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We consider a dilute gas of granular material inside a box, kept in a stationary state by vertical
vibrations. A wall separates the box into two identical compartments, save for a small hole at
some finite height h. As the gas is cooled, a second order phase transition occurs, in which the
particles preferentially occupy one side of the box. We develop a quantitative theory of this clustering
phenomenon and find good agreement with numerical simulations.

PACS numbers: 81.05.Rm, 05.20.Dd, 05.70.Ln, 45.70.Qj
One of the most outstanding features of a gas of
granular material is its tendency to spontaneously form
highly concentrated regions or clusters [1–4]. So even in
its gaseous state it behaves fundamentally different from
a molecular gas, which keeps its uniform density. Apart
from throwing light on the nonequilibrium properties of
a granular gas, this clustering instability is of major
technological importance. Imagine a flow of rocks down
a chute: whenever a very dense region has formed due to
the instability, the rocks may easily get entangled and the
flow is stuck.

In a molecular gas collisions are overwhelmingly elastic,
so maximizing the entropy requires the equilibrium state to
be spatially uniform. In the case of a granular material col-
lisions are inelastic, and entropy is transferred to the micro-
scopic degrees of freedom by the way of heating or through
changes in the microstructure. As a result the granular as-
sembly may assume a more ordered state. Qualitatively,
the mechanism behind this ordering is that for binary
collisions the rate of energy loss grows quadratically
with the density, with a volume-fraction dependent cor-
rection at high concentrations. This means that a dense
region rapidly cools, increasing the density even more ac-
cording to the equation of state.

Goldhirsch and Zanetti [3] used a hydrodynamic de-
scription of a dilute gas or “rapid granular flow” [5–9] to
show that this mechanism leads to a long-wavelength in-
stability of a homogeneous assembly of inelastic particles.
In the absence of driving the density becomes so high that
the equations used in [3] are no longer valid, and indeed
any result based on kinetic theory becomes meaningless
as the particles eventually come to rest. Another com-
plication is the inelastic collapse known to occur inside
clusters [4], i.e., an infinity of collisions in finite time.
In the experiment described in this Letter, a stationary
state is maintained by an external driving. On one hand,
this keeps the gas sufficiently dilute so that simple leading
order density expansions are applicable throughout. On
the other hand, the existence of time-independent solu-
tions without mean flow simplifies the problem tremen-
dously, so that analytical solutions are feasible. As the
hydrodynamic instability of [3] is a shear instability with
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finite mean velocity, it is clearly distinct from the phase
separation described here, although the central mechanism
of collisional cooling remains the same.

The experiment, first described by Schlichting and
Nordmeier [10], consists of a box of base area 12 cm2

and height 20 cm, mounted on a shaker, and filled
with N � 100 plastic particles of radius r � 1 mm (see
Fig. 1). The box is separated into two equal parts by
a wall which has a narrow horizontal slit at a height
h � 2.3 cm. When the shaker is operating at full power,
the amplitude in vibration is approximately A � 0.3 cm
and the frequency f � 50 Hz. Even if all particles are
on one side initially, they rapidly distribute equally to
both sides. Lowering the frequency below a critical
value of 30 Hz the symmetry is spontaneously broken,
and particles settle preferentially on one side. As seen
qualitatively in Fig. 1 the wall separates a dilute phase at
high temperature from a dense phase a low temperature,
meaning that the particles fall to the bottom. In the limit
that the hole is so small that its surroundings are virtually
undisturbed one expects a discontinuous jump of density
and temperature across the boundary.

z

FIG. 1. A drawing of the experimental setup. The two sides
of the box are connected by a hole at height h. The picture is
taken below the bifurcation, so most particles have settled on
the right hand side. As a result, the gas sinks to the bottom,
reducing the flux.
© 1999 The American Physical Society
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The grains thus act as Maxwell’s demon [11], who
preferentially lets particles pass from left to right or vice
versa. As a result, a more ordered state is formed in which
most particles are on one side. The demon must then
absorb entropy, a role which in our system is assumed by
the sand grains. Still another interpretation would be that
of a dissipative structure, which in the stationary state is
maintained by a flux of entropy [12].

The experimental findings are easily reproduced by a
numerical simulation of the event-driven type [13]. To
reduce the numerical effort we use a two-dimensional
simulation, where the particles are represented by smooth
and hard disks. Upon collision, the normal velocity
is reduced according to y0

n � 2eyn, where e is the
coefficient of restitution. To minimize wall effects, which
are not essential to our problem, all wall collisions
are assumed to be elastic. The top is left open. For
simplicity, the bottom of the container is taken to move in
a sawtooth manner, such that a colliding particle always
finds it to move upward with velocity yb � Af. In
addition the amplitude A of the vibration is assumed to be
very small compared with the mean free path, so that the
bottom is effectively stationary. In summary this means
that the z component of the velocity of a particle colliding
with the bottom is changed according to y0

z � 2yb 2 yz .
The transition is best characterized by the asymmetry

parameter e � �N̄��r 2 N̄�2��N̄ , where the overbar de-
notes the number of particles relative to the half-width of
the container. Figure 2 shows the average value of e as
function of h for N̄ � 225 as circles, which exhibits a be-
havior typical of a second order phase transition as h is
raised above a critical value. This is not surprising since
the present nonequilibrium transition is associated with a
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FIG. 2. The bifurcation of the asymmetry e as function of
the height h. The circles represent numerical simulations with
N � 360 particles in a box of half-width 1.6, averaged over
time. The particles are circular disks of radius r � 0.01 and
coefficient of restitution e � 0.95. The velocity of the bottom
is yb � 0.149, acceleration of gravity is g, and mass m is
normalized to one. The full line is the result of the theory
presented in this paper; the dotted line comes from a simplified
bifurcation analysis.
spontaneous breaking of the symmetry between left and
right [14].

To treat the transition theoretically, we observe that the
condition of stationarity is that the total flux between the
two compartments is zero, i.e., the fluxes going from one
side to the other cancel:

F�!r�h� � Fr!��h� . (1)

A nonsymmetric solution of (1) becomes possible because
the flux F is no longer a monotonously increasing
function of the number of particles as it would be
in equilibrium. Another hallmark of a nonequilibrium
system is that the stationary state is described by a flux
balance (1), while the temperature on either side of the
hole is not equal, as it would be in thermal equilibrium.

In the limit that the connecting hole is small, it remains
to find the density and temperature distribution in a one-
dimensional column of a vibrated granular assembly,
from which we calculate the flux of particles leaving a
compartment at the height of the hole h. In the next
few paragraphs the left and right hand sides of the
problem is first treated separately as a one-dimensional
column of gas in a gravitational field. We compute
the profiles using a continuum theory, then we compare
with numerical simulations of a gas of smooth, inelastic
disks. Knowledge of the one-dimensional profiles will
then allow us to look for solutions of (1). We show that
(1) has a single solution for strong driving or small h, but
two asymmetric solutions become stable as the driving
is lowered or h is increased. A simplified analytical
theory shows that the transition is controlled by a single
combination of the input parameters. Finally, we study
the effect of fluctuations.

One-dimensional column.—The problem of a vertically
vibrated granular gas in a gravitational field has recently
been treated in a number of papers [15–17]. Equations
of motion for the number density n�z�, pressure p�z�, and
granular temperature T �z� can be found from conventional
kinetic theory [5,6]. The position z is measured from
the bottom of the container and the granular temperature
is defined as T � �y2��d, where d is the dimension
of space and y is the velocity of a particle. This
definition of temperature is customary for granular media,
but differs from the usual molecular temperature, which
is recovered by formally setting kB � m. Now the
stationary equations become in the dilute limit

p � mnT , ≠zp � 2mgn ,

k≠z�T1�2≠zT � � �2k�3�≠2
zT3�2 � Dn2T3�2.

(2)

The first equation is the usual equation of state; the second
is the force balance, where 2mg is the force on a single
particle. The third equation is the balance of heat flux
and dissipation due to inelastic collisions. As usual, the
thermal conductivity kT1�2 is proportional to the average
particle velocity. In the simplest possible model of hard
and smooth particles the energy loss in one collision is
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proportional to �1 2 e2�T on the average. Together with
the number of collisions being proportional to n2T1�2 this
explains the form of the loss term on the right hand side
of the third equation (2).

We will consider the two-dimensional case of circular
disks of radius r , for which the coefficients are found
to be [6] k � p21�2m�r , D � 4p1�2mr�1 2 e�. Next,
we have to supply boundary conditions. In the derivation
of (2) it has been assumed that the velocity distribution
is nearly Maxwellian, and making the same assumption
for the velocity distribution at the boundary allows us to
calculate the rate of energy input per unit width (or unit
area in 3D) to

Q � mn�ybT �0� 1
p

2�p y2
bT �0�1�2� . (3)

We will see below that the first term in (3) dominates,
the second typically being smaller by a factor of 10 in
our simulations. The two boundary conditions for z � 0
become

p�0� � 2gmN̄ , Q � 2kT1�2≠zT �0� , (4)

where the first equation comes from integrating the force
balance. The second equation balances the energy input
with the heat flux out of the bottom according to (2).

Since (2) is of third order, another boundary condition
is needed for a unique solution. The missing third condi-
tion is found by observing that (2) allows for a solution of
the form T3�2�z� � cz 1 b and n�z� decaying exponen-
tially for large z, as expected on physical grounds. In that
case c must be zero to prevent T from becoming nega-
tive or infinity. This is the desired third condition, and
solutions are easily found by shooting for a temperature
profile which is asymptotically constant. The resulting
temperature and density profiles are shown as dotted lines
in Fig. 3 for a typical set of parameters, from which it is
seen that the temperature is mostly constant apart from a
boundary region.

This suggests an even simpler theory [16] where the
temperature is assumed to be constant, which allows us to
calculate the profiles in closed form. Namely, at constant
temperature the density is an exponential and T` is found
from a balance of the energy input and dissipation:

n�z� �
gN̄
T`

e2gz�T` , T` �

µ
2myb

DN̄

∂2

. (5)

Here we have neglected the second term of (3) in favor
of the first. This as well as the form of the profiles (5) is
asymptotically correct for e ! 1. The resulting profiles
are the dashed lines in Fig. 3. Evidently, the present
theory is more accurate, but the constant temperature
solution has the great merit of simplicity and still contains
the essentials.

Next we assess the quality of the predictions of con-
tinuum theory by comparing with a numerical simulation
as described above (solid lines). The agreement is quite
good, but gets worse if the number of particles is reduced,
and deteriorates even more in three dimensions. The rea-
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FIG. 3. Temperature and density profiles of N � 320 grains
in a box of width w � 1.6. All other parameters are the same
as in Fig. 2. The full line is the result of a particle simulation,
the dotted line is the present theory, and the dashed line is (5).

son is that even for the parameters of Fig. 3 the tempera-
ture changes significantly over the length of the mean free
path. As a result, the distribution of the yz velocities of
particles hitting the bottom deviates significantly from a
Maxwell-Boltzmann distribution at T �0�.

Bifurcation.—Returning to the original stability prob-
lem, the flux through a hole of area S is found to be
F � Sn�h�

p
T �h��2p . Using this formula, and solutions

of (2)–(4) to find the profiles, one can look for solutions
of (1) subject to the constraint N̄ � N̄� 1 N̄r that the
total number of particles is conserved. Figure 2 shows
the solution of (1) as a function of h for N̄ � 225 as
the solid line, in good agreement with numerical simu-
lations. Even more insight can be gained by comput-
ing the fluxes according to the simplified solution of (5),
where the temperature is assumed constant over one-half
of the container. From (5) we find the average flux
F�!r � F0N̄2

� exp�2aN̄2
� �, where F0 is a constant and

a � 4pghr2�1 2 e�2�y
2
b . The equation of motion for e

thus reads

≠te � F0N��e 2 1�2�2e2m�e21�2�2

2 �e 1 1�2�2e2m�e11�2�2

� 1 j , (6)

where j is a noise term which comes from fluctuations in
the flux that will be considered later. The vanishing of
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the angular brackets, which means that the two fluxes are
equal, is controlled by the parameter

m � 4p�gh�y2
b� �rN̄�2�1 2 e�2 (7)

alone. If m . 4, the equation �· · ·� � 0 has three roots
and the two asymmetric solutions become stable. Not
surprisingly, broken symmetry is favored for large inelas-
ticity 1 2 e and particle densities rN̄ , but also if the
combination gh�y

2
b gets large. Small h implies that the

hole is near the bottom, which allows for a ready ex-
change of the low-temperature “condensate” with the other
side. Strong external driving corresponds to large yb ,
which also tends to restore the symmetric state. Just above
the bifurcation the asymmetric solutions are described by
�e� � 6

p
3�m 2 4��16, which is included as the dashed

line in Fig. 2. While there is an offset between the sim-
plified theory and the simulation, it does describe the form
of the bifurcation fairly well using the single parameter m.

To estimate the amplitude of the noise term in (6)
we assume that the particles passing through the hole
are uncorrelated. This means that if �D� is the average
number of particles passing from left to right in a given
time interval, then ��D 2 �D��2� � �D�. On a coarse-
grained time scale this is equivalent to saying that j in
(6) is uncorrelated Gaussian white noise [18], with the
second moment given by

�j�t�j�t0�� � F0��e 2 1�2�2e2m�e21�2�2

1 �e 1 1�2�2e2m�e11�2�2

�d�t 2 t0� .
(8)

Note that the constant F0 can be eliminated by rescal-
ing time, so the strength of the noise is controlled by the
total number of particles alone. By considering the fluc-
tuations around the local minimum to Gaussian order, we
find [18]

p
��e 2 �e��2� � �4N�m 2 4��21�2. Adjusting

this formula to the critical value of mcr � 5.4 found from
simulation this gives

p
��e 2 �e��2� � 0.045 in reason-

able agreement with numerical simulations. Of course,
Eqs. (6)–(8) also allow for a more detailed analysis of
transitions between the two asymmetric states and many
more questions relating to the critical fluctuations typical
of a second order transition. This will be considered in
more detail in future publications.
In conclusion, hydrodynamic equations are a very
valuable tool to describe a dilute granular gas. The
greatest problem lies in the formulation of the boundary
conditions. The clustering instability can be understood
in terms of a very simple experiment, which we model in
a static, one-dimensional description.
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