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Continuum description of vibrated sand
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The motion of a thin layer of granular material on a plate undergoing sinusoidal vibrations is considered. We
develop equations of motion for the local thickness and the horizontal velocity of the layer. The driving comes
from the violent impact of the grains on the plate. A linear stability theory reveals that the waves are excited
nonresonantly, in contrast to the usual Faraday waves in liquids. Together with the experimentally observed
continuum scaling, the model suggests a close connection between the neutral curve and the dispersion relation
of the waves, which agrees quite well with experiments. For strong hysteresis we find localized oscillon
solutions.@S1063-651X~99!10404-5#

PACS number~s!: 83.70.Fn, 47.54.1r, 83.10.Ji
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I. INTRODUCTION

Very little is known about the laws governing the macr
scopic motion of granular materials or, for short, ‘‘sand
Most of our information comes from either experiment
microscopic molecular dynamics calculations. An accep
continuum description of sand, analogous to the equation
hydrodynamics, is missing. If such a description exists
would help our understanding enormously, much in the sa
way hydrodynamics has dominated our understanding of
ids.

One major difficulty is that sand behaves very differen
in different flow situations. If at rest or nearly so, sand b
haves like a solid, and the packing of particles is very i
portant@1#, while to reach a fluidized state the particles ha
to be shaken quite violently. In an interesting early pap
Haff @2# dealt with grains in a nearly compact state. T
opposite limit of low densities, where particle interactio
are dominated by binary collisions, is known as ‘‘rap
granular flow.’’ Using methods of kinetic theory, this lim
has received a great deal of attention@3–8#. It leads to com-
plicated three-dimensional hydrodynamic equations w
non-Newtonian transport coefficients that still need to
tested against experiment.

Great interest has been stirred by recent experiment
which a thin layer of particles is placed on a plate under
ing sinusoidal vibrations@9–20#. Above a certain vibration
amplitude, regular and irregular surface-wave patterns
excited subharmonically, i.e., the frequency of the wave
half that of the driving. The observed phenomena are v
similar to Faraday waves excited in a periodically vibrat
liquid layer ~e.g., Ref.@21#!. Typical experimental data ar
the phase diagram of different wave patterns as a functio
frequency and acceleration, and the wavelength of the
terns as a function of driving frequency at fixed accelerati
The data turn out to be independent of container size
shape, so the observed patterns represent an intrinsic p
erty of the dynamics of vibrated sand.

The experiments triggered a host of theoretical work
which a wide range of approaches has been used: mole
dynamics calculations@14,18#, simplified particle dynamics
@22#, semicontinuum theories@23,24,17#, phenomenologica
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Ginzburg-Landau models@25#, phenomenological coupled
map models@26# and order-parameter models@27#. Most no-
tably, recent molecular dynamics simulations have rep
duced the experimental results in great detail@18#. The com-
parisons between the continuum-type models a
experiments have, however, not been very detailed. In p
ticular, attempts at providing an understanding of the exp
mentally observed dispersion relation have only been m
in @24#. Overall, the focus of the continuum-type models w
mostly on reproducing the localized excitations of the lay
~‘‘oscillons’’ ! that have been observed experimentally@28#.
Studies of more general order-parameter models@29,27# in-
dicate, however, that such localized waves can also aris
nongranular systems and are therefore not the hallmar
these systems. In fact, similar excitations have been obse
recently in Faraday experiments with shear-thinning c
suspensions@30#.

The goal of this paper is to come up with a model f
waves in vibrated sand that is based on physically access
variables, and is sufficiently realistic to allow a meaning
comparison and test with experiments. At the same tim
should be simple enough also to permit analytical investi
tions, which often provide insights that are hard to obtain
numerical means. Based on the observation that the dis
sion relation of the excited waves exhibits a continuum sc
ing in the small-frequency regime@31,18,20#, we propose a
continuum model. As indicated above, finding a continuu
model based on the microscopic behavior of individu
grains would be a formidable task. For part of the perio
sand rests on the plate in a compacted state, while in
remainder of the period it is in free fall, leading to a fluidize
state. In addition, little is known about boundary conditio
near a solid wall@6,32#. Therefore, we adopt a purely phe
nomenological approach that is akin to a shallow-wa
theory, i.e., the vibrated sand is described by its height
its horizontal velocity only. The proposed model differ
however, in significant aspects from a fluid-dynamical d
scription. In particular, the unvibrated sand layer exhibits
oscillatory response. In contrast to the Faraday waves in
uids, the excited waves can therefore not be viewed as a
ing from the resonant driving of damped wave modes of
sand layer.
4476 ©1999 The American Physical Society
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PRE 59 4477CONTINUUM DESCRIPTION OF VIBRATED SAND
The paper is organized as follows. In Sec. II we introdu
a one-dimensional continuum model of vibrated sand.
discuss the driving mechanism and the physical significa
of the parameters. In Sec. III the model is linearized arou
a flat layer, to obtain analytical results for the onset of
waves and the dispersion relation between the excitation
quency and the wave number of the resulting surface wa
The results are compared with recent experiments and s
lations by Bizonet al. @18#. In Sec. IV we turn to the non
linear behavior of the model. First we investigate physi
origins for the experimentally observed hysteresis in the
set of the waves. Tuning the parameters in the model to g
strong hysteresis, we find localized oscillon solutions.

II. MODEL

Central to our model is the experimental observation t
the position of the bottom of the layer of sand is close
modeled by the motion of a single, totally inelastic, partic
@31#. This is because all the energy is lost upon impact in
inelastic collisions between the grains. The force driving
patterns is thus proportional to the acceleration of the ine
tic particle, minus the acceleration of gravityg. At each im-
pact, this relative accelerationg(t) is strongly peaked, and
its strength is related to the velocity of impact.

We consider very thin layers, and assume that they ca
characterized by their thickness and mean horizontal velo
alone. For simplicity, we will only consider one-dimension
motion. We will not address the nonlinear pattern-select
problem that arises in two-dimensional patterns~e.g., stripes
vs squares!. From mass and momentum conservation cons
erations we arrive at equations quite similar to those o
fluid layer in the lubrication approximation, except for som
crucial differences to be elaborated below. The equations

h̄ t̄1~ v̄h̄! x̄5~D̄1h̄x̄! x̄ , ~1a!

v̄ t̄1 v̄ v̄ x̄52ḡ~ t̄ !
h̄x̄

A11h̄x̄
2

2B̄v̄1~D̄2v̄ x̄! x̄ . ~1b!

To contrast all physical quantities from their dimensio
less counterparts, they carry an overbar. Equation~1a! comes
from mass conservation, with an Edwards-Wilkinson diff
sion term on the right, which describes the tumbling
grains atop one another@33#.

Equation~1b! expresses the momentum balance, wherv̄
is the horizontal velocity integrated over the layer heighh̄
@34#. It contains a driving term proportional to both the a
celerationḡ( t̄ ) relative to a freely falling reference frame a

well as the slopeh̄x̄ , since particle motion starts only if th
surface is inclined. The denominator reflects the assump
that upon impact the sand grains are isotropically disper
but only those scattered out of the layer contribute to
horizontal flux. Note that this ensures finite driving in th

limit h̄x̄→`. Without the denominator we numerically foun
wave solutions which became progressively higher and m
peaked, leading to an unphysical finite-time singularity. T
second and third terms on the right describe the internal f
tion due to vertical gradients in the velocity field, and t
e
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viscouslike friction due to horizontal gradients, respective
Since the vertical gradients are not resolved in this thin-la
approach, they lead to a bulk damping term.

Our model~1! differs from the fluid problem in a numbe
of ways. Through the assumption of random scattering of

grains upon impact, the driving is nonlinear inh̄x̄ . In con-
trast to liquids the sand layer lifts off the plate when t
acceleration of the plate exceedsg. Thus the acceleration
term ḡ( t̄ ) vanishes over large parts of the cycle, and is la
est when the sand layer hits the plate. In the following
will assume that it consists mainly of a series ofd functions.
There is no surface tension in the granular material. Inst

an additional diffusion term appears in the equation forh̄.
It should be emphasized that the effective friction a

diffusion coefficientsB̄, D̄1, and D̄2 implicitly contain the
effect of the solid plate and the varying degrees of fluidiz
tion present at different frequencies. It would be quite natu
to assume that the friction between the sand and the p
arises only during the phases when the layer is very clos
the plate. Since the velocity is not continuous through
d-like impact of the layer on the plate ad-like friction term
is mathematically ill defined. For simplicity we therefor
smear out the friction over the whole period, and expect t

it can be modeled by an effective value of the coefficientB̄.
We expect that due to the graininess of the material the
sipation due to the vertical gradients will increase with d
creasing slope of the surface, since the faster flowing gra
near the surface are hindered by the slower grains un
neath. This is not unlike the effect of an angle of repose. T

coefficientsD̄1 and D̄2 for particle diffusion and viscosity
are expected to depend on the typical velocity of the gra
which is related to the impact velocityv̄0. They will increase
with the typical velocity of the grains, since increasing v
locity enhances the diffusive transport as well as the mom
tum exchange due to collisions@35,36#. Thus in general we
have

D̄1,25D̄1,2~ v̄0 ,h̄,v̄ !, B̄5B̄~ v̄0 ,h̄,h̄x̄ ,v̄ !. ~2!

Since the experiments are performed over a small rang
accelerations, the impact velocity is essentially given by
frequency. Thus the dependence onv̄0 implies an apparen
frequency dependence of the coefficients. Note that a
quency dependence would also arise if an averaging pr
dure could be applied, in which the basic equations are
eraged over a period of the driving. It should be emphasiz
however, that this is not the origin of the frequency depe
dence considered in this paper.

We now make all quantities dimensionless using the fi

ing height h̄0 as a length scale andt̄5(h̄0 /g)1/2 as a time
scale. The dimensionless drivingḡ( t̄ )/g then depends only
on the dimensionless acceleration

G5
Av2

g
~3!

of the plate, whereA is the amplitude of the harmonic driv
ing with frequencyv̄. The dimensionless dispersion relatio
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4478 PRE 59JENS EGGERS AND HERMANN RIECKE
has then the formq5q(v,G,h̄0 /d̄), where d̄ is the grain
diameter. The remarkable observation from the experime
data@31,18,20# is that in the low-frequency regime the di

persion relation isindependentof h̄0 /d̄, i.e., of particle di-

ameter, whereh̄0 /d̄ varies between 3 and 14.

III. LINEAR THEORY

To understand the instability of the flat layer, we lineari

in the dimensionless variablesH and V, with h̄/h̄0[h51

1H and v̄/(gh̄0)1/2[v5V. The transport coefficients ar
evaluated ath51 andv50. The linearized equations of mo
tion can be transformed into a single wave equation forH:

Htt52BHt1~BD11g~ t !!Hxx

1~D11D2!Htxx2D1D2Hxxxx. ~4!

To simplify the analytical calculation, we assume thatg(t)
consists only of a series ofd shocks with periodT52p/v,

g~ t !5v0 (
j 52`

`

d~ t2 jT !, ~5!

and neglect the force on the layer during the subsequent
intervals in which the layer is in contact with the plate. No
that v0 is the impact velocity, hence it can be written asv0
5 f (G)/v. The curvef (G) is shown in Fig. 1; see Ref.@31#.
As G rises above 1, the layer begins to bounce, andv0 in-
creases withG. Between 3.3,G,3.7 the layer is locked into
a state where it never rests on the plate andv0 remains con-
stant. AboveG53.7 period doubling occurs, andg(t) can no
longer be written in form~5!. In a straightforward generali
zation, two different periods withT11T252T appear.

In between shocks, the solution of Eq.~4! is H}esteiqx,
where the dispersion relations

s152D1q2, s252B2D2q2 ~6!

correspond to pure relaxation. At the point of impact, thed
function imposes a jump condition

Ht
~1 !2Ht

~2 !5v0Hxx . ~7!

FIG. 1. Dimensionless impact velocity of a completely inelas
ball on a vibrating plate as a function of the accelerationG.
al

e

The heightH itself is continuous. By making the gener
ansatz

Hn5~anes1~ t2nT!1bnes2~ t2nT!!eiqx,

and requiringan115san andbn115sbn for the eigenmode,
for the amplifications of the eigenmode we obtain

s5r6Ar22s1s2, r5
1

2S s11s22v0q2
s12s2

s12s2
D , ~8!

with s15es1T and s25es2T. Sincesi,1 @cf. Eq. ~6!# and
r,1, the condition for instability,usu.1, can only be satis-
fied with real s,21. Thus the only instability is subhar
monic, i.e., the motion repeats itself only every other per
of the driving, as observed experimentally. Analyzing Eq.~8!
in the limit q→` shows that catastrophic instabilities occ
if either D1 or D2 vanish. This can also be seen directly fro
Eq. ~4!: Since the driving withg is proportional toq2, only
the combined dampingD1D2q4 keeps short-wavelength in
stabilities at bay. We emphasize that this mechanism
wave number selection is quite different from that at work
the liquid case. Faraday waves have the same dispersio
lation as if there was no driving, and the significance of t
driving lies only in exciting the waves. In the case of san
the medium itself does not support waves, as seen from
~6!; only the competition between driving at small wav
numbers and damping at large wave numbers selects
wave number.

Strictly speaking, Eq.~6! applies only during the free fal
between shocks. During the periods in which the sand is
contact with the plate and experiences an acceleration
could exhibit an oscillatory response if the damping is su
ciently weak. Specifically, in the absence of any forcing, i.
for g51, the waves exhibit a dampedoscillatory behavior
for

B~D22D1!,1. ~9!

Experimentally, however, the layer spends a large fraction
the cycle in free flight already before the onset of wav
Therefore, even if Eq.~9! should be satisfied during the brie
periods during which the layer is in contact with the pla
the oscillatory response is not expected to be relevant for
excitation of waves.

Next we compute the most unstable mode on the neu
curves51. For supercritical transitions this gives the wav
length that is expected to appear as the acceleration is ra
slowly above the critical valueGc . Introducing the dimen-
sionless combinations

d5
D2

D1
, b5BT, Q25D1q2T, ~10!

we find

v0
~c!5D1

~11eQ2
!„b1~d21!Q2

…

Q2

11e2~b1dQ2!

12e2„b1~d21!Q2
…

.

~11!

To find the critical wave number, Eq.~11! has to be mini-
mized with respect toQ, giving
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PRE 59 4479CONTINUUM DESCRIPTION OF VIBRATED SAND
Qc5Qc~b,d!. ~12!

Plugging this back into Eq.~11! leads to the critical impac
velocity v0

(c)(b,d), and then to an expression of the form

f ~Gc!5v0
~c! v[D1vF~b,d!. ~13!

In general, the minimum has to be found numerically. F
two limiting cases, however, the dispersion relation can
given explicitly,

qc5
0.45

AD1

v1/2 for b→`, ~14!

qc5a~D1 ,D2!v1/2 for b→0, ~15!

wherea(D1 ,D2) is determined from an implicit equation. I
both casesqc}v1/2 for fixed Di . This is because the wave
are damped by a diffusive mechanism. The same ‘‘viscou
scaling has also been found in other approaches@24,25#.
Power laws different from 1/2 are due to some frequen
dependence of the model parameters.

We can now attempt to make a more quantitative co
parison between experimental measurements@18# and our
model. We will try to extract the dependence of the transp
coefficients on the layer height and the frequency from
experimental data, and see whether this leads to a consi
picture. In Figs. 2 and 3 we show the experimental meas
ment of the onset curve and the dispersion relation, res

FIG. 2. Neutral curveGc(v). Solid circles give the experimenta
results for increasingG for a mean layer thickness of 2.98 mm
taken from Ref.@18#. Theoretical fits forB50.08, D152.1/v,
and D250.12/v ~open squares!; B50.14, D150.93/v, D2

50.94/v ~plusses!; and B50.3, D150.1/v, and D251.9/v
~open circles!.

FIG. 3. Dispersion relationqc(v) corresponding to the neutra
curves in Fig. 2. Experimental results are given by solid symb

~circles for h̄052.98 mm, triangles forh̄051.49 mm).
r
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tively. In a double-logarithmic plot, the dispersion relatio
shows a sharp transition atv5v tr , which lies between 3 and

4 for h̄052.98 mm. In the low-frequency regimev,v tr the
behavior is close tok;v1.3, while a much weaker depen
dence of roughlyk;v0.3 is seen at high frequencies. No
that the exponents of both power laws are much smaller t
the exponent 2 reported in earlier experiments@11#, con-
tinuum theory@24#, and numerical simulations@14,17#. In
view of the short scaling range one should, however, be v
careful interpreting the data in terms of scaling laws.

According to Ref.@31# the transition between the differen

power laws is associated with the frequencyGAh̄0/2d̄, above
which the velocity of the plate is no longer sufficient to l
one particle hop across the other. Therefore, all particles
locked into a fixed relative position, and the motion is pr
dominantly in the vertical direction. Our theory is therefo
not expected to be applicable. Hence we will only be co
cerned with the low-frequency regimev,v tr . From the

data of Ref.@31# for h̄0 /d̄ between 3 and 13, it is also see
that continuum scaling works much better in the lo
frequency regime.

Turning to the phase diagram, stripe patterns are obse
at high frequencies, while our frequency range of inter
v,v tr is associated with two-dimensional square patter
This does not, however, affect the comparison with thelin-
ear properties of the one-dimensional model. In the lo
frequency regime, the criticalG decreases slightly with fre
quency, and hysteresis is found. Experiments at differ
layer heights@16,37# reveal that there is only a small increa
of Gc with layer height.

To compare theory with experiment, it is useful to retu
to dimensioned quantities in order to resurrect the dep

dence on the mean layer heighth̄0. We find

f ~Gc!5
D̄1~v̄,h̄0!

gh̄0

v̄F~b,d!, ~16!

q̄25
Qc

2~b,d!

2pD̄1~v̄,h̄0!
v̄. ~17!

Assuming that both diffusion coefficients scale the same w

in h̄0 and v̄, we try the ansatz

D̄1,25D̂1,2

h̄0
m

v̄n
. ~18!

This rendersd independent ofv̄ and h̄0. Since experimen-

tally Gc increases only slightly withh̄0 at fixed v̄, we con-
clude from Eq.~16! thatm511e, where 0,e!1 is used to
indicate the weak increase inGc with layer height@37#. This
is not to say that the experimental onset fits such a po
law, but rather just to indicate how a change in the dep

dence of the onset onh̄0 affects the dispersion relation be
tweenq and v within the present framework. In all result
below, we usee50. Inserting Eq.~18! into the dispersion
relation~17!, for the dimensionless wave numberq as a func-
tion of v one obtains

ls
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4480 PRE 59JENS EGGERS AND HERMANN RIECKE
q25
Qc

2~b,d!

2pD̂1g2~11n!/2
h̄0

[ ~12n!/2]2ev11n. ~19!

Experimentally,q(v) collapses onto a single curve indepe

dent of h̄0. Thusn5122e, and we obtain

D̄1,25D̂1,2

h̄0
11e

v̄122e
, ~20!

whereD̂1,2 has the dimension of an acceleration~for e50).
This makes the dimension of the material parameters of
sand the same as the control parameter of the experim
which is the physical origin of the observed collapse of

dispersion relation. Note that~for e50) D̄1,2 are propor-
tional to the impact velocityv0}v21 for given acceleration.
Thus the final result for the dispersion relation is

q25
Qc

2~b,d!

2p

g12e

D̂1

v2~12e!. ~21!

It remains to determineb, d, and D̂1 from a comparison
with the experiments.

From Eqs.~16! and~20! it follows that forB50 the onset
accelerationGc is independent of frequency~for e50). If B
is taken to be finite, lower frequencies will be damped mo
due to the termBv in Eq. ~1!. Thus, in accordance with
experimental findings@12,16,18#, the critical acceleration
G (c) decreases slightly with frequency.

We concentrate on the transition from a flat layer
waves in the low-frequency regimev,v tr . The transition
occurs forG between 2.5 and 3 at the lowest frequenci
depending on the type of particle and on the layer thickne
For definiteness, we consider the phase diagram@18# for a

mean layer thickness ofh̄052.98 mm, shown in Fig. 2. The
critical G is seen to rise fromGc52.3 atv54 to Gc52.7 at
v51. Keeping the ratiod5D2 /D1 constant, one can adjus
D2 to give the correct value forv51. ForB50, this value
would remain constant for allv. By choosingB to haveGc
agree with the experimental finding atv54, the onset curve
is reasonably well reproduced. In Fig. 2 we include the
for d50.057,d51.01, andd519, for which the agreemen
is comparable.

Next we turn to the dispersion relation of wavenumb
versus frequency as given by Bizonet al. @18#, shown in Fig.
3. The only parameter remaining to be fixed is the ratiod
between damping constants. We adjust it to obtain an o
mum fit of the theoretical dispersion relation to the expe
mental data. While the slope of the experimental data is
slightly higher than predicted from theory, ford50.057 we
find a reasonable agreement.

IV. NONLINEAR PROPERTIES AND OSCILLONS

To investigate the nonlinear behavior of the model,
coefficientsDi are taken to depend on the local layer heig
h according to Eq.~20!. We find that the bifurcation from the
flat state to the standing waves is supercritical if the trans
coefficients are taken to be independent ofhx andv ~as in the
e
nt,
e

t,

,
s.

s

r

ti-
-
ill

e
t

rt

similar model proposed in Ref.@24#!, while experimentally
the transition is subcritical@11,12#. We consider two physi-
cally plausible reasons for this discrepancy.

Statically, sand has a finite angle of repose. Motion o
starts if the slope of a hill of sand exceeds a certain criti
valuek. One may expect that in a dynamic state this leads
enhanced friction of the flowing upper layer when the slo
of the surface is small. We model this by taking

B5B0 ~11B1 e2~hx /k!2
!, ~22!

wherek sets the characteristic slope below which the gra
lar character of the material becomes noticeable.

Second, the layer will have a much higher viscosity wh
it is near its compact state. An accurate description will ha
to contain a parameter which measures how far the laye
from this state. As the ‘‘fluidization’’ increases, the viscosi
is expected to decrease. The simplest assumption is tha
fluidization depends directly on the local velocityv(z,t), and
thus we model this effect by

D25D2
~0!~v!@11he2~v/v f !

2
#. ~23!

Note that the fluidization and thus the local velocity are d
tinct from the typical velocity of the vibrating plate. Th
latter sets the typical collision time between particles, a
thus leads to arise in viscosity as it increases. It is obviou
that Eqs.~22! and ~23! can lead to a subcritical transition t
waves. Greater accelerations are needed to set the laye
motion for zero initial slope and zero velocity. On the oth
hand, once waves have started to appear, the motion
persist to lower values ofG. Figure 4 shows a typical hys
teresis with only the fluidization@Eq. ~23!# taken into ac-
count. In the numerical simulationsg(t) is taken to contain
not only thed shocks, but also the smoothly varying acce
eration while the layer is in contact with the plate.

The subcritical properties of the model are believed
play a crucial role in the appearance of localized subh
monic excitations called oscillons. They arise from extend
square patterns when the driving is reduced below the sta
ity limit of the latter. Alternatively, they can be excited by
localized ‘‘seed’’@28#. In one period, an oscillon consists o
an axisymmetric jet of a height several times its diame
shooting out of an almost flat layer. In the next period, t
oscillon forms a shallow circular ‘‘trough,’’ surrounded by
small mound.

FIG. 4. Hysteretic nature of the transition in the presence o
velocity-dependent viscosity~23! with h50.5 andv f50.2. The
other parameters arev51.62105, D15D250.37, andB50.45.
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The appearance of oscillons requires that the flat laye
linearly stable, while, in the region covered by the oscillo
waves can be sustained, since the grains are fluidized on
the center. In the trough phase, the mound has a very sha
slope facing out, so the outward flux of material is strong
damped and almost all the material is sent radially inwa
The small amount of sand that is transported outward co
back during the following ‘‘peak’’ phase. Because of ma
conservation, it is evident that the formation of oscillons
greatly facilitated by their radial geometry. The greater
radius r away from the center, the smaller the heighth(r )
that corresponds to the mass of the peak during the p
phase. Conversely, ingoing sand is focused into a sharp
Therefore, within the one-dimensional version of our mod
oscillons are expected to arise only over a smaller rang
parameters than in two dimensions@27#. In fact, they could
only be found for greatly exaggerated subcritical behav
i.e., largeB1 andh. This may also be the reason why, so fa
stable oscillons have not been found in experiments on
brated sand between two narrowly spaced plates, which
fectively have only one horizontal dimension@15#. In these
experiments, localized structures appear only intermitte

FIG. 5. Oscillon solution for G52.5, v51.6, D1

50.376h, D2
(0)50.08h, B050.1, B1519, k50.2, h56,

andv f50.4.
e
,
in
w

.
es
s

e

ak
et.
l,
of

r,
,
i-
f-

ly

as localized bursts, but not as time-periodic structures w
steady amplitude. Our main point will therefore be that stru
turally our model allows oscillon solutions. For a more qua
titative description an axisymmetric version of our code h
to be considered.

Figure 5 shows a numerically obtained one-dimensio
oscillon in its two phases. The central jet is considerably l
sharp than the experimental one, as expected from the a
argument. The parameters are chosen so as to damp the
tion outside the oscillon very rapidly (h56), and to make
sure that as the layer hits the plate in the trough phase
most all material is transported inward (k50.2, B1519).
The temporal evolution of the surface height is shown in F
6 as a space-time diagram. This illustrates the transport a
and toward the center of the oscillon. As initial condition
we chose a localized velocity profile directed inward towa
a point, to produce an initial central peak. We find that t
layer thickness averaged over two periods is smaller ins
the oscillon than outside. Thus the oscillon tends to push
material. In preparing an initial condition, we accounted
this by reducing the layer thickness in the center. Once
solution was close to stationary, we checked for exponen
convergence toward an oscillon solution. Furthermore,
parameters could be varied to within a few percent with
destabilizing the oscillon.

V. DISCUSSION

In the present paper we have presented a simple hydr
namic description of surface waves on vertically vibrat
granular media. We have eliminated all vertical degrees
freedom, and described the horizontal motion by three eff
tive transport coefficients. Our model predicts an instabi
based on the interplay between shocks imparted by imp
on the plate and diffusion both in the layer height and
momentum of the layer. This distinguishes the model fro
earlier approaches@11,16,25#, which, in analogy to Faraday
waves in liquids, are based on the resonant excitation
damped waves that exist even in the absence of peri
driving.
n
s
e

FIG. 6. Space-time diagram of the evolutio
of the oscillon shown in Fig. 5 during two period
of the driving. The shocklike impact occurs at th
times marked with narrower line spacing.
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To obtain quantitative agreement with experiment, the
pendence of the transport coefficientsB, D1, and D2 on
experimental control parameters has to be taken into acco
Remarkably, the possibilities for this dependence become
verely restricted by the weak dependence of the neutral c
on the frequency and the collapse of the experimental d
for the dispersion relation in units of the gravitational acc
erationg and the mean layer heighth0. As a consequence
the neutral curve and the fact of the data collapse alone
ply a certain dependence of the wave number on the
quency, which turns out to be in reasonable agreement
the experiment. This leads to an interdependence of th
seemingly independent observations. Conversely, the po
laws are predicted to change if other parameter dependen
of B, D1, and D2 apply, in which case data collapse ma
also no longer occur. Thus the data collapse indicates m
than continuum scaling alone, i.e., more than the indep
dence of the grain diameterd̄; within our model the collapse
is due to specific dynamical properties of the vibrated s
as reflected in the transport coefficients. Indeed, there
indications@16,18# of a high-frequency regime in which th
power law is different, and where the data collapse a
seems to be in question@31#.

To obtain the experimentally observed strong subcritic
ity of the transition to waves, we have invoked a critic
slopek in the friction term@Eq. ~22!#. This effect would be
connected with the granularity of the material, and the

rameters are expected to depend ond̄/h̄0, implying that the
continuum scaling should not hold in the nonlinear regim
Unfortunately, the fluidization~23! also comes into play
when determining the hysteresis, so there is no simple e
mate of the dependence of the hysteresisDG on the particle
diameter. Still, measurements ofDG as a function of bothd̄

and h̄0 would be revealing.
It is expected that the agreement with experimental d

could be further improved if additional aspects of the syst
are included in the model. For instance, we have negle
effects of a layer dilation, which will depend on frequenc
the dilation will smooth out thed driving, making the driv-
ing less effective, and loweringv0.

It would be interesting if the dependence ofB,D1, andD2
on the frequency or other experimental variables could
determined directly in experiments. Whether the measu
ment of the frequency dependence of the viscosity by dr
ging a sphere through a vibrated layer of sand@38# is directly
transferable to our model is not clear. In addition, it is a
sumed that only a certain part of the layer takes part in
horizontal motion. In@24# this was treated by introducing
.
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‘‘penetration depth,’’ which is an unknown function of pa
rameters. It was crucial for obtaining a transition atv tr be-
tween high- and low-frequency regimes@24#.

An obvious question is whether our model can be tes
against other experimental observations without signific
further complications and with the same parameter valu
First, the success@18# of numerical simulations in reproduc
ing experimental data opens the possibility of a detai
comparison of the wave forms. Nonlinear effects are v
strong and the waves are far from sinusoidal, the crests b
substantially more peaked than the troughs, which qua
tively is also seen in our model. A next step would be
exploration of the phase diagram at higher accelerations
least in the low-frequency regime. That would necessitat
two-dimensional approach to address the relevant patt
selection properties. Such a two-dimensional version wo
also allow for a quantitative study of oscillons, both in the
shape and their occurrence in parameter space.

In the model presented here it is found that localiz
waves expel material into the quiescent regions. Transpo
this type was considered essential in the Ginzburg-Land
type model introduced in Ref.@25#, in which the layer height
couples back to the damping of the waves. Such a feedb
would occur in the model discussed here fore.0 in Eq.
~20!. Whether such a transport actually occurs in the exp
ment is of great interest.

A significant step beyond the models presented so
would be an investigation of the high-frequency regim
where the dispersion relation very significantly changes
power law. Since this seems to be the regime where gr
are geometrically obstructing each other, one expects a
nificant dependence on grain size and a breakdown of c
tinuum scaling. Within our model, this could possibly b
modeled by a different parameter dependence of the tr
port coefficients. On the other hand, it is conceivable that
strong spatial correlations introduced by the particles, wh
are locked into a fixed relative position and predominan
move in a vertical direction, calls for a different, perha
nonlocal, hydrodynamic description.
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