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Crossover behavior in turbulent velocity fluctuations
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We develop a simple model of the evolution of turbulence velocity differences from inertial scales to
dissipative scales by taking into account the effect of the viscosity. Our model suggests that the fluctuations of
the viscous scales in turbulence result in a nontrivial crossover region in the velocity structure functions. We
also discuss the importance of recognizing this crossover region when interpreting the experimental results.
Assuming a finite and fixed spatial resolution, the model predicts a transition in the flatness at finite Reynolds
number. We relate this observation with the reported transition by Tabelinget al. @Phys. Rev. E53, 1613
~1996!#, which is analyzed in detail and compared with our model.@S1063-651X~98!12204-3#

PACS number~s!: 47.27.2i, 47.80.1v
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I. INTRODUCTION

In this paper we use the old idea of modeling turbulen
velocity difference fluctuations by a multiplicative proces
which is meant to capture the basic picture of energy casc
in turbulence. Recent studies along this line include R
@1–3#. However, the existing models only deal with eith
the inertial range or the purely dissipative range statist
Our model fills the gap by giving a continuous evolution
velocity probability distribution functions~PDFs! from large
to small scales.

The main motivation for studying the crossover behav
from the inertial range to the fully dissipative range is th
we believe it is relevant to the flatness measurements of
recent experiments in shear-flow driven helium turbulen
inside a closed geometry@4,5#. An important difference be-
tween the closed-geometry experiments and the open-
experiments is that in the former case the Reynolds num
can only be increased by decreasing the Kolmogorov sc
This imposes severe constraints on the spatial resolution
essary to measure velocity gradients in the closed-geom
experiments. Given the current experimental results, stu
ing the scaling behavior in the crossover range quantitativ
is worthwhile. To this end we carry out a systematic study
a multifractal model that predicts the evolution of the velo
ity difference PDFs from large scale to the dissipative sc
and apply this model to the aforementioned experiment.
though the multifractal model is not a fundamental theory
turbulence@6#, we hope some of the observed gross featu
provide us insight into the understanding of the transition
flatness seen in the experiment around Taylor-Reyno
number 700@5#.

Within our model, we find that the predicted flatness ra
idly varies over a spatial scale between 2h and 20h. This
means that measurements of the flatness are extremely
sitive to the experimental resolution, which lies in this ran
of scales. More interestingly, the ordering of the magnitu

*Present address: Courant Institute of Mathematical Scien
New York University, 251 Mercer Street, New York, NY 10012

Electronic address: jwang@cims.nyu.edu
571063-651X/98/57~4!/4281~8!/$15.00
e
,
de
s.

s.

r
t
he
e

w
er
le.
c-

try
y-
ly
f
-
le
l-
f
s

n
s

-

en-
e
e

of the flatness as a function of Reynolds number~Re! de-
pends on the particular scale in the crossover range.
show that at a fixed scale smaller thanh the flatness in-
creases with Re as expected, but at a fixed scale in the c
over range the flatness decreases with Re. We emphasiz
important difference between the scale 1h and 10h, which is
often indistinguishable in order of magnitude arguments s
as those made in Ref.@7#.

In the next section we briefly describe the multifrac
model of turbulence, and in Sec. III we generalize this id
to include viscous effects. The resulting model for PDFs
the central starting point of the paper. In Sec. IV we det
mine the adjustable parameters of the model using the
perimental data by Tabeling’s group. In Sec. V we discu
the evolution of the PDFs as a function of the separation
compute the flatness at a fixed resolution. In the final disc
sion in Sec. VI we review points of agreement and the d
crepancies between the experimental data and the multif
tal model and relate our observation to the recently repo
transition in the flatness.

II. BASIC IDEA OF MULTIPLICATIVE PROCESSES
IN TURBULENCE

For the completeness of the paper, we briefly review
basic idea of multiplicative processes in turbulence. Exp
mental studies have shown that the turbulence velocity fi
in the inertial range can be described reasonably by pow
law scaling

Dq~r !5Cq~r /L !q/31dzq. ~1!

This power-law range is typically short, so the exponents
better defined by the method of extended self-similar
~ESS! @8#. Information on two-point correlations of the ve
locity field is contained in the spectrum of exponentszq @9–
12#. The scaling~1! can also be naively interpreted as
consequence of an underlying multiplicative process,
which the energy is cascaded progressively from eddie
size r into eddies of sizer /l. The ratio of the velocities in
successive steps is a stochastic variablesi , whose statistics

s,
4281 © 1998 The American Physical Society
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4282 57JENS EGGERS AND Z. JANE WANG
are determined by its probability distributionps(si). The in-
dex i denotes thei th step in the cascade from a given lar
scaleL to r :

ur5uL)
i 51

n

si . ~2!

Assuming that thesi are identically distributed and uncorre
lated, we then have for the velocity moments

^ur
q&5^sq&n^uL

q&, n52 logl

r

L
,

and by comparison with Eq.~1!,

zq5
q

3
1dzq52 logl^sq&. ~3!

Sincez351 by the Kolmogorov structure equation, we ha
the constraint

^s3&51/l. ~4!

In the following we will be making the conventional choic
l52. In the context of our phenomenological descriptio
this is of a little consequence. Using the known expon
spectrumzq , information on the distributionps(s) can be
extracted through its moments. Technically it is conveni
to approximateps by a bimodal distribution

ps~s!5pd~s2s1!1~12p!d~s2s2!. ~5!

Recently, it was proposed based on the infinitely divisi
processes that the multiplier distribution is log-Poisson@13#.
One might construct the multiplier distribution by studyin
the ratio of the locally averaged energy dissipation simila
the method used in Ref.@14#; however, we believe that th
detailed shape of multiplier distribution does not alter t
key qualitative results we will obtain in the crossover ran
Therefore, to avoid the unnecessary complication, we
Eq. ~5! as a model distribution. Imposing Eq.~4! as a con-
straint, the two remaining parameters can be used to re
duce the first ten moments to within experimental error@15#.

Here we base our fit on the experimental exponents
Tabeling’s group@16#, which were obtained by using th
method of extended self-similarity. We find

p50.688, s150.699, s250.947. ~6!

The predicted scaling exponents using the above param
are compared with the experiments in Table I. The expone
agree with the established values obtained in various tu
lence experiments@17,18# to within the error.

Given this simple model of a multiplier distribution, th
PDF Pj (u) of velocity differences on level

j 52 log2~r /L !

can be readily calculated: It is the distributionP0(u) on the
outer scale, convoluted withps j times, giving
,
t

t

e

o

.
e

o-

y

ers
ts
u-

Pj~u!5 (
k50

j S j
k D S p1

s1
D j 2kS p2

s2
D k

P0S u

s1
j 2ks2

kD . ~7!

An expression equivalent to Eq.~7!, but using the randomb
model, was already given in@1#. Since r is a continuous
variable, it is useful to generalize Eq.~7! to continuous val-
ues of j . This can be done using the Euler-McLaurin su
formula, which gives to lowest order

Pj~u!5E
k

j S j
k D S p1

s1
D j 2kS p2

s2
D k

P0S u

s1
j 2ks2

kD dk

1
1

2F S p1

s1
D j

P0S u

s1
j D 1S p2

s2
D j

P0S u

s2
j D G . ~8!

This proved to be an adequate approximation of Eq.~7! for
integer values ofj and smoothly interpolates in between.
the next section we follow the above basic idea to model
inertial range scaling and in addition we introduce a fluc
ating cutoff to model the viscous effects.

III. MODEL FOR THE PROBABILITY DISTRIBUTIONS
OF VELOCITY DIFFERENCES

Our model of PDFs of velocity differences includes thr
basic elements:~i! the experimentally measured PDF of v
locities at a large scaleP0, ~ii ! the multiplier distributionps ,
and~iii ! the viscous cutoff mechanism. Once they are de
mined, we can compute the PDF of velocities for any giv
scale. Among the three elements,P0 is experimentally given
andps(s) is assumed to be of the form of Eq.~5!, with three
parameters given by Eq.~6!. We then follow an idea that wa
proposed in Ref.@19# and later worked out in the context o
velocity gradients by Nelkin@20# and introduce a viscous
cutoff scalehc at which the local Reynolds number is equ
to a fixed value. The physical idea of this cutoff is that whe
ever thelocal Reynolds number of an eddy reaches a criti
value Recr , it is smoothed out by viscosity and the casca
stops. Since one expects the structure of small-scale velo
fluctuations to be universal, the details of the cutoff mec
nism will not depend on the specific flows and thus Rcr
should be universal. Furthermore, because the local R
nolds numberuur ur /n is a fluctuating quantity, so ishc .

TABLE I. Inertial range scaling exponentszq of the velocity
field. Compared are the experimental measurements and ou
@Eqs.~5! and ~6!#.

q Expt. Model

2 0.70 0.70
3 1.00 1.00
4 1.26 1.26
5 1.50 1.50
6 1.71 1.71
7 1.90 1.89
8 2.08 2.05
9 2.19 2.19

10 2.30 2.31
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57 4283CROSSOVER BEHAVIOR IN TURBULENT VELOCITY . . .
These fluctuations further modify the scaling in the dissi
tion range in addition to the inertial range fluctuations. W
remark that in previous work on the scalings of the hig
order velocity derivatives@21# it was found that the strengt
of the largest singularity increases with the order of deri
tives. The viscous cutoff fluctuations studied assumed in
paper can be viewed as a special example of the multifra
behavior of the velocity gradients.

More specifically, we can construct the following e
semble for velocity differencesur . For convenience, al
quantities are assumed to be nondimensionalized by the l
scaleL and the root-mean-squared velocity fluctuations
that scale

Urms5@^uL
2&#1/2.

In computing the PDFs we treat the positive and nega
velocities independently. Here we only look at positive v
ues ofur ; the negative values are treated separately, rep
ing ur by its modulus. Settingr 522n, each ensemble mem
ber is then constructed by the following procedure.

~i! Choose a realization of the large-scale velocity fie
u0[uL .

~ii ! Multiply u0 by random multiplierss to obtain a real-
ization on stepj until either~a! level n is reached or~b! the
conditionuj322 j>R is no longer satisfied. The constantR
is simply R5Recr /Re. This cutoff level in a particular real
ization will be denoted byj c .

~iii ! In case~a! ur5un is the desired value ofur . If the
cascade has stopped due to the action of viscosity on l
j c,n, the velocity difference over the distance 22 j c is uj c

.

Therefore, on scaler we haveur5uj c
32 j c2n.

To derive probability distributions from this procedure, it
more convenient to treat the level number as a continu
variable. Accordingly, we will assume that the velocity d
tributionsPj on level j have been continued to all real valu
j , as we did in Eq.~8!.

To find an explicit expression for the probability distrib
tion of ur , we need to find the relation betweenj c andur . If
u0 is already smaller thanR, j c is equal to zero and the
correspondingur is u0322n. Thus j c50 for ur<R322n. If
the cascade reaches stepn, un must have been larger tha
R32n and thusj c5n for ur>R32n. In between, the cas
cade is terminated by viscosity. This means that the cu
condition uj c

322 j c5R must be satisfied and thusur5R

322 j c2n. To summarize, we have

j c55
0 log2

ur

R
<2n

n log2

ur

R
>n

1

2S n1 log2

ur

R D otherwise.

~9!

Physically, we expect the relation betweenj c andur to be
smooth, so we will be using a smoothed version of Eq.~9!,
given in the Appendix, which is one to one betweenj c and
ur and has the propertyj c(ur)→0 for ur→0 and j c(ur)
→n for ur→`. The smoothing introduces an additional p
-

-

-
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ge
n

e
-
c-
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s
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rameterD @cf. Eq. ~A1!#, which is the number of levels ove
which the cascade is gradually cut off. Thus the descript
of the viscous range introduces two parameters: Recr , which
measures the relative importance of the viscous term, anD,
which measures the effectiveness of the viscous smooth
In a small-scale regime of universal isotropic fluctuation
we expect both to be independent of the large-scale fl
Thus once they are adjusted, they can be applied to all o
flows at different Reynolds numbers.

To compute the probability distributionPr of ur , we ex-
press the total probability of findingur betweenur( j c) and
ur( j c1d) through the densitiesPj , namely,

E
ur ~ j c!

ur ~ j c1d!

Pr~u!du5E
uj c

`

Pj c
~u!du2E

uj c1d

`

Pj c1d~u!du,

~10!

whereuj c
is the velocity on levelj c , which contributed to

ur . Henceuj c
5ur2

n2 j c. The normalization condition~10!

simply expresses the fact that contributions from levels
tween j c and j c1d correspond to the probability of casca
ing down at least to levelj c , minus the probability of even
making it to levelj c1d. Letting d go to zero, we obtain

Pr~ur !5
] j c

]ur
H ]uj c

] j c
Pj c

~uj c
!2E

uj c

` ]P

] j U j 5 j c
~u!duJ ,

~11!

where j c on the right-hand side of Eq.~11! can be expressed
throughur . If r tends to zero, Eq.~11! gives the distribution
of velocity gradients, for which the distribution was also d
rived in @1#. However, the approximation of@1# just corre-
sponds to the first term in the curly brackets, while the s
ond term was neglected. Note that Eq.~10! automatically
ensures thatPr is normalized since

E
0

`

Pr~u!du5E
0

`

P0~u!du,

which means thatPr inherits its normalization from the top
level distributionP0. Thus Eq.~11!, together withPj (u) @cf.
Eq. ~8!# and j c(ur), gives an explicit formula forPr(ur),
which we implemented numerically. This is the central res
of the paper, which will be explored in the sections belo
We note that the well-established Obukhov scaling relat
m522z~6! @17,13# is a direct consequence of the prese
model with fluctuating cutoff@22#. Moreover, it has been
noted@23# that a possible explanation of ESS would be th
higher moments have smaller effective cutoffs. This is co
sistent with the assumption about the fluctuations in cu
scales in our model by noting that high moments are do
nated by large events.

IV. COMPARISON WITH EXPERIMENT

We apply this model to a set of experimental data m
sured by Tabelinget al. @4,5,16#. The experiment measure
the longitudinal component of the turbulent velocity fie
inside a closed cylinder filled with helium. The viscosity
varied by a technique similar to that used in the Rayleig
Bérnard system@24,25# to achieve a variation over three de
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4284 57JENS EGGERS AND Z. JANE WANG
cades in Reynolds number. The measurements of var
scaling laws are described in the above series of pa
@4,5,16#. The Reynolds number dependence of the flatnes
reported to have a change in character at the Tay
Reynolds number approximately equal to 700: The flatn
increases with the Reynolds number up to Rel'700 and
then it decreases with the Reynolds number before incr
ing again. However, the origin of this transition has be
subjected to much debate@26,27,7#.

Because our model offers a comparison for the PDF
equivalently for all structure functions, rather than just t
scaling exponents, we can do a careful study to compare
model with the experiments and obtain a better understa
ing of the viscous scaling where the transition is seen. T
PDF at the beginning of the cascade can be determined
perimentally once we choose a sensible outer scale. Sinc
experiments were carried out in a fixed geometry, we exp
that at a fixed outer scale, where the energy is fed in,
PDF of velocity differences is independent of the Reyno
number. We confirm this by analyzing the experimental da
By inspecting the scaling of the second-order structure fu
tions, we choose the outer scale to beL50.73 cm for all
flows. The scale is roughly 1/5 of the integral scale quoted
Ref. @4#. The reason we choseL to be somewhat smaller i
that belowL the scaling follows a power law and bounda
effects seem to be negligible. We then examine the PDF
the normalized velocity differences over the separationL and
find that they collapse for all the flows as shown in Fig.
The velocities are normalized by their varianceUrms . In the
same plot, a Gaussian distribution is shown as a dot-das
line for comparison. The PDF at the outer scale is alre
non-Gaussian because we have chosenL to be smaller than
the integral scale of@4#, for the reasons given above. Thu
some growth of intermittent fluctuations has already tak
place. Also the dynamics of the boundary layer may have
important effect because the experiment is in a closed ge
etry. The small asymmetry of the PDF is consistent with
Kolmogorov structure equation, which gives a nonvanish
skewness of the velocity. By the construction of the mod
the asymmetry will propagate down to smaller scales. T
large-scale velocity variances, which differ because of diff
ent driving, set the velocity scales at each cascade level.
ratio of the velocity variance and the rotational velocity a

FIG. 1. PDF of the velocity difference at the outer scaleL
plotted on a log-linear scale for all experimental runs under con
eration. The velocity differences are normalized by its variance,
the PDF is normalized to unity.
us
rs
is
r-
s

s-
n

r

he
d-
e
x-

the
ct
e
s
.

c-

n

of

.

ed
y

n
n

m-
e
g
l,
e
-
he

fixed scale will be shown later. We emphasize that the c
lapse of the PDFs holds for Taylor-Reynolds number (Rl)
ranging from 300 to 2000, which includes the flows bo
below and above the reported transition at Rel'700. The
collapse of the outer scale PDFP0(u) implies the collapse of
PDF in the inertial range at a fixed separation. To check t
we calculate the experimental PDF at a separation scal
L/4 and again we observe the collapse of the PDFs as sh
in Fig. 2.

We recall that Tabelinget al. observed the collapse of th
PDF in the inertial range only for sufficiently large Reynol
numbers@5#. However, as we show here, the collapse wo
equally well for small Reynolds number (Rel,700 and, cor-
respondingly, Re,104) flows in the inertial range. We sus
pect the reason that the previous authors did not observe
same collapse for small Reynolds number flows is beca
they fixed a scale too small to be in the inertial range of
small Reynolds number flows.

Because the shape of the normalized outer scale PD
constant at the energy-input scale, the corresponding velo
scale is uniquely determined by its varianceUrms(L). It al-
lows us to define a Reynolds number

Re5
Urms~L !L

n
. ~12!

We remark that this definition is different from the one us
previously@4#:

Re5
VR2

n
, ~13!

whereV is the rotation frequency andR is the radius of the
apparatus. Equation~13! assumes that the velocity at th
energy-input scale is proportional toVR. We tabulate the
ratio of Urms and VR for different Reynolds numbers in
Table II and find that they vary considerably. Many facto
can contribute to these differences. Apart from the syste
atic errors in the measurements, the shear velocity pro
depends on the Reynolds number. A better understandin
the instabilities of the driving flow and the dependence of

-
d

FIG. 2. PDF of the velocity difference at the scaleL/4 ~still in
the inertial range! for the same experimental runs as shown in F
1. Again, the velocity difference is normalized by its variance a
the PDF is normalized to unity.
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57 4285CROSSOVER BEHAVIOR IN TURBULENT VELOCITY . . .
large-scale quantityVR/Urms(L) on viscosity is desirable
For our purposes, the Reynolds number defined in Eq.~12! is
adequate.

Another frequently used dimensionless quantity is
Taylor-Reynolds number

Rl5
Urmsl

n
, l5

Urms

A~du/dx!2
5UrmsA15n

e
, ~14!

wheree is the average energy dissipation. The last iden
assumes local isotropy of the flows. Heree can be estimated
by the large-scale flow

e52
4

5

^@U~x1L !2U~x!#3&x

L
. ~15!

In the subsequent discussions we shall use the Re defin
Eq. ~12! and the corresponding Rel can be found in Table
III.

The remaining two parameters are Recr andD defined in
Sec. III. The critical Reynolds number Recr defines the
threshold to be compared with the local Reynolds num
Rer . If Rer,Recr , viscous diffusion dominates and the ca
cade stops. In real turbulence, the termination of the casc
is a gradual process. The gradual crossover is paramet
by D in our model. One expects Recr andD to characterize
the viscous cutoff mechanism, independently of large-sc
flow. Ideally, one would like to choose one particular flow
fix Recr and D and use the same values for the rest of
flows studied. We remark that the constancy of Recr is an
assumption of the multifractal theory of turbulence, whi
has not been checked explicitly before.

We now determine the values of Recr and D using the
flow with Re51.363103. Starting from the PDFP0 of the
velocity at the outer scale, we compute the evolution of
PDFs and consequently the structure functions at sma
scales. The values of Recr andD are adjusted such that th

TABLE II. Comparison of our definition~12! of the Reynolds
number and the definition~13! of the experimental group for the
different flows under consideration.

Re VR/Urms(L)

1.363103 2.31
1.863103 0.71
1.073104 0.89
1.173104 0.46
2.883104 1.26

TABLE III. Experimental parameters and fitted values of Recr

for the experimental runs studied in this paper.

Re Urms(L) ~cm/s! n (cm2/s) Recr Rel h (mm)

1.3603103 34.93 1.8831022 85.7 344 49.0
1.8633103 10.18 4.031023 41.0 600 20.0
1.1703104 18.54 1.1631023 58.5 1626 5.9
1.0733104 20.52 1.431023 64.4 1802 6.0
2.8813104 44.08 1.1231023 115.2 2394 4.1
e

y

in

r
-
de
ed

le

e

e
er

resulting D2(r ) agrees best with experiment. Because o
algorithm allows for continuous evolution steps, we c
compute a sufficient number of points along theD2(r ) curve
necessary for a good comparison. We find

Recr58563, D50.460.1. ~16!

Figure 3 shows the comparison of the predictedD2(r ) and
the experimental measurement. Because the crossove
D2(r ) is a sensitive function of Recr , this comparison gives
a relative small fitting error, which is about 3%, as oppos
to inspecting the overlap of the PDFs, which gives errors
about 15%.

We find that the predicted PDFs are insensitive to
values ofD, which is fixed to be 0.4 for all flows. To chec
whether Recr is indeed independent of Reynolds number,
repeat the above procedure for all the flows. The value
Recr is shown in the fourth column of Table III. It is eviden
that there are considerable fluctuations in Recr , which cor-
respond to about a factor of 2 in the value of the crosso
scale between inertial and viscous range. In what follows
will use Recr as quoted in Table III for the individual run
since otherwise the fits of the PDFs in the viscous ran
would be poor. Unfortunately, this means that there is
adjustable parameter for each run. We will bear this in m
when we compare the theory and the experiments. From
experimental data available to us, we are not able to pinp
the reason for the deviations of Recr from a constant value
However, these fluctuations are at least consistent with
fluctuations seen in the energy dissipation, which is ab
10% @4,7#.

Having determined all the adjustable parameters in
model, we can proceed to make predictions for various qu
tities of interest. Table III is a summary of the experimen
and model parameters for the flows studied in this paper

V. EVOLUTION OF PDFs AND THEIR ASYMPTOTICS

We start from the PDF of velocity differences at the ou
scale and compute the subsequent PDFs as the scale
creases. We show the evolution of the PDFs for two typi
flows: one below and one above the transition at the R
nolds number Rel'700. Figure 4 shows the evolution of th
PDFs for Re51.363103, which corresponds to the Taylor
Reynolds number Rel5344, and Fig. 5 for Re51.173104 at

FIG. 3. logD2(r) plotted against log(r) on a log-log scale. The
separationr is normalized by the outer scaleL.



e
io

y.
hed-
eas-
he
ns
he

ent
ent.
ign
. In
ree
the

ion.
ri-
atu-

tics

the
a

t-

is

he
m-

ver
ar-

in-
the
olds

-

d

-

d

ess
he
ame

4286 57JENS EGGERS AND Z. JANE WANG
Rel51626. The solid line represents the experimental m
surement, while the pluses show the theoretical predict
Each series covers scales ranging from the outer scale to
smallest scale measured by the experiments.

FIG. 4. Evolution of the logarithm of PDFs of velocity differ
ences over different separations at Re51.363103. The velocity dif-
ference is normalized by its variance and the PDF is normalize
unity.

FIG. 5. Evolution of the logarithm of PDFs of velocity differ
ences over different separations at Re51.173104. The velocity dif-
ference is normalized by its variance and the PDF is normalize
unity.
a-
n.
the

Similar pictures are obtained for all the flows we stud
As expected, the shape of the PDF evolves toward stretc
exponential curves. The stretched tails describe the incr
ingly frequent occurrences of large intermittent events. T
distribution of the large events make significant contributio
to higher moments. A typical measure of intermittency is t
flatness, which will be discussed below.

In the case of the smaller Re flow, theory and experim
agree down to the smallest scale resolved by the experim
Both the experimental and the theoretical PDFs show no s
of reaching their asymptotics even at the smallest scales
the case of the large Re flow, theory and experiment ag
for a number of cascade steps, but eventually deviate as
scale decreases toward the limit of experimental resolut
While the theoretical PDF continues to evolve, the expe
mental PDF saturates. This saturation corresponds to a s
ration in the flatness, as shown below.

We find that the theoretical PDF reaches its asympto
only close to the Kolmogorov scale, typically atr;h. This
then suggests that in order to understand the scaling of
velocity derivatives, the experiments need to resolve
smaller scale than they currently do, which is 9.6h for this
particular flow. To see this more clearly we look at the fla
ness, which can be defined as the limitr→0 of the ratio

F~r !5
D4~r !

@D2~r !#2
. ~17!

Figure 6 shows the theoretical prediction forF(r ), wherer is
rescaled byL, for the Reynolds numbers studied, which
seen to saturate at a constant valueF0. This asymptotic value
is consistent with a power law

F0;Rel
0.15. ~18!

Thus the prediction of the model agrees with that of t
multifractal model and it is consistent with the recent co
pilation of experimental results in@27#. The most important
feature we observe in Fig. 6 is the pronounced crosso
behavior, which depends on the Reynolds number. In p
ticular, although in the true asymptotic limit the flatness
creases with the Reynolds number, at a fixed scale in
crossover region the flatness may decrease with Reyn

to

to

FIG. 6. Theoretical prediction for the scale-dependent flatn
F(r ) for different experimental runs. Note the sharp rise in t
crossover regime and the crossing of different curves in the s
regime.
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number. Therefore, if experiments are limited to the reso
tion in the crossover region~which is typically 3h210h), it
is conceivable that the experiments can yield a result
shows a decrease of flatness with Reynolds number.

One can further understand the width of the crosso
range as a function of Reynolds number. The higher the
cosity, the earlier does rise ofF(r ) set in. At the same time
the rise is sharper compared to the low-viscosity flows si
the viscous cutoff fluctuates over a narrower range of sc
@22#. The combined effect leads to areversal in the magni-
tude of F at intermediate separations, the lowest Reyno
number leading to the largest value of the flatness. This s
gests that one has to be extremely careful about comparinF
at different Reynolds numbers if the spatial resolution is
the crossover range.

VI. DISCUSSION

We have studied in detail a model of PDFs of turbule
velocity differences with the aim of understanding the cro
over below the inertial range for two reasons:~i! the cross-
over range is far more complex and less understood t
both the inertial range and the far dissipation range and~ii !
we hope to gain some quantitative understanding of the
havior of the flatness in the crossover range, which may s
some light on the recent controversy about the transition s
in the flatness@5#.

In particular, we compare our model with the recent ser
of experiments by Tabeling’s group. We find that in t
small-Reynolds-number flows, the model and the exp
ments agree on the shape of PDFs down to the smallest
resolved. On the other hand, in the large-Reynolds-num
flows, the model shows departure from the experiment be
a scale, which is on the order of 10h.

However, our model also allows us to consider the sca
dependent flatness~17!. We observe that if gradients are e
timated with finite spatial resolution, the flatness saturate
a given Reynolds number may even decrease, just as
served in the experiments of Tabelinget al. @5#. Since the
completion of this work, the same group has made additio
measurements of the flatness@28#. These measuremen
show a small rise in the flatness at higher Reynolds numb
while confirming the transition at Rel'700. Placed within
the context of all the available experimental data@27#, the
general trend is consistent with the power law~18! within the
experimental scatter. Clearly, a rise in the flatness afte
initial plateau is inconsistent with our interpretation of t
transition. On the other hand, the data in@28# were taken
with more than one experimental apparatus and the scatt
considerable. Therefore, it is hard to tell which of the o
served trends in the closed geometry are significant. An
ys
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dependent confirmation of the plateau at Rel'700 within a
closed geometry is clearly needed. In addition, comparis
between this model and other experiments such as la
closed-geometry experiments or open-flow experiments
also be useful.
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APPENDIX: SMOOTHING

Here we briefly describe how a smooth functionj c(ur)
was obtained from Eq.~9!. Settingl 5 log2(ur /R), we first
make sure thatj c5 1

2 (n1l ) smoothly merges intoj 5n for
l 'n. A convenient parametrization is

j̄ 5n1
1

2F l 2n

2
2S D1

~l 2n!2

4 D 1/2G . ~A1!

Here we introduced a parameterD, which measures the
width of the transition region. In Sec. III we compare th
with the viscous crossover of an experimentally measu
structure functionD2(r ) and find D51 to accurately de-
scribe experiments.

However, j̄ , as defined by Eq.~A1!, still goes to2` as
ur→0, while the lowest available level is 0. The approach
j 50 has to be fast enough to make] j c /]ur go to zero as
ur→0. Namely, in view of Eq.~11! this means that

Pr~ur !'2nP0~2nur !, ~A2!

so one simply sees the gradient of the large-scale fluc
tions, as expected. This is achieved by setting

j c5
1

4
log2~1124 j̄ !. ~A3!

We found that the details of the smoothing were incon
quential to the shape of the distribution as long as the b
properties ofj c(ur) were satisfied. Thus Eqs.~A1! and~A3!
determine the functionj c(ur) that we used throughout thi
paper.
e,
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