this

resolved. On the other hand, in the Iarge-Reynolds—numbé’?"th the ViSCOl_JS crossover OT an experimentally measured
flows, the model shows departure from the experiment belowtructure functlonDz(r) and find A=1 to accurately de-
a scale, which is on the order of 0 scribe experiments.

However, our model also allows us to consider the scale- However,j, as defined by Eq(Al), still goes to— as
dependent flatnegd 7). We observe that if gradients are es- U— 0, while the lowest available level is 0. The approach of
timated with finite spatial resolution, the flatness saturates dt=0 has to be fast enough to makg./du, go to zero as
a given Reynolds number may even decrease, just as oby—0. Namely, in view of Eq(11) this means that
served in the experiments of Tabeliegal. [5]. Since the
completion of this work, the same group has made additional P:(u)~2"Po(2"uy), (A2)
measurements of the flaine$8]. These measurements g, gne simply sees the gradient of the large-scale fluctua-
shqw a small rise in the fIaFr?ess at higher Reynolds n.umberﬁons, as expected. This is achieved by setting
while confirming the transition at Re-700. Placed within
the context of all the available experimental d§24d], the 1 i
general trend is consistent with the power I&h@) within the lc:Z|092(1+ 24). (A3)
experimental scatter. Clearly, a rise in the flatness after an
initial plateau is inconsistent with our interpretation of the We found that the details of the smoothing were inconse-
transition. On the other hand, the data[RB8] were taken quential to the shape of the distribution as long as the basic
with more than one experimental apparatus and the scatter goperties ofj.(u,) were satisfied. Thus EqéA1) and(A3)
considerable. Therefore, it is hard to tell which of the ob-determine the function.(u,) that we used throughout this
served trends in the closed geometry are significant. An inpaper.

(A1)
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