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Continuum description of vibrated sand
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The motion of a thin layer of granular material on a plate undergoing sinusoidal vibrations is considered. We
develop equations of motion for the local thickness and the horizontal velocity of the layer. The driving comes
from the violent impact of the grains on the plate. A linear stability theory reveals that the waves are excited
nonresonantly, in contrast to the usual Faraday waves in liquids. Together with the experimentally observed
continuum scaling, the model suggests a close connection between the neutral curve and the dispersion relation
of the waves, which agrees quite well with experiments. For strong hysteresis we find localized oscillon
solutions.[S1063-651X99)10404-5

PACS numbgs): 83.70.Fn, 47.54:r, 83.10.Ji

I. INTRODUCTION Ginzburg-Landau model§25], phenomenological coupled
map model$26] and order-parameter mod¢R7]. Most no-

Very little is known about the laws governing the macro-tably, recent molecular dynamics simulations have repro-
scopic motion of granular materials or, for short, “sand.” duced the experimental results in great ddtbf]]. The com-
Most of our information comes from either experiment or parisons between the continuum-type models and
microscopic molecular dynamics calculations. An accepteaxperiments have, however, not been very detailed. In par-
continuum description of sand, analogous to the equations dicular, attempts at providing an understanding of the experi-
hydrodynamics, is missing. If such a description exists, itmentally observed dispersion relation have only been made
would help our understanding enormously, much in the samin [24]. Overall, the focus of the continuum-type models was
way hydrodynamics has dominated our understanding of flumostly on reproducing the localized excitations of the layer
ids. (“oscillons™) that have been observed experimentalig].

One major difficulty is that sand behaves very differently Studies of more general order-parameter mof2%27 in-
in different flow situations. If at rest or nearly so, sand be-dicate, however, that such localized waves can also arise in
haves like a solid, and the packing of particles is very im-nongranular systems and are therefore not the hallmark of
portant[ 1], while to reach a fluidized state the particles havethese systems. In fact, similar excitations have been observed
to be shaken quite violently. In an interesting early paperrecently in Faraday experiments with shear-thinning clay
Haff [2] dealt with grains in a nearly compact state. Thesuspension§30].
opposite limit of low densities, where particle interactions The goal of this paper is to come up with a model for
are dominated by binary collisions, is known as “rapid waves in vibrated sand that is based on physically accessible
granular flow.” Using methods of kinetic theory, this limit variables, and is sufficiently realistic to allow a meaningful
has received a great deal of attent[@a-8]. It leads to com- comparison and test with experiments. At the same time it
plicated three-dimensional hydrodynamic equations withshould be simple enough also to permit analytical investiga-
non-Newtonian transport coefficients that still need to betions, which often provide insights that are hard to obtain by
tested against experiment. numerical means. Based on the observation that the disper-

Great interest has been stirred by recent experiments ision relation of the excited waves exhibits a continuum scal-
which a thin layer of particles is placed on a plate undergoing in the small-frequency reginé&1,18,2Q, we propose a
ing sinusoidal vibration§9—20]. Above a certain vibration continuum model. As indicated above, finding a continuum
amplitude, regular and irregular surface-wave patterns armodel based on the microscopic behavior of individual
excited subharmonically, i.e., the frequency of the waves igrains would be a formidable task. For part of the period,
half that of the driving. The observed phenomena are vergand rests on the plate in a compacted state, while in the
similar to Faraday waves excited in a periodically vibratedremainder of the period it is in free fall, leading to a fluidized
liquid layer (e.g., Ref.[21]). Typical experimental data are state. In addition, little is known about boundary conditions
the phase diagram of different wave patterns as a function afear a solid wall6,32]. Therefore, we adopt a purely phe-
frequency and acceleration, and the wavelength of the patomenological approach that is akin to a shallow-water
terns as a function of driving frequency at fixed accelerationtheory, i.e., the vibrated sand is described by its height and
The data turn out to be independent of container size oits horizontal velocity only. The proposed model differs,
shape, so the observed patterns represent an intrinsic propewever, in significant aspects from a fluid-dynamical de-
erty of the dynamics of vibrated sand. scription. In particular, the unvibrated sand layer exhibits no

The experiments triggered a host of theoretical work inoscillatory response. In contrast to the Faraday waves in lig-
which a wide range of approaches has been used: moleculards, the excited waves can therefore not be viewed as aris-
dynamics calculation§14,18, simplified particle dynamics ing from the resonant driving of damped wave modes of the
[22], semicontinuum theorie23,24,11, phenomenological sand layer.
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The paper is organized as follows. In Sec. Il we introduceviscouslike friction due to horizontal gradients, respectively.
a one-dimensional continuum model of vibrated sand. WeSince the vertical gradients are not resolved in this thin-layer
discuss the driving mechanism and the physical significancapproach, they lead to a bulk damping term.
of the parameters. In Sec. Il the model is linearized around Our model(1) differs from the fluid problem in a number
a flat layer, to obtain analytical results for the onset of theof ways. Through the assumption of random scattering of the
waves and the dispersion relation between the excitation fr%@'rains upon impact, the driving is nonlinearln'_q. In con-
quency and the wave number of the resulting surface wavegast to liquids the sand layer lifts off the plate when the
The results are compared with recent experiments and simyceleration of the plate exceegds Thus the acceleration
lations by Bizonet al. [18]. In Sec. IV we turn to the non- —— . .
: ; : ; , .__term y(t) vanishes over large parts of the cycle, and is larg-
linear behavior of the model. First we investigate physical h :

o . . est when the sand layer hits the plate. In the following we
origins for the experimentally observed hysteresis in the on- ill assume that it consists mainly of a seriessofunctions
set of the waves. Tuning the parameters in the model to giv ; 'S mainly ) )

here is no surface tension in the granular material. Instead

strong hysteresis, we find localized oscillon solutions. - a _ -
an additional diffusion term appears in the equationtfor
Il. MODEL It should be emphasized that the effective friction and

) ) i diffusion coefficients, D,, and 52 implicitly contain the
Central to our model is the experimental observation thakgsect of the solid plate and the varying degrees of fluidiza-
the position of the bottom of the layer of sand is closely(gn present at different frequencies. It would be quite natural
modeled by the motion of a single, totally inelastic, particley, assume that the friction between the sand and the plate,
[31]. This is because all the energy is lost upon impact in theyjses only during the phases when the layer is very close to
inelastic collisions between the grains. The force driving théne plate.” Since the velocity is not continuous through the
patterns is thus proportional to the acceleration of the inelas_jixe impact of the layer on the plate &like friction term
tic particle, minus the acceleration of gravly At each im- s mathematically ill defined. For simplicity we therefore
pact, this relative acceleratiop(t) is strongly peaked, and gmear out the friction over the whole period, and expect that

its strength is related to the velocity of impact. . b deled b fect | f th Hic
We consider very thin layers, and assume that they can pig can b€ modeled by an € ect'lv'e value of the coetlic nt :
e expect that due to the graininess of the material the dis-

characterized by their thickness and mean horizontal velocity. ~ = . : o :
alone. For simplicity, we will only consider one-dimensional SiPation due to the vertical gradients will increase with de-
motion. We will not address the nonlinear pattern—seIectioncr('}""S'ng slope of the sgrface, since the faster ﬂowmg grains
problem that arises in two-dimensional pattefeg., stripes near the §u_rface are hindered by the slower grains under-
vs squares From mass and momentum conservation considn€ath- This is not unlike the effect of an angle of repose. The
erations we arrive at equations quite similar to those of eoefficientsD; and D, for particle diffusion and viscosity_
fluid layer in the lubrication approximation, except for someare expected to depend on the typical velocity of the grains,
crucial differences to be elaborated below. The equations arghich is related to the impact velocity,. They will increase
with the typical velocity of the grains, since increasing ve-

h+ (u_ﬁ);= (Slﬁ;);, (18 locity enhances the diffusive transport as well as the momen-
tum exchange due to collisioi85,36. Thus in general we
- L ﬁ; . have
vitovve=— (1) —Bv+(Dyvy)y. (1b) e
V1+hi D1,~D14vo,hv), B=B(vohhcv). (2

To contrast all physical quantities from their dimension-Since the experiments are performed over a small range of
less counterparts, the_y carry an overbar. Equa(tlghcome; accelerations, the impact velocity is essentially given by the
from mass conservation, with an Edwards-Wilkinson d'ff“‘frequency. Thus the dependence wgnimplies an apparent
sion term on the right, which describes the tumbling offrequency dependence of the coefficients. Note that a fre-
grains atop one anoth¢s3]. __quency dependence would also arise if an averaging proce-

Equation(1b) expresses the momentum balance, where dure could be applied, in which the basic equations are av-
is the horizontal velocity integrated over the layer height €raged over a period of the driving. It should be emphasized,
[34]. It contains a driving term proportional to both the ac- however, that this is not the origin of the frequency depen-

celerationy(t) relative to a freely falling reference frame as dence considered in this paper. . . .
— ] - ) We now make all quantities dimensionless using the fill-
well as the slopén,, since particle motion starts only if the . —

surface is inclined. The denominator reflects the assumptiopi‘g heighth, as a length scale_aid:(ho/g)l’z as a time
that upon impact the sand grains are isotropically disperse@cale. The dimensionless driving(t)/g then depends only
but only those scattered out of the layer contribute to the&n the dimensionless acceleration
horizontal flux. Note that this ensures finite driving in the A2

w

limit hi— oo. Without the denominator we numerically found r=— (3)
wave solutions which became progressively higher and more g

peaked, leading to an unphysical finite-time singularity. The

second and third terms on the right describe the internal fricof the plate, wheré\ is the amplitude of the harmonic driv-
tion due to vertical gradients in the velocity field, and theing with frequencyw. The dimensionless dispersion relation
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The heightH itself is continuous. By making the general
ansatz

Hn=(ane"l“‘”T)+,8ne"2(t‘”T))e‘qX,

and requiringx,, , 1 = Sa,, and B, 1 =S8, for the eigenmode,
for the amplifications of the eigenmode we obtain

1 S1—S)

SEPENP SIS, pES S1+5,~voq°

—1, (8
01702

with s;=e’1T ands,=e"2". Sinces;<1 [cf. Eq. (6)] and
p<1, the condition for instability|s|>1, can only be satis-
fied with reals<—1. Thus the only instability is subhar-

FIG. 1. Dimensionless impact velocity of a completely inelastic monic, i.e., the motion repeats itself only every other period

ball on a vibrating plate as a function of the accelerafion

has then the formg=q(w,T,hy/d), whered is the grain

of the driving, as observed experimentally. Analyzing ).
in the limit q—< shows that catastrophic instabilities occur
if either D, or D, vanish. This can also be seen directly from

diameter. The remarkable observation from the experimentdqg. (4): Since the driving withy is proportional tog?, only
data[31,18,2Q is that in the low-frequency regime the dis- the combined dampin®,D,q* keeps short-wavelength in-

persion relation isndependenbf hola, i.e., of particle di-
ameter, whereholavaries between 3 and 14.

lll. LINEAR THEORY

To understand the instability of the flat layer, we linearize

in the dimensionless variablds and V, with Flﬁozhzl

stabilities at bay. We emphasize that this mechanism for
wave number selection is quite different from that at work in
the liquid case. Faraday waves have the same dispersion re-
lation as if there was no driving, and the significance of the
driving lies only in exciting the waves. In the case of sand,
the medium itself does not support waves, as seen from Eq.
(6); only the competition between driving at small wave
numbers and damping at large wave numbers selects the

+H and v/(ghy)*?=v=V. The transport coefficients are wave number.

evaluated ah=1 andv=0. The linearized equations of mo-

tion can be transformed into a single wave equationHor
Hiy=—BH+(BDy+ (1)) Hyx
+ (D1+ DZ)Htxx_ D1D2Hxxxx-

To simplify the analytical calculation, we assume thdt)
consists only of a series @& shocks with periodlr =27/ w,

Y()=vo 2, 8(t=iT), (5)

Strictly speaking, Eq(6) applies only during the free fall
between shocks. During the periods in which the sand is in
contact with the plate and experiences an acceleration, it
could exhibit an oscillatory response if the damping is suffi-
ciently weak. Specifically, in the absence of any forcing, i.e.,
for y=1, the waves exhibit a dampeaxbcillatory behavior
for

(€)

Experimentally, however, the layer spends a large fraction of
the cycle in free flight already before the onset of waves.
Therefore, even if Eq9) should be satisfied during the brief
periods during which the layer is in contact with the plate,

and neglect the force on the layer during the subsequent timgg oscillatory response is not expected to be relevant for the

intervals in which the layer is in contact with the plate. Note

thatv, is the impact velocity, hence it can be writtenwas
=f(I')/w. The curvef (I') is shown in Fig. 1; see Reff31].
As I rises above 1, the layer begins to bounce, apdn-
creases with'. Between 3.31'<3.7 the layer is locked into
a state where it never rests on the plate apdemains con-
stant. Abovd’ = 3.7 period doubling occurs, angdt) can no
longer be written in form5). In a straightforward generali-
zation, two different periods witfi;+ T,=2T appear.
In between shocks, the solution of Ed) is Hxee'9%,
where the dispersion relations
- _ 2 —_Rp_ 2
o1=-D10° o0,=-B-D3q (6)
correspond to pure relaxation. At the point of impact, ¢he
function imposes a jump condition

H{ —H{ =0 oH . )

excitation of waves.

Next we compute the most unstable mode on the neutral
curves= 1. For supercritical transitions this gives the wave-
length that is expected to appear as the acceleration is raised
slowly above the critical valu€’,. Introducing the dimen-
sionless combinations

D, , ,
0=p,” A=BT. Q=D (10
we find
(©_ (1+e)(B+(6-1)Q) 1+e (BTQ%
Up _Dl Q2 l—e_(ﬁ+(5_1)Q2)'
(11)

To find the critical wave number, Eq11) has to be mini-
mized with respect t®, giving
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300 —T— 11— tively. In a double-logarithmic plot, the dispersion relation
rE 2.80 B i showia sharp transition at= w,,, which lies between 3 and
2 4 forhg=2.98 mm. In the low-frequency regime< w,, the
g 2.60 - ] behavior is close t&~ w3 while a much weaker depen-
B 240 - = dence of roughlk~ »%2 is seen at high frequencies. Note
< 220 | ® | that the exponents of both power laws are much smaller than

the exponent 2 reported in earlier experimefit4], con-
tinuum theory[24], and numerical simulationgl4,17. In
view of the short scaling range one should, however, be very
careful interpreting the data in terms of scaling laws.

FIG. 2. Neutral curvd (). Solid circles give the experimental ~ According to Ref[31] the transition between the different

results for increasind’ for a mean layer thickness of 2.98 mm, power laws is associated with the frequeﬂ"lb}/ho/ZE, above
taken from Ref[18]. Theoretical fits forB=0.08, D,=2.1ks,  which the velocity of the plate is no longer sufficient to let
and D,=0.12k» (open squargs B=0.14, D;=0.93k, D,  gne particle hop across the other. Therefore, all particles are
=0.94k (plusses and B=03, D;=0.lv, and D,=1.9k  |ocked into a fixed relative position, and the motion is pre-
(open circles dominantly in the vertical direction. Our theory is therefore
not expected to be applicable. Hence we will only be con-
Qc=Qc(B,9). (120 cerned with the low-frequency regime<w,. From the

Plugging this back into Eq11) leads to the critical impact data of Ref[31] for ho/d between 3 and 13, it is also seen

velocityvgd(ﬂ,é), and then to an expression of the form that continuum scaling works much better in the low-
frequency regime.

f(To) =0 0=D,wFB,5). (13 Turning to the phase diagram, stripe patterns are observed

at high frequencies, while our frequency range of interest

In general, the minimum has to be found numerically. Fore<wy is associated with two-dimensional square patterns.
two limiting cases, however, the dispersion relation can be'his does not, however, affect the comparison withlthe

2.00 | 1 ! | | | | 1 !
00 10 20 30 40 50
Frequency ©

given explicitly, ear properties of the one-dimensional model. In the low-
frequency regime, the criticdl decreases slightly with fre-
0.45 quency, and hysteresis is found. Experiments at different
qcz\/?wl’2 for B—oe, (14)  layer height§16,37 reveal that there is only a small increase
1

of I'; with layer height.
To compare theory with experiment, it is useful to return

gc=a(D;,Dp)0™  for B—0, (19  to dimensioned quantities in oorder to resurrect the depen-

wherea(D,,D,) is determined from an implicit equation. In dence on the mean layer heidiy. We find
both cases|.> w'? for fixed D;. This is because the waves -

are damped by a diffusive mechanism. The same “viscous” _ D1(w,ho) —
scaling has also been found in other approadi&25. f(le)= gﬁo @ F(B.9), (16
Power laws different from 1/2 are due to some frequency
dependence of the model parameters. Q3(B,9)

We can now attempt to make a more quantitative com- azzi—’__z. (17)
parison between experimental measurem¢h& and our 27D (w,hg)

model. We will try to extract the dependence of the transport

coefficients on the layer height and the frequency from theAssuming that both diffusion coefficients scale the same way
experimental data, and see whether this leads to a consistthﬁO and w, we try the ansatz

picture. In Figs. 2 and 3 we show the experimental measure-

ment of the onset curve and the dispersion relation, respec- hA
- ~ 0
D1,=D1,=. (18
3.00 — T T T w
- L ] _ _
5 200 - -] This renderss independent ofv and hy. Since experimen-
2 4 — _
£ tally I'; increases only slightly witth, at fixed w, we con-
= 100 L ) clude from Eq.(16) thatu =1+ €, where 0<e<1 is used to
é : indicate the weak increase It with layer heigh{37]. This
is not to say that the experimental onset fits such a power
000 "—— A 1 1 1 I her j indi h h in th -
00 10 20 30 a0 50 aw, but rather just to_lndlcate ow a change in the depen

Frequency dence of the onset oh, affects the dispersion relation be-
tweenq and o within the present framework. In all results
FIG. 3. Dispersion relation(w) corresponding to the neutral below, we uses=0. Inserting Eq.(18) into the dispersion
curves in Fig. 2. Experimental results are given by solid symbolselation(17), for the dimensionless wave numizgas a func-
(circles forhy=2.98 mm, triangles foh,=1.49 mm). tion of w one obtains
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2 1.50 ——
2_ Qc(ﬂ*é) TWA-vR2]-€e 1+v
q _2 D.q-(1+»P2 0 o (19 £ I g ]
19 T 00 ] .
Experimentallyg(w) collapses onto a single curve indepen- ;
dent ofhy. Thusvy=1-2¢, and we obtain £ 050 1 7
[=
o . Fé+5 5 0.00 b 1 [ 1 .
D1,=Dio=—, (20) 23 24 2.5 2.6
w ¢ Acceleration I

- . . . _ FIG. 4. Hysteretic nature of the transition in the presence of a
whereD; , has the dimension of an acceleratidar €=0). velocity-dependent viscosity23) with »=0.5 andv;=0.2. The

This makes the dimension of the material parameters (_)f th%ther parameters are—1.62105, D,—D,—0.37, andB— 0.45.
sand the same as the control parameter of the experiment,

which is the physical origin of the observed collapse of theSimilar model proposed in Ref24]), while experimentally

dispersion relation. Note thafor e=0) D, are propor- the transition is subcriticdll1,12. We consider two physi-
tional to the impact velocity > w ! for given acceleration. cally plausible reasons for this discrepancy.
Thus the final result for the dispersion relation is Statically, sand has a finite angle of repose. Motion only
) ~ starts if the slope of a hill of sand exceeds a certain critical
, Qc(B,d) gt~ ¢ 21-e) ,q)  Valuex. One may expect that in a dynamic state this leads to
= 6_‘" ' (2D enhanced friction of the flowing upper layer when the slope
! of the surface is small. We model this by taking

It remains to determingd, &, and 151 from a comparison —(hy/x)?

with the experiments. B=Bo(1+Bye "™, (22
From Eqgs.(16) and(20) it follows that forB=0 the onset

acceleratior’; is independent of frequendjor e=0). If B Wherex sets the characteristic slope below which the granu-

is taken to be finite, lower frequencies will be damped mostlar character of the material becomes noticeable.

due to the termBv in Eq. (1). Thus, in accordance with Second, the layer will have a much higher viscosity when

experimental findingg12,16,18, the critical acceleration itis near its compact state. An accurate description will havg
I'© decreases slightly with frequency. to contain a parameter which measures how far the layer is

We concentrate on the transition from a flat layer tofrom this state. As the “fluidization” increases, the viscosity
waves in the low-frequency regime<w, . The transition is expected to decrease. The simplest assumption is that the
occurs forl' between 2.5 and 3 at the lowest frequencies/luidization depends directly on the local velocitgz,t), and
depending on the type of particle and on the layer thicknesghus we model this effect by
For definiteness, we consider the phase diagra8h for a

2

mean layer thickness ¢f,=2.98 mm, shown in Fig. 2. The D,=DY(w)[1+ ne” /0], (23
critical I' is seen to rise fronh';=2.3 atw=4 toI';=2.7 at
w=1. Keeping the ratia>=D, /D, constant, one can adjust Note that the fluidization and thus the local velocity are dis-
D, to give the correct value faw=1. ForB=0, this value tinct from the typical velocity of the vibrating plate. The
would remain constant for ath. By choosingB to havel. latter sets the typical collision time between particles, and
agree with the experimental finding @at=4, the onset curve thus leads to aise in viscosity as it increases. It is obvious
is reasonably well reproduced. In Fig. 2 we include the fitsthat Eqs.(22) and(23) can lead to a subcritical transition to
for 6=0.057, 5=1.01, ands=19, for which the agreement waves. Greater accelerations are needed to set the layer into
is comparable. motion for zero initial slope and zero velocity. On the other

Next we turn to the dispersion relation of wavenumberhand, once waves have started to appear, the motion will
versus frequency as given by Bizenal.[18], shown in Fig.  persist to lower values df. Figure 4 shows a typical hys-
3. The only parameter remaining to be fixed is the ratio teresis with only the fluidizatiohEq. (23)] taken into ac-
between damping constants. We adjust it to obtain an opticount. In the numerical simulationg(t) is taken to contain
mum fit of the theoretical dispersion relation to the experi-not only thes shocks, but also the smoothly varying accel-
mental data. While the slope of the experimental data is stileration while the layer is in contact with the plate.
slightly higher than predicted from theory, fé=0.057 we The subcritical properties of the model are believed to

find a reasonable agreement. play a crucial role in the appearance of localized subhar-
monic excitations called oscillons. They arise from extended
IV. NONLINEAR PROPERTIES AND OSCILLONS square patterns when the driving is reduced below the stabil-

ity limit of the latter. Alternatively, they can be excited by a
To investigate the nonlinear behavior of the model, thelocalized “seed”[28]. In one period, an oscillon consists of
coefficientsD; are taken to depend on the local layer heightan axisymmetric jet of a height several times its diameter
h according to Eq(20). We find that the bifurcation from the shooting out of an almost flat layer. In the next period, the
flat state to the standing waves is supercritical if the transpomscillon forms a shallow circular “trough,” surrounded by a
coefficients are taken to be independentplndv (as inthe  small mound.
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3.0

R — as localized bursts, but not as time-periodic structures with
— peak phase height steady amplitude. Our main point will therefore be that struc-
=« trough phase A n / ] turally our model allows oscillon solutions. For a more quan-
2.0 -

titative description an axisymmetric version of our code has
to be considered.

Height and Velocity

Figure 5 shows a numerically obtained one-dimensional
1.0 . o L .
velocity oscillon in its two phases. The central jet is considerably less
N sharp than the experimental one, as expected from the above
0.0 = VAVEL - argument. The parameters are chosen so as to damp the mo-
v ) tion outside the oscillon very rapidlyz(=6), and to make
Lo sure that as the layer hits the plate in the trough phase, al-

0.0 10.0 20.0 30.0 40.0 50.0

most all material is transported inwaréd€0.2, B;=19).
Position x

The temporal evolution of the surface height is shown in Fig.
6 as a space-time diagram. This illustrates the transport away
FIG. 5. Oscillon solution for '=2.5, w=1.6, D;  and toward the center of the oscillon. As initial conditions,
=0.3761, D{P=0.08&, By=0.1, B;=19, =02, we chose a localized velocity profile directed inward towards
andv¢=0.4. a point, to produce an initial central peak. We find that the

) . layer thickness averaged over two periods is smaller inside
The appearance of oscillons requires that the flat layer bghe oscillon than outside. Thus the oscillon tends to push out

linearly stable, while, in the region covered by the oscillon,material. In preparing an initial condition, we accounted for

waves can be sustained, since the grains are fluidized only ifis by reducing the layer thickness in the center. Once the
the center. In the trough phase, the mound has a very shallogp|ution was close to stationary, we checked for exponential
slope facing out, so the outward flux of material is stronglyconvergence toward an oscillon solution. Furthermore, the

damped and almost all the material is sent radially inwardparameters could be varied to within a few percent without
The small amount of sand that is transported outward comegestabilizing the oscillon.

back during the following “peak” phase. Because of mass
conservation, it is eV|der_1t tha_t the formation of oscillons is V. DISCUSSION
greatly facilitated by their radial geometry. The greater the

radiusr away from the center, the smaller the heigt) In the present paper we have presented a simple hydrody-
that corresponds to the mass of the peak during the peakamic description of surface waves on vertically vibrated
phase. Conversely, ingoing sand is focused into a sharp jefiranular media. We have eliminated all vertical degrees of
Therefore, within the one-dimensional version of our modelfreedom, and described the horizontal motion by three effec-
oscillons are expected to arise only over a smaller range dive transport coefficients. Our model predicts an instability
parameters than in two dimensiof&7]. In fact, they could based on the interplay between shocks imparted by impacts
only be found for greatly exaggerated subcritical behaviorpn the plate and diffusion both in the layer height and the
i.e., largeB; and 5. This may also be the reason why, so far, momentum of the layer. This distinguishes the model from
stable oscillons have not been found in experiments on viearlier approachelsl1,16,25, which, in analogy to Faraday
brated sand between two narrowly spaced plates, which efvaves in liquids, are based on the resonant excitation of

fectively have only one horizontal dimensiph5]. In these damped waves that exist even in the absence of periodic
experiments, localized structures appear only intermittentlyriving.
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To obtain quantitative agreement with experiment, the de~'penetration depth,” which is an unknown function of pa-
pendence of the transport coefficie®s D;, and D, on  rameters. It was crucial for obtaining a transition«gt be-
experimental control parameters has to be taken into accourtiveen high- and low-frequency regimgz4].

Remarkably, the possibilities for this dependence become se- An obvious question is whether our model can be tested
verely restricted by the weak dependence of the neutral curvagainst other experimental observations without significant
on the frequency and the collapse of the experimental dathurther complications and with the same parameter values.
for the dispersion relation in units of the gravitational accel-First, the succeddl 8] of numerical simulations in reproduc-
erationg and the mean layer heigh. As a consequence, ing experimental data opens the possibility of a detailed
the neutral curve and the fact of the data collapse alone imeomparison of the wave forms. Nonlinear effects are very
ply a certain dependence of the wave number on the frestrong and the waves are far from sinusoidal, the crests being
guency, which turns out to be in reasonable agreement withubstantially more peaked than the troughs, which qualita-
the experiment. This leads to an interdependence of thed&vely is also seen in our model. A next step would be an
seemingly independent observations. Conversely, the pow&xploration of the phase diagram at higher accelerations, at
laws are predicted to change if other parameter dependencitesast in the low-frequency regime. That would necessitate a
of B, D4, andD, apply, in which case data collapse may two-dimensional approach to address the relevant pattern-
also no longer occur. Thus the data collapse indicates morgelection properties. Such a two-dimensional version would
than continuum scaling alone, i.e., more than the indeperalso allow for a quantitative study of oscillons, both in their

dence of the grain diamete within our model the collapse Shape and their occurrence in parameter space. _
is due to specific dynamical properties of the vibrated sand In the model presented here it is found that localized
as reflected in the transport coefficients. Indeed, there ar@aves expel material into the quiescent regions. Transport of
indications[16,18 of a high-frequency regime in which the this type was considered essential in the Ginzburg-Landau-
power law is different, and where the data collapse alsdyPe model introduced in Reff25], in which the layer height
seems to be in questid81]. couples back to the damping of the waves. Such a feedback
To obtain the experimentally observed strong subcriticalwould occur in the model discussed here tor0 in Eq.
ity of the transition to waves, we have invoked a critical (20). Whether such a transport actually occurs in the experi-
slopex in the friction term[Eq. (22)]. This effect would be Ment is of great interest.
connected with the granularity of the material, and the pa- A Significant step beyond the models presented so far
. , would be an investigation of the high-frequency regime
rameters are expected to dependddhy, implying that the here the di . lati anifi v ch .
continuum scaling should not hold in the nonlinear regime.W ere | © S|s_per3|ﬁ_n relation vel;y s;]gnl icantly changes Its
Unfortunately, the fluidization(23) also comes into play power law. Since this seems o be the regime where grains
when determining the hysteresis, so there is no simple ostdre geometrically obstructing each other, one expects a sig-

X hificant dependence on grain size and a breakdown of con-
mate of the dependence of the hysteresiS on the particle tinuum scaling. Within our model, this could possibly be

diameter. Still, measurements M as a function of botd  modeled by a different parameter dependence of the trans-
andhg would be revealing. port coefficients. On the other hand, it is conceivable that the
It is expected that the agreement with experimental datatrong spatial correlations introduced by the particles, which
could be further improved if additional aspects of the systenare locked into a fixed relative position and predominantly
are included in the model. For instance, we have neglecteghove in a vertical direction, calls for a different, perhaps
effects of a layer dilation, which will depend on frequency; nonlocal, hydrodynamic description.
the dilation will smooth out the driving, making the driv-
ing less effecti_ve, anq Ioweringo. ACKNOWLEDGMENTS
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