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In many industrial processes, such as pouring a liquid or coating a rotating cylinder, air bubbles are
entrapped inside the liquid. We propose that this is due to air being drawn into the narrow channel of a
cusp singularity that generically forms on free surfaces. Since the width of the cusp is exponentially small
in the driving strength, even the minute viscosity of air is enough to destroy the stationary solution, and
a sheet emanates from the cusp’s tip, through which air is entrained. Our analytical theory is confirmed
by quantitative comparison with numerical simulations of the flow equations, and is found to be in
qualitative agreement with experimental observation.
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Air bubbles are a ubiquitous presence in fluid flow, ap-
pearing when pouring a liquid into a beaker, when beating
an egg, or in river streams. This aeration is often desir-
able, for example, to promote chemical reactions [1], yet
in many industrial processes entrainment of air bubbles is
detrimental to the quality of the product, rendering the flow
unsteady. For example, it is the single most important fac-
tor limiting the speed at which paints or coatings can be
applied to a solid surface [2,3]. But in spite of its impor-
tance, no general understanding of air entrainment exists,
except for the rather special circumstance that the free sur-
face conspires to enclose an air bubble from all sides, as
was recently found for a disturbed water jet [4].

In recent years great efforts have been devoted to an
understanding of various singularities that form on free
surfaces, for example, in drop formation [5,6], drop coa-
lescence [7], erupting jets [8], and crumpling of paper [9].
In addition to these three-dimensional singularities, free
surfaces turn out to be extremely susceptible to the forma-
tion of cusps [3,10–12], which is the generic structure that
forms in two-dimensional viscous flow [13]. Examples are
drop impact on a surface [14], jets impinging on a pool of
liquid [1], and the coating of a prewetted solid cylinder [3].

However, cusp solutions should be expected to depend
on the presence of an outer fluid or gas like air in a very
singular fashion, since the air is drawn into a very narrow
passage by the external flow. Thus even an air viscosity
that is exponentially small in the driving strength is enough
to destroy the stationary solution, similar to the singular
nature of pattern selection in growth phenomena [15,16].
Indeed, the air sheet that forms out of the cusp seems to
represent a broader class of phenomena, characterized by
a pattern being born out of a singularity. Other examples
are “electric jets,” which shoot out of fluid cones (so-called
Taylor cones) formed by strong electric fields [17,18], jets
emanating from tipped ends of bubbles in shear flows [19],
“tip streaming,” or spouts formed by planar interfaces “se-
lective withdrawal” [20].

In this Letter, we show that the presence of two-
dimensional cusp singularities on the free surface results
in a generic mechanism for air entrainment. In addition,
0031-9007�01�86(19)�4290(4)$15.00
the present theory hopefully is a first step towards under-
standing other, three-dimensional problems, and will help
explain why the appearance of secondary structures out of
singularities occurs in so many systems.

For purposes of illustration, consider now the particular
example of a two-dimensional cusp that forms when a thin
stream of a viscous silicone oil is poured into a container
of the same fluid. Since the falling liquid drags other fluid
away from the surface, a dip is produced around the fluid
stream. Increasing the flow rate above a critical value,
this dip is no longer smooth, but a singular point on the
surface is approached with two vertical tangents. A cross
section of this cusped profile is shown as a black silhouette
in Fig. 1a, the outer wall of the free surface ending in a
vertical tangent at the cusp point. For clarity, the lighting
is chosen such that the free surface appears opaque, so the
falling jet is indicated only symbolically to guide the eye,
but not visible directly.

Increasing the flow rate still further, there is a second
critical value where the stationary profile of Fig. 1a ceases
to exist and a sheet of air shoots out from the tip of the cusp.
The bottom picture shows this dynamical structure 1�60th
of a second after the stationary solution has vanished. A
thin air sheet now forms the wall of a transparent fluid
cylinder. The details of this dynamical structure, such
as the bell-shaped opening at its lower rim, are not the
subject of this paper, but only the loss of the static shape
that leads to it. The cylinder eventually grows to about
10 times the length shown, and is unstable to the formation
of bubbles at its lower end, so the liquid pool quickly
becomes contaminated by bubbles of a broad variety of
sizes.

Since the air sheet near the cusp is of micron thickness,
the curvature with which it is wrapped around the imping-
ing jet is of no consequence and the cusp can be viewed as
a two-dimensional object. In this spirit, Joseph et al. [11]
performed experiments with a two-dimensional flow pro-
duced by two counterrotating cylinders submerged below
the surface of a very viscous liquid. If the cylinders are
placed sufficiently close to each other, a cusp forms in a
symmetrical position between the cylinders [12]. Letting
© 2001 The American Physical Society
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FIG. 1. (a) Cross section of the stationary air-fluid interface
produced by a thin (1 mm) stream of viscous oil poured into a
deep pool of the same fluid. The position of the cusp is marked
by a circle. (b) A hollow cylinder of air forms after a sheet of air
shot out from the cusp at a slightly higher flow rate (photograph
by Itai Cohen).

the distance between the rollers go to zero, Jeong and
Moffatt found a family of exact solutions to this problem,
obeying the local scaling form

h� y� � k23�4H� yk1�2� , (1)

where k is the curvature at the tip (see Fig. 2), and

H�j� �
p

aj �j 1
p

2�a � (2)

is universal up to the constant a.
Here and in all of the following, lengths are nondimen-

sionalized using some external length scale of the problem,
such as the distance between the rotating cylinders in the
Joseph experiment, or the radius of the impinging jet in the
pouring experiment of Fig. 1. A change in the definition
of this external length scale will be reflected in a different
value for the constant a in (2). The self-similar structure
of the solution (1) is typical for flows near singularities
[6,8,21] which involve very small scales, far removed from
any external scale. Physically (1) means that the shape of
the interface is independent of scale, up to a rescaling of
the axes with a typical local scale of the solution, which
is the radius of curvature R � k21 at the tip. The spatial
dependence enters only in the form of the similarity vari-
able j � yk1�2. Away from the tip the functional form of
the interface is h� y� �

p
a y3�2, so the walls are parallel

to the y axis asymptotically.
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FIG. 2. The local shape of the cusp, cut perpendicular to the
sheet of air. The variable y is the distance from the tip.

The other crucial property of singularities is that their
shape is universal, i.e., independent of the particular type of
flow that generates the cusp. Thus our theory, based on the
stability of such a singular structure, will be equally gen-
eral. Indeed, Antonovskii [22] discovered yet another class
of exact solutions, but where the cusp is formed on the sur-
face of a circular bubble. A local analysis reveals that the
scaling function H is identical to the one in [12] except for
a different value of the numerical constant a, confirming
the expectation that the flow on small scales is universal,
independent of the particular features of the driving flow.

A crucial and fascinating property of all cusp solutions
is that the tip curvature k grows exponentially with the
capillary number Ca � hU�g, where h is the fluid vis-
cosity, g the surface tension, and U is a typical veloc-
ity scale of the external flow. The physical origin of this
exponential sensitivity to driving lies in the interplay be-
tween the external flow and surface tension. Without any
medium inside the cusp, the y component of the velocity
field u�0�

y � y�, which is parallel to the cusp surface, meets
no resistance and thus corresponds to a downward motion
with velocity U. However, the extremely high curvature at
the tip produces a local upward motion, which cancels U
and allows the tip of the cusp to be a stagnation point. The
strength of the point forcing at the tip is the pull 2g exerted
by the almost vertical walls of the cusp. Since the veloc-
ity field generated by a point source in two-dimensional
Stokes flow is logarithmic, which has to be smoothed out
over the scale R � k21 of the tip, the upward velocity is
uup � �2g�h� lnR. Thus the stationarity condition at the
tip leads to k � c1 exp�c2Ca�, where c1 and c2 are con-
stants that depend on the flow characteristics. Note that the
contribution from the surface tension is important only in a
small region around the tip, while the mean flow along the
walls of the cusp is constant up to logarithmic corrections.
It is this flow that draws the air into the cusp.
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Thus as the strength of the driving flow increases rela-
tive to the surface tension, the size of the tip may easily
reach microscopic dimensions [12] if the effect of the air
is not taken into account. Without it, stable solutions are
predicted to exist for all capillary numbers [23], in dis-
agreement with experiment. Moffatt suggested [24] that
this is because all previous analyses neglect the viscosity
lh of the air being drawn into the cusp by the flow u�0�

y � y�
parallel to the cusp surface. The viscosity contrast l thus
measures the viscosity of the air relative to that of the fluid.
The air entering a narrow space and having to escape again
generates a so-called lubrication pressure plub� y� inside
the cusp, whose derivative with respect to the distance y
from the cusp is

p0
lub � 3lhu�0�

y � y��h2� y� (3)

by Reynolds’ theory [25]. Since the cusp narrows as
h� y� � y3�2, the lubrication pressure pushes the walls
apart according to plub � y22, just as it would keep sepa-
rated to narrowly spaced mechanical parts.

Figure 3 proves by direct numerical simulation that this
is enough to destroy the stationary solution found for l �
0. We use a boundary integral code [26,27], optimized to
resolve the cusp between two merging cylinders [28], ne-
glecting the fluid inertia. Starting from Antonovskii’s solu-
tion with k0 � 104, l is increased in steps of 2.5 3 1025,
pushing the interface forward, but only every fourth profile
is shown. At l � 5.5 3 1024, no more stationary solution
is found, but instead air enters the fluid forming a narrow
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FIG. 3. A boundary integral simulation of a bubble in the
flow proposed by Antonovskii for e � 5 and Ca � 0.0992 [22].
The undisturbed bubble radius is used to nondimensionalize all
lengths in the problem. As l is increased, the tip is pushed for-
ward, but becomes narrower at a given y. The lowest profile is
nonstationary. The inset shows the critical value of l beyond
which there is no more stationary solution for a given curvature.
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sheet, as seen in Fig. 1 and observed in earlier experiments
[29]. An important consequence is that in a physically
correct description which incorporates the effect of the air
(or some other gas atmosphere), molecular dimensions are
never reached, so continuum theory remains valid through-
out [30].

To describe the influence of the air analytically, note that
the extra transverse velocity field u�l�

x � y� generated by the
air pressure can simply be added to u�0�

x � y� as given in
[12], since Stokes’ equation is linear. Geometrically, the
cusp looks like a two-dimensional crack entering the fluid,
a problem well studied in linear elasticity [31]. Borrowing
Muskhelishvili’s result, we can now write u�l�

x � y� as

u�l�
x � y� �

Z `

0
p� y0�m� y0�y� dy0,

m�x� � �1�2p� ln��1 1
p

x ���1 2
p

x �� .
(4)

But our free-surface problem is of course nonlinear,
since the free surface has to follow the streamlines of the
flow, which are modified by u�l�

x . Namely, the inverse slope
of the interface is

h0 � �u�0�
x 1 u�l�

x ��u�0�
y , (5)

where u�0�
x and u�0�

y are known [12] and u�l�
x is calculated

from h as outlined above. Our approach of combining
lubrication theory with results for thin cracks is similar to
that employed in [32,33], for the propagation of magma-
filled fissures in the earth’s mantle. Note that while u�0�

x
has to point inward towards the cusp, u�l�

x results from
the lubrication pressure and points away from the cusp
(cf. Fig. 2). Thus, at a given distance y from the tip,
h0 becomes smaller and the channel narrows. Owing to
(3) the lubrication pressure is increased, further increasing
u�l�

x , so this nonlinear feedback eventually destroys the
cusp solution, as seen in Fig. 3.

It is extremely useful to recast Eqs. (3)–(5) in the scal-
ing variable j � yk1�2, cf. (1). First, from (5) and since
u�0�

y is a constant up to logarithmic corrections, u�0�
x must

scale as k23�4k1�2 � k21�4. From (3) plub is estimated as
plub � lk, and thus u�l�

x � lk1�2 from integrating once.
The two opposing velocities become comparable at some
critical value of the parameter r � lk3�4. Thus (3)–(5)
can be recast in similarity variables, leading to an integral
equation for the correction Hc�j� to the unperturbed sur-
face profile H�j�:

Hc�j� � 2
3rj

u
�0�
y �j�k1�2�

Z `

0

u
�0�
y �z�k1�2�M�z�j�
�H�z � 1 Hc�z ��2 dz ,

(6)

where M 0�z � � m�z �. It is a simple matter to solve (6)
numerically, giving increasingly large corrections Hc�j� to
the profile as r is raised. Since Hc is negative, the denomi-
nator in the integrand of (6) decreases, leading to a further
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increase in the absolute magnitude of the correction, in ac-
cordance with the qualitative argument given above. Ow-
ing to this nonlinear feedback, a solution ceases to exist
above a critical value of r , which has a weak dependence
on k due to the logarithmic dependence of u�0�

y on its argu-
ment. Hence for the flow parameters of Fig. 3, we predict
that the stationary cusp is lost when the curvature reaches
a critical value of kcr � 0.45l24�3. This approximation is
hardly distinguishable from the result of the full solution
of (6), which in the inset of Fig. 3 is seen to be in good
agreement with numerical simulations for various values
of l. Because of the relationship between curvature and
capillary number, this translates into the anticipated critical
value Cacr above which stationary solutions are no longer
found. At low viscosities, the capillary number never even
reaches the critical value for the formation of a cusp, so
an unperturbed water jet does not entrain air [4].

In conclusion, we have incorporated the effect of an
outer fluid like air into the theoretical description of a
cusp. This allows for the first quantitative description of air
entrainment through surface singularities. A description
of the resulting sheet of air and its stability remains to
be done. Other instabilities may occur at a three-phase
boundary, for example, when the solid to be coated is dry,
a problem studied in [2,34]. In the presence of surfactant,
still another mechanism for the loss of stationary solutions
has been suggested by Siegel [23,35].

I am very grateful to Keith Moffatt for pointing out
this problem to me, and to Itai Cohen for donating his
experimental pictures. Thanks are also due to Todd Dupont
for help with the numerics, and to Howard Stone for very
useful discussions.
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